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Abstract—1In this paper, we improve the results based on a
Neural Network-based model that predicts an enzyme (Aldose
Reductase) inhibitory activity of a group of compounds. The
improvement is due to the judicial selection of ensembles of
trained Neural Networks to contribute to the final model. The
method is validated on a family of compounds that is different
from the families which were used in the training of the model.
The results confirm an accurate, chemical-family-independent
method that can predict Aldose Reductase inhibitory activity
with excellent accuracy.

I. INTRODUCTION

This present paper is a continuation of the work described
in [15] and [16]. There, we reported the results in the
construction of a NN-based prediction model for an enzyme
inhibitory activity of a number of chemical compounds and
its validation using another set of unknown compounds. The
focus of the present work is to refine and expand the methods
presented earlier leading to an improved prediction of Aldose
Reductase Inhibitory (ARI) Activity. We shall validate the
results obtained using an enhanced validation set of actual
experimentally derived activity data in a blind experiment. We
shall show that the new refined model predicts the (Aldose
Reductase) Inhibitory Activity exceptionally well.

A key step in the construction of a NN-based prediction
model is the training of the NNs. Our training mechanism and
its applications reported in [10], [15], share the fact that the
information (data or exemplars) used came from observations
on real systems, the amount of information at hand was sparse,
and the relationships modelled were complex.

Here, we focus in modelling pharmacological activity based
on structural properties of a chemical compound. Specifically,
we are interested in modelling the Aldose Reductase (AR)
enzyme inhibitory activity. The inhibition of the AR enzyme is
considered to be an approach to control diabetic complications,
ischemia, abnormal vascular smooth cell proliferation, cancers,
and mood disorders [13], [2] [11].

A large body of literature reports on the modelling of possi-
ble relationships between biological/chemical/pharmacological
activity and the structure of a compound [3], [17]. The method
is based on deriving a model of the activity under study based
on descriptors of the compound in question. The descrip-
tors can be classified as topological, geometric, electronic,
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physicochemical, or hybrid. The activity may be biological,
its value being obtained as an assay on specific biological
target(s), or it may be associated to specific properties such
as chromatographic ones. The general method is known as
quantitative structure-activity relationship (QSAR). Linear and
non-linear models, including NNs [14] are used.

The main difficulty in research utilizing experimentally
derived sets of exemplars is the small number of exemplars
which makes training and generalization difficult. We shall
show, that our methods are very successful in such problems.

This work is presented as follows. In Section II, we briefly
describe the available data. In Section III we present an
overview of the method we have developed. In Sections IV,
V, and VI, we describe the methods used to select the training
sets, train the NNs and establish the ensembles of trained NNs
that will eventually yield the activity model. In Section VII we
present the method of selecting the ensembles of trained NNs
that will contribute to the final model. The model is evaluated
on a blind set of compounds and the results are reported in
Section VIII. We conclude with section IX.

II. ALDOSE REDUCTASE INHIBITORS DATA

Generally, in the construction of structure-activity relation-
ship models, one uses data from a single family of compounds.
However, in this work we used data from three different fam-
ilies of chemical compounds. This is an important difference
in that our method leads to a general model encompassing
several families of compounds. The families we used are:
nitrophenyl derivatives, with 19 compounds [4]; phenolic
derivatives, with 27 compounds [5]; and pyridazine derivatives,
with 15 compounds [12] for a total of 61 compounds.

These 61 compounds were used to develop our models. The
results were included in [15]. Subsequently, the descriptors
of a further 19 unknown compounds were made available,
and these were used for the blind validation tests as we shall
discuss in Section VIII. We shall refer to these 19 unknown
compounds as the Blind Validation Set

Each compound is described by a set of 17 molecular de-
scriptors: Surface Area and Volume of Electron Density, Elec-
trostatic Potentials (ESPmax, ESPmin and ESPdiff), Energy
parameters (EHOMO, ELUMO, Ebandgap), Dipole Moment,



Hydration Energy, Water Accessible Surface Area, Water Ac-
cesible Volume, Polar Molecular Surface Area, Lipophilicity,
Molar Refractivity, Polarizability and the number of hydrogen
bond acceptor sites. The AR inhibitory activity (output data) is
determined as the concentration exhibited at a 50% inhibition
(IC5p) of the enzyme isolated from rat lenses, covered a
wide range between 10~*M and 10~°M and was converted
to pICsp (= —log(ICsp) )values.

Of the 61 compounds, four compounds were randomly
selected to form a validation set. The remaining 57 compounds
were further divided into two sets: a Training Set and a Test
Set which were constructed using guided selection [10].

The descriptors were processed with MATLAB’s NN Tool-
box! function premnmx.m to normalize the inputs in [-1,1].

The resulting normalization transformation vectors were
also used to transform the validation set and the Blind Valida-
tion Set. No preprocessing steps were performed on the output
data vector, that is, on the AR inhibitory activity values.

No further pre-processing that could have eliminated param-
eters with very small variability was employed, since it was
deemed that the dimensionality of the input space (17) was
small enough for the NN to handle computationally.

III. SUMMARY OF THE METHOD

Since our method involves several steps, we would like to
summarize it at this point so it would be easier for the reader
to follow.

The aim of our method is to devise a model that would
be able to model the inhibitory activity of Aldose Reductase
and generalize so that it could predict the Aldose Reductase
Inhibitory Activity of unknown compounds.

We develop our model based on the activity of a set of
known compounds (as discussed in Section II, this set includes
61 compounds). As a first step, and in order to be able
to determine the generalization abilities of our model, we
randomly partition this set of compounds into a validation set
(comprising 4 compounds) and the residual set comprising 57
compounds.

The residual set is now used to develop the model. To each
of the compounds there corresponds an exemplar comprising a
vector of descriptors and the expected (experimentally derived)
Aldose Reductase Inhibitory Activity. Given that the set of
exemplars is quite sparse, we employ the guided selection
mechanism we developed previously [10] to select the Training
and Test sets. A set of neural networks are now trained.
Subsequently, we thin this set of neural networks keeping
only the ones that show good generalization abilities. This
process employs the Sensitivity Heuristic we have developed,
and utilizes the Test and Validation sets.

The resulting set of trained neural networks, corresponding
to a particular partition of the original set of compounds, is
called a Sequence. We repeat the partition process several
times and each resulting Sequence encompasses a different
“view” of the eventual model. The question now is to devise
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a method of combining these Sequences to a coherent general
model of the Aldose Reductase Inhibitory Activity.

The general idea is to ensure that collectively the responses
of the trained neural networks of all the Sequences behave
somewhat similarly. Sequences whose responses are heavily
weighted to the extremes of the response intervals, or deviate
from the norm, are excluded or their influence to the final
result is diminished. We shall present the method of determin-
ing the influence and participation of individual Sequences in
Section VII.

We shall also present the particulars of the Sensitivity
Heuristic in Section V

IV. NN TYPE AND TRAINING MECHANISM

We selected a NN with six neurons in the hidden layer,
an activation function defined as y = 2/(1 + exp(—2n)) —
1 and a single output with a linear activation function. The
number of neurones in the hidden layer was selected after
experimentation to ensure proper learning and generalization
[10].

The guided selection mechanism [10] selectively divides the
set of exemplars into two subsets namely the Training and the
Test Sets. This selection mechanism, although similar, should
not be confused with methods for estimating generalization
errors, including cross-validation [8]. Our guided selection
mechanism is used to iteratively construct a training subset
from the available sparse set of exemplars, which will result
in generalization-capable Neural Networks.

V. NN-BASED MODELS POST-PROCESSING

In this study, the guided mechanism generated 350 candidate
Training and Test Sets pairs. Associated with each pair, our
method also generates a score s;2. This score is used by our
method to guide our algorithm and it is a measure of the
generalization capability of the NNs trained and evaluated on
the corresponding pair of sets of exemplars. We select the
“best” pair of Training and Test Sets by choosing the pair that
has the largest Test Set and the highest score.

For the chosen pair of sets of exemplars we retrieved the
set of NNs our algorithm generated. There were 500 NNs
associated with each pair of exemplar sets. From this set of
trained NNs, we are interested in choosing one (or more) NNs
that will generalize well and construct an ensemble to be used
in predicting ARI; similar ensemble construction strategies
have been used previously [6].

2For each Training Set i, we train ¢ = 500 NN, starting at different initial
conditions. For each set of exemplars, we calculate a success score s; as:

1
si== > hi(j) M
et
where:
1 if e ; <0.06
’“(J)*{ 0 if ey >0.06 @

eq,; is the normalized error obtained when the NN obtained in training
session j, using the Training Set i, was tested on the corresponding
Test Set 1.



We have already selected four exemplars which were ex-
cluded from the set of exemplars used for our guided selection
method and which constitute the validation set. We will
proceed now and examine the set of the trained NNs as to
their ability to generalize based on the validation set.

Given that the exemplars in the validation set have not
be “seen” by the NNs, there are NNs which will have
responses that will are “abnormal”. The Sensitivity Heuristic
[15] described below, aims to eliminate those NNs that have
such “abnormal” responses. The method perturbs the inputs
to the NNs, and then discards NNs that have responses that
are statistically outside the “norm”, retaining NNs with self
consistent responses. Note that this method relies only on the
input/output transformation as implemented by the trained NN
and does not consider the expected responses.

Sensitivity Heuristic:

1) Perturb the exemplars in the Training Set by adding
uniformly distributed noise to the values of the descrip-
tors and compute the resulting NN response. That is,
create a noise-Training Set made of noise-compounds

and compute the resulting NN response.
2) For each noise-compound, compute the average-per-

noise-compound response as follows. Eliminate, in a
per noise-compound basis, only the corresponding NNs
response to that particular noise-compound that are non-
consistent; the average-per-noise-compound response is
the average response of the remaining responses (i.e.,
the skewness of the remaining response distribution
is close to zero). When computing an average-per-
noise-compound response, only the corresponding noise-
compound response of some NNs is eliminated, the
response to other noise-compounds remains available.
For each m noise-compound, name the average-per-

noise-compound response as AN R(m).
3) For each NN 75 as of step 1 above, compute the neural

network’s average error for all noise-compounds in the
noise-Training set. That is

M
mean error; = (Z error; (m)) /M, 3)
m=1

where errorj(m) = |[ANR(m) — NN;(m)|
4) Now, eliminate the NNs so that the skewness of the

average-error is close to zero.
5) Considering the selected NNs from the previous step as

the new total number of NN, repeat steps 1—4 but now

using the validation set instead of the Training Set.
6) Construct the NN-based predictor as the ensemble of the

remaining NNs from step 5.

The Sensitivity Heuristic was instantiated as follows. The
added uniformly distributed noise had a mean value of zero.
In a first stage, Steps 1—4 were applied several times, each
time the new total number of NNs decreases (Step 4). Each
time the amount of noise added was decreased. The first time,
the noise uniform distribution was in the interval of (-0.2,0.2),
then the interval was reduced by 90% each time. Steps 1—4
were applied as many times as needed to obtain a new total

number of NNs equal to 100 (i.e., 20% of the original 500
NNis). Next, in a second stage, we applied Step 5 several times.
As in the first stage, each time the new total number of NNs
decreases and the amount of noise added was decreased. At
first, the noise was on the interval (-0.2,0.2), then the interval
was reduced by 90% each time. Step 5 was applied as many
times as needed to obtain a new total number of NNs equal to
50 (i.e., 50% of the remaining 100 NNs from the first stage).
Finally, we construct the NN-based predictor as the ensemble
of the remaining NNs from this second stage.

VI. TRAINING OF THE MODEL

We applied the aforementioned techniques on the set of
exemplars presented in section II.

First, we selected at random ten different sequences of
compounds which formed ten validation sets of exemplars.
These we named Sequence 1—10.

For each sequence, the remaining 57 compounds, were
supplied to the guided algorithm described in section IV which
determined a Training Set and a Test Set of exemplars.

The heuristic described in section V was then applied to
these sets to determine the response on the Blind Set. The
results are in Table I. Sub-column “pICjq” indicates the actual
value of the Inhibitory Activity. The sub-column “Sensitivity
Heuristic” refers to the difference between the actual and the
predicted value provided by the model.

The compounds in the different validation sets are identified
by a number; numbers 1 — 19 represent compounds from the
first family (nitrophenyl derivatives); numbers 20 — 46 repre-
sent compounds from the second family (phenolic derivatives);
and numbers 47 — 61 represent compounds from the third
family (pyridazine derivatives). Sub-column “N°” indicates the
number of that compound and sub-column “Seq” indicates the
number of a particular sequence.

The Sensitivity Heuristic produces responses that are very
close to the expected ones, with a mean error (norm2) of 0.127
and a geometric mean of the relative errors of 0.052.

VII. MODEL REFINEMENT

As outlined previously, given a set of compounds with
known activities, our methodology partitions these compounds
in different ways creating what we call Sequences of Neural
Networks each of which models the activity of the compounds
in the original set. These neural networks were so constructed
so as to exhibit generalization abilities.

We shall use the term sequence to denote both the groups
of the compounds that were used to develop Neural Networks
that model the activity of the compound in the sequence as
well as the set of Neural Networks that model this activity. In
the following discussion, it will be clear in which context we
shall use the term sequence.

For this experiment, we have created 10 partitions and their
corresponding Sequences of trained Neural Networks. Each
Sequence comprises 50 Neural Networks.

Collectively, we consider that those 500 Neural Networks,
encompass the “knowledge” of the activity relation of the ini-
tial set of compounds (Aldose Reductase Inhibitory Activity).



TABLE I
MODEL RESPONSE TO VALIDATION SETS

The issue now is on how to reach to an informed “decision”
as to the activity of an unknown compound based on the
“knowledge” incorporated in the set of the trained Neural
Networks discussed earlier.

A method that we used in previous studies [16] and which
yielded good results was to simply average the responses of
the the sequences excluding the sequences that responded with
the maximum and the minimum values respectively.

Recognizing that the response of some of the sequences
may not be “accurate”, we will not consider such sequences
when we compute the response of the model of the unknown
compound in question.

The question therefore is how to identify the sequences
which provide a “non-accurate” response for the compound in
question, given that the actual response of the compound is not
known. The method outlined below, first establishes an Initial
Estimate of the response. Expecting that the differences in
responses of all Neural Networks are due to random rather than
systematic effects, our method eliminates Sequences so that the
spectrum of responses of the remaining Neural Networks is
more evenly distributed above and below the Initial Estimate.
The Sequences that remain are then used to calculate the
response of the model.

We outline our procedure next.

Model Refinement Heuristic:

A. Establish the Initial Estimate

1) An array consisting of the value of the response of all
the NNs to the compound in question is formed and
sorted based on the value of the responses. Denote by
val;;i =1,... N the i*" value in the sorted array.

2) The Initial Estimate (IE) is calculated as the mean of
the 25th to 35th of the highest values and 25th to 35th

Sensitivity Sensitivity Sensitivity
Model | N° | pIC5g Heuristic Model | N° | pIC5g Heuristic Model | N° | pIC5g Heuristic
1 61 9.07 2.72 2 57 | 5.30 -1.30 3 10 | 5.45 0.44
3 4.85 0.17 37 | 4.84 -0.06 53 | 6.72 -0.65
43 | 5.93 0.82 25 | 3.86 -1.36 24 4.83 0.46
14 6.00 0.87 59 | 7.60 1.07 45 | 472 -0.94
4 32 | 4.38 -0.78 5 26 | 5.40 0.90 6 35 | 4.96 -0.02
40 | 5.88 0.53 18 | 5.61 0.01 37 | 4.84 -0.03
22 | 5.18 -0.05 2 4.67 -0.34 47 | 6.22 0.20
34 5.50 0.26 13 | 545 -0.01 45 | 4.72 -0.90
7 43 | 5.93 0.51 8 55 | 6.85 0.40 9 60 8.60 2.15
20 | 4.48 -1.18 37 | 4.84 0.01 7 4.65 -0.12
40 | 5.88 0.37 58 | 6.82 0.29 51 5.72 -0.22
6 4.74 -0.08 18 | 5.45 0.36 43 | 5.93 0.73
10 47 | 6.22 0.31
23 | 4.86 -0.33
12 | 5.62 0.24
18 | 5.61 0.42

of the lowest values.

N—-25

34
IE = (Z valm + Y valn> /20 (4)
n=N—-34

m=25
B. Eliminate Sequences

1) In Round0 (Preprocessing stage). The average value
of the responses of all the Neural Networks in each
Sequence is calculated.

2) In Roundl, one calculates the difference of the values
of the responses to the compound in question for all
the Neural Networks in all the Sequences from the
Initial Estimate.

ErrorPower = Z (val; — IE) (5)

One would expect that the ErrorPower would be zero
if the spectrum of responses were to be normal. If the
Error Power thus obtained is not zero, we eliminate the
Sequence that has the smallest (largest) mean response
if the Error Power is positive (negative).

3) The previous step is applied five more times (Rounds 2,
3,4,5 and 6).

VIII. VALIDATION THROUGH BLIND TESTS

In order to validate the results of our approach, we con-
ducted a blind test as follows. The collaborators at the Depart-
ment of Pharmacy at the University of Thessaloniki, supplied
the descriptors of nineteen compounds. These compounds,
were anonymized (i.e. the names, structure and their biological
activity (i.e. their p/C5y) were not disclosed.



TABLE I
THE COMPOUNDS USED IN THE BLIND VALIDATION SET

I Type || Symbol | Actual Name |

AX-1 N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamide
AX-2 N-(3,5-difluoro-4-hydroxyphenyl)-4-methoxybenzenesulfonamide
AX-3 N-(3,5-difluoro-4-hydroxyphenyl)-4-nitrobenzenesulfonamide
AX-4 4-amino-N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamide
AX-5 N-(3,5-difluoro-4-hydroxyphenyl)-4-(1H-pyrrol-1-yl)benzenesulfonamide
AX-6 N-(4-(N-(3,5-difluoro-4-hydroxyphenyl)sulfamoyl)phenyl)benzamide

Active AX-7 N-(3,5-difluoro-4-hydroxyphenyl)-4-(trifluoromethyl)benzenesulfonamide
AX-8 N-(3,5-difluoro-4-hydroxyphenyl)-4-(3-ethylureido)benzenesulfonamide
AX-9 N-(4-(N-(3,5-difluoro-4-hydroxyphenyl)sulfamoyl)phenyl)-4-methoxybenzamide
AX-18 N-(4-bromo-2-fluorobenzyl)-N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamide

AX-19 | 4-nitro-N-(4-bromo-2-fluorobenzyl)-N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamide
AX-20 | 4-amino-N-(4-bromo-2-fluorobenzyl)-N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamide

AX-21 N-(3,5-difluoro-4-hydroxyphenyl)-N-(phenylsulfonyl)benzenesulfonamide
AX-10 N-((1H-tetrazol-5-yl)methyl)benzenesulfonamide
Inactive AX-11 N-((1H-tetrazol-5-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide
AX-13 N-(methylsulfonyl)-2-(phenylsulfonamido)acetamide
AX-16 N-(1H-tetrazol-5-yl)benzenesulfonamide
Enantiomer AX-15 (R)-N-(3-oxoisoxazolidin-4-yl)benzenesulfonamide
AX-17 (S)-N-(3-oxoisoxazolidin-4-yl)benzenesulfonamide
TABLE III
COMPARISON BETWEEN THE PREDICTIONS RESULTED BY THE TWO METHODS AND THE ACTUAL RESULTS
I Type || Compound | Experimental | Previous | Proposed Method ||
AX-1 4.483 4.557 4.603
AX-2 4.810 4.906 5.062
AX-3 4.353 4.883 5.081
AX-4 4.851 5.092 5.115
AX-5 4.243 4.924 4.868
AX-6 5.102 5.136 5.053
Active AX-7 4.039 4.660 4.522
AX-8 4.423 6.285 5.136
AX-9 4.921 6.158 4.677
AX-18 5.244 6.709 5.191
AX-19 5.046 6.517 5.455
AX-20 6.409 6.53 5.487
AX-21 4.551 6.451 5.480
AX-10 <4 6.141 5.591
Inactive AX-11 <4 6.558 5.419
AX-13 <4 5.92 4.992
AX-16 <4 6.181 5.654
Enantiomer AX-15 4.148 4.514 5.047
AX-17 <4 4.514 5.047
The previously obtained 10 ensembles of NN corresponding We also obtained the predicted response as per the method

to the 10 sequences (Section VI) were used to derive the AR used in our previous work [16].

inhibitory activity of these unknown compounds. The results appear in TABLE III and TABLE IV and Figures
The Model Refinement Heuristic presented in Section VII 1 and 2 while the Sequences used in predicting the activity of
was used to obtain the predicted response. each component are shown in Figure 3.



TABLE IV
THE AVERAGE NORM VALUES FOR EACH METHOD

| Type || Metric

| Previous | Proposed Method ||

Norm-2
Norm-Inf
Geo-Mean

Active

Norm-2
Norm-Inf
Geo-Mean

Inactive

Norm-2
Norm-Inf
Geo-Mean

Enantiomer

6.000

4.000

2.000

0.000
1 2 3 45 6 7 8 9 1819 20 21
M Previous

M Experimental " Proposed Method

Fig. 1. Comparison Between the two Methods for Active Compounds
6.000
4.000
2.000
0.000
10 11 13 16 15 17
M Experimental  ®Previous m Proposed Method

Fig. 2. Comparison Between the two Methods for Inactive and Enantiomer
Compounds

The tables comprise two sections namely the section that
includes compounds AX1 through 13 and the section with
compounds AX 15 through 23. The compounds in the first
section are fairly active compounds while the compounds in
the second section are inactive (some of the activities were not
determined experimentally and are reported as less than 4.0).

As it can be seen, our model behaves quite well, especially
for the active compounds. It is markedly better than the model
we reported in our previous work [16] and denoted as previous
in the presented tables and figures. From TABLE IV we
can see that on the average the error (i.e. the difference of

0.289 0.148
1.9 0.929

0.089 0.065

1.106 0.717

2.558 1.654

0.547 0.346

0.316 0.691

0.514 1.047

0.106 0.238
ot 1 2 i 4 5 6 7 8 9 10
ie = =y
~ l l -
o -
3 I
s I

Fig. 3. The Sequences contributing to the prediction of the ARI activity of

each compound

the response of proposed method from the experimentally
obtained value) is 0.148 and the geometric mean of the relative
errors is 0.065 while the maximum error is only 0.929. It is
remarkable that these errors are very close to the ones we
obtained for the set of the original compounds as per section
VI

The proposed method also improves significantly as com-
pared to the method we presented previously. The error of
the proposed method is nearly half the error obtained with
the previous method. This is due to the selection of the
sequences of Neural Networks that ensures that only relevant
ones contribute to the final result.

These results are especially true for the set of the active
compounds. For the set of inactive compounds, our method
behaves well, but not as well as for the set of active com-
pounds. The corresponding average and maximum errors are
0.717 and 1.654 respectively.

The reason for the observed discrepancy can be explained
due to the fact that our model was only trained on active
compounds and not on inactive ones. Given that the class of
active compounds is much larger than that of the inactive ones,
our model does not have enough examples of what constitutes
an inactive compound to draw any sound inferences and hence
generalize correctly.

Please note that it is difficult to accurately measure the activ-
ity of an inactive compound. The activity of such compounds



is often reported as less than 4.

It is significant that our model was trained on chemi-
cals drawn from three distinct classes: namely nitrophenyl
derivatives, phenolic derivatives, and pyridazine derivatives.
The unknown compounds we used in this blind test did not
belong to any of the previous three classes. Rather, they are
sulfonamides, derivatives of the difluorophenol moiety. Yet,
our model, was able to accurately predict the experimentally
measured Aldose Reductase Inhibitory Activity of these un-
known compounds. This leads us to believe that our method, is
capable of deriving accurate models based on a very sparse set
of exemplars, and that these models can generalize,and are able
to accurately determine the activity of chemical compounds
not related to the chemical compounds they were trained on.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we presented and validated a novel method of
applying NN techniques in the area of QSAR. Our techniques
are applicable to cases where the set of exemplars is sparse.

For both the training and validation trials, we used data that
were laboratory measured and validated.

The results reported are significant not only because the
errors are quite small, but more importantly because they are
within a generally accepted absolute error of 1 [7].

Further we developed our model based on exemplars that
represented three different families of chemical compounds,
and validated it with chemical compounds from yet a fourth
class of chemicals. Thus, our technique was able to produce
a NN model that is accurate, and to the extend of the
compounds it was tested on, can be considered chemical-
family-independent.

Although the results we presented here very strongly in-
dicate a NN model that can accurately predict the Aldose
Reductase inhibitory activity of arbitrary chemical compounds,
we feel that further validation trials, involving larger number
of compounds, are necessary to fully explore the predictive
abilities and limitations of the developed model.

Further, we plan to also utilize inactive compounds in our
training set to ensure that our model can accurately generalize
and predict the activity of inactive compounds.

We further plan to study the significance of each of the
descriptors used (based on the Sensitivity Heuristic) and use
this information together with a Principal Component Analysis
to perhaps curtail the number of descriptors used.

ACKNOWLEDGMENT

Computational support was provided by the High Perfor-
mance Computing Facility at the University of Victoria. This
work was supported in part by The National Science and
Engineering Research Council of Canada (NSERC) and by the
Lansdowne Chair in Computer Engineering at the University
of Victoria.

REFERENCES

[1] Alexiou, P.; Nicolaou, L.; Stefek, M.; Kristl, A.; Demopoulos, V.J. Design
and synthesis of N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamides
as aldose reductase inhibitors. Bioorg. Med.Chem., 2008, 16(7), 3926-
32.

[2] Alexiou, P.; Pegklidou, K.; Chatzopoulou, M.; Nicolaou, I.; Demopoulos,
V.J. Aldose Reductase Enzyme and its Implication to Major Health

Problems of the 21st Century. Curr. Med. Chem., 2009, 16(6), 734-52.
[3] M. Ashton et al.,, “Identification of Diverse Database Subsets using

Property-Based and Fragment-Based Molecular Descriptions,” Quant.

Struct.-Act. Relat., Vol. 21, p%)v[598 604, 2002.
[4] L. Costantino, A. M. Ferrari C. Gamberini, G. Rastelli, “Nitrophenyl

derivatives as aldose reductase inhibitors”. Bioorg.Med.Chem. (2002), 10,

3923—3931.
[5] L. Costantino, A. Del Corso, G. Rastelli, J. M. Petrash, U. Mura, “7-

Hydroxy-2-substituted- 4 H-1-benzopyran-4-one as aldose reductase in-

hibitors: a SAR study”. Eur.J.Med.Chem. (2001), 36, 697—703
[6] P. M. Granitto, P. F. Verdes, H. D. Navone, H. A. Ceccatto, “Aggregation

algorithms for neural network ensemble construction”, SBRN 2002.
Proceedings VII Brazilian Symposium on Neural Networks, Nov. 2002,
p. 178—183
B Gillespie, R. A. Goodnow Jr., “The Hit-to-lead Process in Drug
Discovery”, in Annette M. Doherty (ed) Annual Reports in Medicinal

Chemzstry Vol. 39, pp. 293—-321, 2004
[8] R. Kohavi, “A study of cross-validation and bootstrap for accuracy

estimation and model selectio”, Proceedings of the 14th International
Joint Conference on Artificial lntelligence, 1137—1143, San Francisco,

CA, 1995. Morgan Kaufmann.
[9] L. K. Hansen, and P. Salamon, “Neural Network Ensembles”, IEEE Trans.

Patrn. Anal. and Mchin. Intellignc., Vol. 12, No.10, 1990.
[10] E. M. Laxdal, R. Parra-Hernandez, and N. J. Dimopoulos, “Guided Con-

struction of Training Data Set for Neural Networks”. IEEE International
Conference on Systems, Man & Cybernetics, October 2004, The Hague,

The Netherlands, pp. 5905—5910.
[11] S. Miyamoto, “Recent Advances in Aldose Reductase Inhibitors: Poten-

tial Agents fot the Tratment of Diabetic Complications”, Expert Opin.

Ther. Patents, 12 1p 621-631, 2002.
[12] B. L. Mylar1 et al. “A highly selective, non- hydantoin, non-carboxylic

acid inhibitor of aldose reductase with potent oral activity in diabetic
rat models: 6-(5-chloro-3-methylbenzofuran-2-sulfonyl)-2-H-pyridazin-3-
one”. J.Med.Chem. (2003), 46, 2283 —2286

[13] I. Nicolaou et al. “[1-(3,5-Difluoro-4-hydroxyphenyl)-1H-pyrrol-3-
yl]phenylmethanone as a Biostere of a Carbrboxylic Acid Aldose Reduc-

tase Inhibitor”, Jrnl. o f Medicinal Chmemistry, 47, 2706-2709 (2004)
[14] Niculescu, Stefan P., “Artificial neural networks and genetic algorithms

in QSAR,” Journal of Molecular Structure (Theochem), Vol. 622, pp.
71—83, 2003.

[15] Parra-Hernandez, R., E. M. Laxdal, N. J. Dimopoulos and P. Alexiou
” A New Neural Network Ensemble Heuristic for a Predictor of the
Aldose Reductase Inhibitory Activity”, Proceedings ISPAS 2005 IEEE
International Symposium on Signal Processing and Information, pp.

838—843, Athens, Greece, Dec. 2005.
[16] Parra-Hernandez, R., E. M. Laxdal, N. J. Dimopoulos, P. Alexiou and

V. J. Demopoulos Validation Results for a Neural Network Ensemble
Predictor of Aldose Reductase Inhibitory Activity 18th EuroQSAR Sym-

posium, Rhodes, September 2010.
[17] Tham, S. Y. and Agatonov1c -Kustrin, S., “Application of the artifi-

cial neural network in quantitative structure-gradient elution retention
relationship of phenylthiocarbamyl amino acids derivatives,” Journal of
Pharmaceutical and Biomedical Analysis, Vol. 28, pp. 581—590, 2002.

(71



