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Abstract— We develop a complex-valued (CV) B-spline neural
network approach for efficient identification and inversion of
CV Wiener systems. The CV nonlinear static function in the
Wiener system is represented using the tensor product of two
univariate B-spline neural networks. With the aid of a least
squares parameter initialisation, the Gauss-Newton algorithm
effectively estimates the model parameters that include the CV
linear dynamic model coefficients and B-spline neural network
weights. The identification algorithm naturally incorporates the
efficient De Boor algorithm with both the B-spline curve and
first order derivative recursions. An accurate inverse of the
CV Wiener system is then obtained, in which the inverse
of the CV nonlinear static function of the Wiener system
is calculated efficiently using the Gaussian-Newton algorithm
based on the estimated B-spline neural network model, with
the aid of the De Boor recursions. The effectiveness of our
approach for identification and inversion of CV Wiener systems
is demonstrated using the application of digital predistorter
design for high power amplifiers with memory.

I. INTRODUCTION

Complex-valued (CV) neural networks have been studied

theoretically and applied in nonlinear signal and data pro-

cessing [1]–[11]. Note that most neural networks cannot be

automatically extended from the real-valued (RV) domain to

the CV domain because the resulting model would in general

violate Cauchy-Riemann conditions. A number of analytic

functions were introduced for the fully CV multilayer per-

ceptrons [4]. A full CV radial basis function nework was

introduced in [8] for regression and classification. Alterna-

tively, two RV neural networks can be used, one processing

the real part and the other processing the imaginary part of

the CV signal/system. A much more challenging problem

is to invert a CV nonlinear system, which is required in

many communication signal processing applications. This

is an under-researched area, and a few existing methods,

such as the algorithm given in [10], are not very effective

in tackling practical CV signal processing problems.

Many practical communication applications involve prop-

agating CV signals through CV nonlinear dynamic systems

that is represent by the Wiener model. For example, at the

transmitter of wireless systems, the transmitted signal is

distorted by the high power amplifier (HPA) that can be

characterised by the CV Wiener model [12]. Some nonlinear

communication channels can also be modelled by a linear
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filter followed by a CV static nonlinear function. Accurate

identification of a CV Wiener model is required in these

applications. Moreover, an accurate inverse of the CV Wiener

system based on the estimated model is necessary, such as

in digital predistorter design for compensating the distortions

of the HPA at the transmitter [13]–[17] and deconvolution or

equalisation at the receiver [2], [3]. Our previous work [18]

developed an efficient B-spline neural network approach for

identification of CV Wiener systems.

Our method [18] represents the CV nonlinear static func-

tion in the Wiener system using the tensor product of two

univariate B-spline neural networks. By minimising the sum

of squared errors between the model output and the system

output, the Gauss-Newton algorithm, coupled with a least

squares (LS) parameter initialisation, is readily applicable for

the parameter estimation of the proposed CV Wiener model,

which naturally incorporates the De Boor recursions for both

the B-spline curves and first order derivatives [19]. Our

method extends the B-spline model from the RV domain to

accommodate general CV Wiener systems, and our proposed

CV B-spline function model has a significant advantage over

many other modelling paradigms in that it enables stable and

efficient evaluations of functional and derivative values. It is

clear different from the existing CV neural network based on

spline functions [3], [20], [21], in both model representation

and identification algorithm.

The contribution of this work is to develop an effective

method for inverting the CV Wiener system. We demonstrate

that the B-spline neural network scheme for modelling of CV

Wiener systems proposed in [18] has a further significant

advantage in that it can directly be utilised to calculate an

accurate inverse of the CV Wiener system in an very efficient

way. In particular, the inverse of the CV nonlinear static

function in the Wiener model is calculated efficiently using

the Gauss-Newton algorithm based on the inverse of De Boor

algorithm, which again utilises naturally the B-spline curve

and first order derivative recursions. The effectiveness of the

proposed approach for identification and inversion of CV

Wiener systems is illustrated using the application of digital

predistorter design for broadband communication systems

that employ power-efficient nonlinear HPA transmitter.

We represent a CV number x ∈ C either by the rectangular

form x = xR + jxI , where j =
√
−1, xR = ℜ[x] and

xI = ℑ[x], or by the polar form x = |x| · exp(j∠x) with

|x| denoting the amplitude of x and ∠
x its phase.

II. IDENTIFICATION AND INVERSION ALGORITHMS

Consider the Wiener system consisting of a cascade of

two subsystems, a linear filter of order L that represents the



memory effect on the input signal x(k) ∈ C, followed by a

nonlinear memoryless function Ψ(•) : C → C, as follows

w(k) =

L∑

i=0

hix(k − i), h0 = 1, (1)

y(k) =Ψ (w(k)) + ξ(k), (2)

where y(k) ∈ C is the system output, and ξ(k) is a CV white

noise with E
[
|ξR(k)|2

]
= E

[
|ξI(k)|2

]
= σ2

ξ . The z transfer

function of the linear filter is defined by H(z) =
L∑

i=0

hiz
−i,

with the CV coefficient vector given by h = [h1 h2 · · ·hL]T.

We assume that h0 = 1. If this is not true, h0 can be absorbed

into the CV static nonlinearity Ψ(•), and the linear filter’s

coefficients are re-scaled as hi/h0 for 0 ≤ i ≤ L.

We assume that Ψ(•) is a one to one mapping. Fur-

thermore, yR(k), yI(k), wR(k), wI(k), xR(k) and xI(k)
are upper and lower bounded by some finite real values.

Given the input-output data set DN = {x(k), y(k)}K
k=1, our

aim is to identify the above Wiener system, i.e. to identify

the underlying nonlinear function Ψ(•) and to estimate the

linear filter parameter vector h, as well as to invert this

Wiener system. Note that the signal w(k) between the two

subsystems are unavailable. We first use the CV B-spline

neural network approach proposed in [18] for an efficient

identification of this Wiener system, and then develop an

algorithm for an accurate inverse of this Wiener system based

on the estimated Wiener model Ψ̂(•) and ĥ.

A. Complex-valued B-spline neural network

The CV B-spline neural network [18] is used to represent

the mapping ŷ = Ψ̂(wR + jwI) : C → C that is the estimate

of the underlying CV nonlinear function Ψ(•). Assume that

Umin < wR < Umax and Vmin < wI < Vmax, with some

finite real values Umin, Umax, Vmin and Vmax.

A set of NR univariate B-spline basis functions on wR is

parametrised by the order (Po−1) of a piecewise polynomial

and a knot vector specified by (NR + Po + 1) knot values,

{U0, U1, · · · , UNR+Po
}, which are arranged in the order

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo
< · · ·

< UNR
< UNR+1 = Umax < UNR+2 < · · · < UNR+Po

. (3)

At each end, there are Po − 1 external knots that are outside

the input region and one boundary knot. As a result, the

number of internal knots is NR + 1− Po. Given (3), the set

of NR B-spline basis functions are formed by using the De

Boor recursion [19] as follows: for 1 ≤ l ≤ NR + Po,

B
(ℜ,0)
l (wR) =

{
1, if Ul−1 ≤ wR < Ul,
0, otherwise,

(4)

and for l = 1, · · · , NR + Po − p and p = 1, · · · , Po,

B
(ℜ,p)
l (wR) =

wR − Ul−1

Up+l−1 − Ul−1
B

(ℜ,p−1)
l (wR)

+
Up+l − wR

Up+l − Ul

B
(ℜ,p−1)
l+1 (wR). (5)

The derivatives of B
(ℜ,Po)
l (wR) for 1 ≤ l ≤ NR can also be

computed recursively according to [19]

dB
(ℜ,Po)
l (wR)

dwR

=
Po

UPo+l−1 − Ul−1
B

(ℜ,Po−1)
l (wR)

− Po

UPo+l − Ul

B
(ℜ,Po−1)
l+1 (wR). (6)

Similarly, a set of NI univariate B-spline basis functions

on wI can be established. Suppose that the order of the

piecewise polynomial is again predetermined as (Po − 1)
and the knot vector specified by the (NI + Po + 1) knot

values, {V0, V1, · · · , VNI+Po
}, are arranged in the order

V0 < V1 < · · · < VPo−2 < VPo−1 = Vmin < VPo
< · · ·

< VNI
< VNI+1 = Vmax < VNI+2 < · · · < VNI+Po

. (7)

Again, there are 2Po − 2 external knots, two boundary knot

and NI +1−Pointernal knots. The set of NI B-spline basis

functions are similarly constructed by the De Boor recursion

as follows: for 1 ≤ m ≤ NI + Po,

B(ℑ,0)
m (wI) =

{
1, if Vm−1 ≤ wI < Vm,
0, otherwise,

(8)

and for m = 1, · · · , NI + Po − p and p = 1, · · · , Po,

B(ℑ,p)
m (wI) =

wI − Vm−1

Vp+m−1 − Vm−1
B(ℑ,p−1)

m (wI)

+
Vp+m − wI

Vp+m − Vm

B
(ℑ,p−1)
m+1 (wI), (9)

while the derivatives of B
(ℑ,Po)
m (wI) for 1 ≤ m ≤ NI are

computed recursively according to

dB
(ℑ,Po)
m (wI)

dwI

=
Po

VPo+m−1 − Vm−1
B(ℑ,Po−1)

m (wI)

− Po

VPo+m − Vm

B
(ℑ,Po−1)
m+1 (wI). (10)

Using the tensor product between the two sets of uni-

variate B-spline basis functions [22], B
(ℜ,Po)
l (wR) and

B
(ℑ,Po)
m (wI), a set of new B-spline basis functions B

(Po)
l,m (w)

is formed, giving rise to the CV B-spline neural network

ŷ = Ψ̂(w) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (w)ωl,m

=

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (wR)B(ℑ,Po)

m (wI)ωl,m, (11)

where ωl,m = ωRl,m
+ jωIl,m

∈ C, 1 ≤ l ≤ NR and 1 ≤
m ≤ NI , are the CV weights. Obviously,

ŷR =

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (wR)B(ℑ,Po)

m (wI)ωRl,m
, (12)

ŷI =

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (wR)B(ℑ,Po)

m (wI)ωIl,m
. (13)



∂εk

∂θq

=





∂eR(k)
∂ωRl,m

= −B(ℜ,Po)
l (ŵR(k))B

(ℑ,Po)
m (ŵI(k)), q = l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eR(k)
∂ωIl,m

= 0, q = N + l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eR(k)

∂bhRi

= −
NR∑
l=1

NI∑
m=1

(
dB

(ℜ,Po)
l

( bwR(k))

d bwR(k) B
(ℑ,Po)
m (ŵI(k))xR(k − i) +B

(ℜ,Po)
l (ŵR(k))

dB(ℑ,Po)
m ( bwI(k))

d bwI(k) xI(k − i)
)
ωRl,m

,

q = 2N + i, 1 ≤ i ≤ L,

∂eR(k)

∂bhIi

= −
NR∑
l=1

NI∑
m=1

(
− dB

(ℜ,Po)
l

( bwR(k))

d bwR(k) B
(ℑ,Po)
m (ŵI(k))xI(k−i)+B(ℜ,Po)

l (ŵR(k))
dB(ℑ,Po)

m ( bwI(k))
d bwI(k) xR(k−i)

)
ωRl,m

,

q = 2N + L+ i, 1 ≤ i ≤ L,
(20)

∂εk

∂θq

=





∂eI(t)
∂ωRl,m

= 0, q = l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eI(t)
∂ωIl,m

= −B(ℜ,Po)
l (ŵR(t))B

(ℑ,Po)
m (ŵI(t)), q = N + l ·m, 1 ≤ l ≤ NR, 1 ≤ m ≤ NI ,

∂eI(t)

∂bhRi

= −
NR∑
l=1

NI∑
m=1

(
dB

(ℜ,Po)
l

( bwR(t))

d bwR(t) B
(ℑ,Po)
m (ŵI(t))xR(t− i) +B

(ℜ,Po)
l (ŵR(t))

dB(ℑ,Po)
m ( bwI(t))

d bwI(t) xI(t− i)
)
ωIl,m

,

q = 2N + i, 1 ≤ i ≤ L,

∂eI(t)

∂bhIi

= −
NR∑
l=1

NI∑
m=1

(
− dB

(ℜ,Po)
l

( bwR(t))

d bwR(t) B
(ℑ,Po)
m (ŵI(t))xI(t− i) +B

(ℜ,Po)
l (ŵR(t))

dB(ℑ,Po)
m ( bwI(t))

d bwI(t) xR(t− i)
)
ωIl,m

,

q = 2N + L+ i, 1 ≤ i ≤ L.
(21)

B. Wiener system identification

For the two chosen sets of knots, (3) and (7),

and the polynomial degree Po, denote the weight vec-

tor of the CV B-spline neural network (11) as ω =[
ω1,1 ω1,2 · · ·ωl,m · · ·ωNR,NI

]T ∈ C
N , where N = NRNI .

Given a block of training input-output data {x(k), y(k)}K
k=1,

where x(k) = [x(k) x(k − 1) · · ·x(k − L)]T, the task is to

estimate the parameter vector θ =
[
θ1 θ2 · · · θ2(N+L)

]T
of

the Wiener model, defined as θ =
[
ω

T
R ω

T
I ĥT

R ĥT
I

]T ∈
R

2(N+L), where ĥ = ĥR + jĥI denotes the estimate of

h = hR + jhI and ω = ωR + jωI .

The CV B-spline neural network represents Ψ(•) by

ŷ(k) = Ψ̂ (ŵ(k))

=

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k))ωl,m, (14)

which is equivalent to the two RV B-spline models

ŷR(k)=

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k))ωRl,m
, (15)

ŷI(t)=

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (ŵR(k))B(ℑ,Po)

m (ŵI(k))ωIl,m
, (16)

where ŵ(k) =
[
1 ĥT

]
x(k) =

(
xR(k)+

L∑
i=1

(
ĥRi

xR(k−i)−

ĥIi
xI(k−i)

))
+j

(
xI(k)+

L∑
i=1

(
ĥRi

xI(k−i)+ĥIi
xR(k−i)

))
.

Define the error e(k) = y(k) − ŷ(k), yielding the sum of

squared errors (SSE) cost function

JSSE(θ) =

K∑

k=1

|e(k)|2 =

K∑

k=1

(
e2R(k) + e2I(k)

)
. (17)

Gauss-Newton algorithm: Denote ε = [ε1 ε2 · · · ε2K ]T =
[eR(1) eR(2) · · · eR(K) eI(1) eI(2) · · · eI(K)]T ∈ R

2K . By

denoting the iteration step with the superscript (τ) and with

an initial value θ
(0), the iteration formula is given by

θ
(τ) = θ

(τ−1)− µ
((

J(τ)
)T

J(τ)
)−1(

J(τ)
)T

ε
(
θ

(τ−1)
)
, (18)

where µ > 0 is the step size, and J(τ) denotes the Jacobian

of ε
(
θ

(τ−1)
)
, which is given by

J =




∂ε1

∂θ1

∂ε1

∂θ2
· · · ∂ε1

∂θ2(N+L)
∂ε2

∂θ1

∂ε2

∂θ2
· · · ∂ε2

∂θ2(N+L)

...
...

. . .
...

∂ε2K

∂θ1

∂ε2K

∂θ2
· · · ∂ε2K

∂θ2(N+L)



. (19)

The partial derivatives in the Jacobian (19) are calculated at

the top of this page: for 1 ≤ k ≤ K, they are given in (20),

while for K + 1 ≤ k ≤ 2K and t = k −K, they are given

in (21). It is seen that the De Boor algorithm, (4)–(6) and

(8)–(10), is applied in evaluating all entries in the Jacobian

effectively. The iterative procedure (18) is terminated when

θ
(τ) converges or when a predetermined sufficiently large

number of iterations has been reached.

Parameter initialisation: As the cost function (17) is

highly nonlinear in the parameters, it is important to properly

initialise θ
(0). A simple and effective LS parameter initiali-

sation scheme introduced in [18] is adopted.

Initialisation of linear filter parameters. Denote an

estimate of the linear filter parameter vector as h̃ =[
h̃1 h̃2 · · · h̃L

]T
and an inverse of Ψ(•) as ϕ(•) = Ψ−1(•) :

C → C. Consider using the CV B-spline neural network to

model ϕ(•). For notational simplicity, the polynomial degree

used is still denoted as Po − 1, and the numbers of basis

functions used in the modelling of the real and imaginary



parts are still denoted as NR and NI , respectively. With the

two knot vectors being set on yR(k) and yI(k), respectively,

we have an estimate of ϕ(•)

ϕ̃ (y(k)) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (y(k))αl,m, (22)

where αl,m ∈ C, 1 ≤ l ≤ NR and 1 ≤ m ≤ NI , are CV

weights. Let the error between w̃(k) and ϕ̃(y(k)) be defined

as ǫ(k) = w̃(k)−ϕ̃(y(k)), where w̃(k) = x(k)+
L∑

i=1

h̃ix(k−
i) is used as the target for ϕ̃(y(k)). Thus,

x(k) = −
L∑

i=1

h̃ix(k − i) +

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (y(k))αl,m + ǫ(k)

=
(
p(x(k))

)T
ϑ + ǫ(k), (23)

with x(k) =
[
x(k − 1) · · · x(k − L) y(k)

]T
, p

(
x(k)

)
=[

−x(k − 1) · · · −x(k − L) B
(Po)
1,1 (y(k)) B

(Po)
1,2 (y(k)) · · ·

B
(Po)
NR,NI

(y(k))
]T

=
[
p1

(
x(k)

)
p2

(
x(k)

)
· · · pN+L

(
x(k)

)]T

∈ C
N+L, and ϑ =

[
h̃1 · · · h̃L α1,1 α1,2 · · ·αl,m · · ·αNR,NI

]T

=
[
ϑ1 ϑ2 · · ·ϑN+L

]T ∈ C
N+L.

Over the training data set, (23) can be written in the matrix

form as x = Pϑ + ǫ, where x = [x(1) x(2) · · ·x(K)]T,

ǫ = [ǫ(1) ǫ(2) · · · ǫ(K)]T, and P is the regression matrix

defined as P = [p(x(1)) p(x(2)) · · ·p(x(K))]T. The LS

solution for the parameter vector ϑ is readily given as

ϑLS =
(
PHP

)−1
PHx. (24)

The first L CV elements of ϑLS forms the initial estimate

ĥ(0) = ĥ
(0)
R + jĥ

(0)
I , which are used as the last 2L RV

elements of θ
(0) in the parameter initialisation.

Initialisation of B-spline neural network weights. Given

the estimate ĥ(0), generate the auxiliary signal

̂̃w(k) = x(k) +

L∑

i=1

ĥ
(0)
i x(k − i). (25)

Using the CV B-spline neural network (11) to model Ψ(•)
based on the training data set { ̂̃w(k), y(k)}K

k=1 yields

y(k) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m

(̂̃w(k)
)
ωl,m + ê(k)

=
(
q
(̂̃w(k)

))T

ω + ê(k), (26)

where q
(̂̃w(k)

)
=

[
B

(Po)
1,1

(̂̃w(k)
)

B
(Po)
1,2

(̂̃w(k)
)
· · ·

B
(Po)
NR,NI

(̂̃w(k)
)]T

=
[
q1

(̂̃w(k)
)
q2

(̂̃w(k)
)
· · · , qN

(̂̃w(k)
)]T

∈ R
N . Over the training data set, (26) can be written in

the matrix form y = Qω + ê, with y = [y(1) · · · y(K)]T,

ê = [ê(1) · · · ê(K)]T and Q =
[
q
(̂̃w(1)

)
· · ·q

(̂̃w(K)
)]T

.

The LS solution for ω ∈ C
N

ωLS =
(
QTQ

)−1

QTy (27)

is used as the initial estimate of ω
(0) = ω

(0)
R + jω

(0)
I that

forms the first 2N RV elements of θ
(0).

C. Wiener system inverse

For the CV Wiener system (1) and (2), there are two types

of inversion as depicted in Fig. 1. The “pre-inverse” can

be found for example in the digital predistorter design for

compensating the Wiener HPA [13]–[17], while the “post-

inverse” is typically found in the deconvolution or equali-

sation applications [2], [3]. In either case, the exact inverse

of the Wiener system is a Hammerstein system consisting

of a nonlinear static function followed by a linear filter. The

main difference is that in the pre-inverse case, the input to the

Hammerstein model is a clean, i.e. noise-free, signal, while

in the post-inverse case, the input signal to the Hammerstein

model is corrupted by the noise.

Inverse of Wiener system’s static nonlinear function:

Given the CV Wiener system’s static nonlinearity Ψ(•), we

wish to compute its inverse defined by v(k) = Ψ−1(x(k)).
This task is identical to find the CV root of x(k) = Ψ(v(k)),
given x(k). In Subsection II-B, the estimate Ψ̂(•) for Ψ(•)
is obtained based on the CV B-spline neural network with

the aid of the De Boor algorithm. We now show that Ψ̂−1(•)
can be effectively obtained with the aid of the inverse of De

Boor algorithm. Given Ψ̂(•) of (15) and (16), we have

x̂R(k)=

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (vR(k))B(ℑ,Po)

m (vI(k))ωRl,m
, (28)

x̂I(t)=

NR∑

l=1

NI∑

m=1

B
(ℜ,Po)
l (vR(k))B(ℑ,Po)

m (vI(k))ωIl,m
. (29)

Define ζ(k) = x(k) − x̂(k) and the squared error (SE)

S(k) = ζ2
R(k)+ζ2

I (k). If S(k) = 0, then v(k) is the CV root

of x(k) = Ψ̂(v(k)). Thus, the task is equivalent to the one

that minimises the SE S(k). We propose to use the following

Gauss-Newton algorithm to solve this optimisation problem.

Denoting the iteration step with (τ) and giving a randomly

chosen v(0)(k) that satisfies Umin < v
(0)
R (k) < Umax and

Vmin < v
(0)
I (k) < Vmax, the iterative procedure is given by

[
v
(τ)
R (k)

v
(τ)
I (k)

]
=

[
v
(τ−1)
R (k)

v
(τ−1)
I (k)

]
− η

((
J(τ)

v

)T
J(τ)

v

)−1

×
(
J(τ)

v

)T

[
ζ
(τ−1)
R (k)

ζ
(τ−1)
I (k)

]
, (30)

ΣΨ (.)

Hammerstein system Wiener system

(a) Pre−Inverse

x(k) y(k)

ξ(k)

H(z)
x(k)

Wiener system Hammerstein system

(b) Post−Inverse

H(z)Ψ
−1

Ψ (.)

(k)ξ

y(k)
Σ

(.) H  (z)
−1v(k)

Ψ
−1
(.)

v(k) −1
H  (z)

Fig. 1. Schematic of inverse for Wiener system.



where η > 0 is the step size, ζ(τ)(k) = x(k)− x̂(τ)(k) with

x̂(τ)(k) = Ψ̂
(
v(τ)(k)

)
, and J

(τ)
v is the 2 × 2 Jacobian

J(τ)
v =

[
∂ζR(k)
∂vR(k)

∂ζR(k)
∂vI(k)

∂ζI(k)
∂vR(k)

∂ζI(k)
∂vI(k)

]

|v(k)=v(τ)(k)

. (31)

The entries in (31) are given by




∂ζR(k)
∂vR(k) = −

NR∑
l=1

NI∑
m=1

dB
(ℜ,Po)
l

(vR(k))

dvR(k) B
(ℑ,Po)
m (vI(k))ωRl,m

,

∂ζR(k)
∂vI(k) = −

MR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (vR(k))

dB(ℑ,Po)
m (vI(k))

dvI(k) ωRl,m
,

∂ζI(k)
∂vR(k) = −

NR∑
l=1

NI∑
m=1

dB
(ℜ,Po)
l

(vR(k))

dvR(k) B
(ℑ,Po)
m (vI(k))ωIl,m

,

∂ζI(k)
∂vI(k) = −

NR∑
l=1

NI∑
m=1

B
(ℜ,Po)
l (vR(k))

dB(ℑ,Po)
m (vI(t))

dvI(k) ωIl,m
,

(32)

for which the De Boor algorithm, (4)–(6) and (8)–(10), is

used for their efficient calculation. The algorithm is termi-

nated when S(k) < ρ, where ρ is a preset precision, e.g.

ρ = 10−8, or when τ reaches a preset maximum value.

Inverse of Wiener system’s linear filter: The identification

algorithm presented in Subsection II-B also provides the

estimate of the Wiener system’s linear filter Ĥ(z) = 1 +
L∑

i=1

ĥiz
−i. Let the transfer function of the Hammerstein

model’s linear filter be G(z) = z−ι ·
Lg∑
i=0

giz
−i, where the

delay ι = 0 if H(z) is minimum phase. The Hammerstein

model’s linear filter g = [g0 g1 · · · gLg
]T is readily obtained

by solving the set of linear equations specified by

G(z) · Ĥ(z) = z−ι. (33)

To guarantee an accurate inverse, the length of g should be

chosen to be three to four times of the length of h. Note that

g0 = 1 as h0 = 1.

III. APPLICATION TO DIGITAL PREDISTORTER DESIGN

The operation of HPAs in wireless systems may introduce

serious memory effects and nonlinear distortions [12], [23],

[24], causing intersymbol interference and adjacent channel

interference that degrade the system’s achievable bit error

rate (BER) performance. The problem becomes particularly

acute for high bandwidth-efficiency quadrature amplitude

modulation (QAM) systems [25]. It is therefore critical to

compensate the distortions caused by the HPA with a digital

predistorter in the design of a wireless system [13]–[17].

A. High power amplifier model

A widely used model for HPAs is the Wiener model [12].

Without loss of generality, we consider QAM systems [25],

where the CV input signal to the HPA, x(k), takes the values

from the CV M -QAM symbol set

S = {d(2l−
√
M −1)+ jd(2q−

√
M −1), 1 ≤ l, q ≤

√
M},
(34)

where 2d is the minimum distance between symbol points.

The memory effect of the Wiener HPA is modelled by the

linear filter (1), while the nonlinear saturating distortion of

the Wiener HPA is represented by the static nonlinearity (2).

In practical HPAs, the noise ξ(k) is negligible, i.e. σ2
ξ is zero

or extremely small. Two typical CV nonlinearities Ψ(•) of

HPAs are the travelling-wave tube (TWT) nonlinearity [23]

and the nonlinearity of solid state power amplifiers [24]. We

consider the TWT static nonlinearity, but the approach is

equally applicable to the other type of nonlinearity.

Express the (unavailable) input signal w(k) to the static

nonlinearity Ψ(•) by w(k) = r(k) · exp(jψ(k)). The input

signal w(k) is affected by the nonlinear amplitude and phase

functions of the HPA, and the output signal y(k) is distorted

mainly depending on r(k) = |w(k)|, yielding

y(k) = A(r(k)) · exp(j(ψ(k) + Φ(r(k)))). (35)

The output amplitude |y(k)| = A(r(k)) and the phase

Φ(r(k)) = ∠
y(k) − ψ(k) of the HPA’s static nonlinearity

are specified respectively by [12], [17], [23]

A(r) =

{
αar

1+βar2 , 0 ≤ r ≤ rsat,

Amax, r > rsat,
(36)

Φ(r) =
αφr

2

1 + βφr2
, (37)

where the saturating input amplitude is defined as

rsat =
1√
βa

, (38)

while the saturation output amplitude is given by

Amax =
αa

2
√
βa

. (39)

From the underlying physics, Amax > rsat and the input

amplitude r < Rmax, where Rmax is some large positive

number. The TWT nonlinearity is specified by the positive

RV parameter vector t = [αa βa αφ βφ]T. The operating

status of the HPA is defined by the input back-off (IBO)

IBO = 10 · log10

Psat

Pavg
, (40)

where Psat = r2sat is the saturation input power and Pavg

is the average power of the signal w(k) at the input of the

TWT nonlinearity, which is equal to the average power of

x(k) scaled by the linear filter power gain 1 + ‖h‖2.

B. A novel digital predistorter design

Based on the technique developed in Section II for iden-

tification and inversion of the CV Wiener system, a digital

predistorter can readily be designed to compensate the distor-

tions caused by the HPA. Because both the predistorter and

the HPA are operating at the transmitter, the input M -QAM

signal x(k) to the HPA and the HPA’s output signal y(k) are

readily available to identify the Wiener HPA model Ĥ(z) and

Ψ̂(•). Moreover, the measurement y(k) is usually noise free,

i.e. σ2
ξ = 0.0. Since the distributions of xR(k) and xI(k) are

symmetric, the distributions of wR(k) and wI(k) are also

symmetric. Furthermore, from the underlying physics of the

HPA, Rmax is known or can easily be found. Therefore, the



two knot sequences (3) and (7) can be chosen to be identical

with Umax = Vmax = Rmax, Umin = Vmin = −Rmax

and NR = NI =
√
N . In practice, Po = 4 is sufficient,

and an appropriate value of
√
N can be chosen empirically.

Specifically, the number of internal knots should be sufficient

to provide good modelling capability but should not be too

large in order to avoid overfitting.

Based on the estimated Ψ̂(•) = Ψ̂R(•) + jΨ̂I(•), an

accurate inverse to Ψ(•) = ΨR(•) + jΨI(•) can readily be

obtained. Note that over the input range, ΨR(•) and ΨI(•)
are monotonic. Since Ψ̂(•) is an accurate estimate of Ψ(•),
Ψ̂R(•) and Ψ̂I(•) can also be assumed to be monotonic

over the input range. Therefore, the Gauss-Newton method

of Subsection II-C based on the inverse of De Door algorithm

converges to the unique solution Ψ̂−1(•). For the M -QAM

signal x(k) of (34), v(k) = Ψ̂−1(x(k)) has M distinct

values, and these values can be pre-calculated off-line and

stored for on-line transmission.

C. Simulation results

We considered the 16-QAM system with the static non-

linearity of the Wiener HPA described by (36) and (37). The

parameters of the Wiener HPA were given as

hT = [0.75 + j0.2 0.15 + j0.1 0.08 + j0.01],
tT = [2.1587 1.15 4.0 2.1].

(41)

The serious nonlinear and memory distortions caused by this

HPA are illustrated in Figs. 2 and 3. For IBO= 0 dB, the

HPA is operating well into the saturation region.
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Fig. 2. The case of IBO= 4 dB: (a) the HPA’s input x(k), marked by •,
and (b) the HPA’s output y(k), marked by ×.

TABLE I

IDENTIFICATION RESULTS FOR THE LINEAR FILTER, h, OF THE HPA.

true parameter vector:

h
T =

ˆ
0.7500 + j0.2000 0.1500 + j0.1000 0.0800 + j0.0010

˜

estimate under IBO= 0 dB:
bhT =

ˆ
0.7502 + j0.1996 0.1499 + j0.0999 0.0800 + j0.0008

˜

estimate under IBO= 4 dB
bhT =

ˆ
0.7502 + j0.2001 0.1501 + j0.1001 0.0800 + j0.0011

˜

Results of HPA identification: Two 16-QAM training sets

each containing K = 3000 samples were generated given

the HPA’s parameters (41) and with the HPA operating

at IBO= 4 dB and 0 dB, respectively. The piecewise

cubic polynomial (Po = 4) was chosen as the B-spline

basis function, and the number of B-spline basis functions

was
√
N = 8. For this HPA, we used the knot sequence

{−12.0,−6.0,−2.0,−1.2,−0.6,−0.3, 0.0, 0.3, 0.6,1.2, 2.0,
6.0, 12.0} with Rmax = 1.2. The Gauss-Newton

identification algorithm with the LS parameter initialisation

was carried out. The results obtained are summarised in

Table I as well as illustrated in Figs. 4 and 5, which confirm

that an accurate HPA model was obtained.

It can be seen from Fig. 5 that the estimated response

of the B-spline neural network model Ψ̂(•) exhibit small

deviations from the HPA’s true amplitude response A(r) and

phase response Φ(r) in the region r > Rmax. This is because,

under the condition of IBO= 4 dB, there were relative few

data points which yielded the signal amplitude r(k) = |w(k)|
near or over the saturation value rsat. Interestingly, under the

operating condition of IBO= 0 dB, the deviation between the

estimated response and the true response no longer exists
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Fig. 3. The case of IBO= 0 dB: (a) the HPA’s input x(k), marked by •,
and (b) the HPA’s output y(k), marked by ×.



in the region of r > Rmax, as can be noted from Fig. 4.

Instead, small deviation is seen in Fig. 4 between the true

phase response and the estimated phase response at the region

of small r. This is because there were relative few data

points with small signal amplitudes r(k) = |w(k)| under

the condition of IBO= 0 dB.

Results of digital predistorter solution: We employed the

estimated CV B-spline Wiener HPA model to design the pre-

distorter. Note that we only needed to calculate the 16 points

of v(k) = Ψ̂−1(x(k)) for the 16-QAM symbol constellation

using the Gauss-Newton algorithm based on the De Boor

inversion. The length of the predistorter’s inverse filter was

set to Lg = 12. The outputs of the combined predistorter

and Wiener HPA are depicted in Fig. 6 for the HPA’s

operating conditions of IBO= 4 dB and 0 dB, respectively.

The achievable performance of the designed predistorter was

further assessed using the MSE metric defined by

MSE = 10 log10

( 1

Ktest

Ktest∑

k=1

|x(k) − y(k)|2
)
, (42)

and the system’s BER, where Ktest was the number of test

data, x(k) was the 16-QAM input and y(k) was the output

of the combined predistorter and HPA system. The channel

signal to noise ratio (SNR) in the simulation was given by

SNR = 10 log10

(
Eb

/
No

)
, where Eb was defined as the

energy per bit and No the power of the channel’s additive

white Gaussian noise (AWGN).

With Ktest = 105, 16-QAM data were passed through

the combined predistorter and HPA system to compute the

MSE (42), and the resulting MSE as the function of IBO

is plotted in Fig. 7. The output signal after the HPA was

then transmitted over the AWGN channel, and the BER was

determined at the receiver. The results obtained are plotted in
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Fig. 4. Comparison of the HPA’s static nonlinearity Ψ(•) and the estimated

static nonlinearity bΨ(•) under IBO= 0 dB: (a) the amplitude response, and
(b) the phase response.
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Fig. 5. Comparison of the HPA’s static nonlinearity Ψ(•) and the estimated

static nonlinearity bΨ(•) under IBO= 4 dB: (a) the amplitude response, and
(b) the phase response.

Fig. 8, in comparison with the benchmark BER of the ideal

AWGN channel. It can be seen from Fig. 8 that the BER

of the combined predistorter and HPA system is practically

indistinguishable from that of the ideal AWGN channel even

under the operating condition of IBO = 0 dB.
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Fig. 6. The output of the combined predistorter and HPA y(k), marked by
×, for the 16-QAM input signal x(k), marked by •: (a) the IBO of 4 dB,
and (b) the IBO of 0.0 dB.
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IV. CONCLUSIONS

A novel scheme has been proposed for identifying and

inverting CV Wiener systems. Firstly, accurate identification

of CV Wiener systems has been achieved using the CV B-

spline neural network approach based on the Gauss-Newton

algorithm, with the aid of a simple LS parameter initialisa-

tion. The identification algorithm naturally incorporates the

efficient De Boor algorithm with both the B-spline curve and

first order derivative recursions. Then an accurate inverting

technique has been developed for CV Wiener systems. In

particular, the inverse of the CV nonlinear static function

in the Wiener system is calculated efficiently using the

Gaussian-Newton algorithm based on the estimated B-spline

neural network model with the aid of the De Boor recursions.

An application to digital predistorter design for high power

amplifiers with memory has been used to demonstrate the

effectiveness of our approach for modelling and inverting

CV Wiener systems.
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