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Mixture model-based functional discriminant analysis for curve
classification

Faicel Chamroukhi, Hervé Glotin

Abstract— Statistical approaches for Functional Data Analy-
sis concern the paradigm for which the individuals are functons
or curves rather than finite dimensional vectors. In this pager,
we particularly focus on the modeling and the classificatiorof
functional data which are temporal curves presenting regine
changes over time. More specifically, we propose a new mixtar
model-based discriminant analysis approach for functionhdata
using a specific hidden process regression model. Our approla
is particularly adapted to both handle the problem of comple-
shaped classes of curves, where each class is composed
several sub-classes, and to deal with the regime changes it
each homogeneous sub-class. The model explicitly integestthe
heterogeneity of each class of curves via a mixture model foru-
lation, and the regime changes within each sub-class throing
a hidden logistic process. The approach allows therefore fo
fitting flexible curve-models to each class of complex-shagde
curves presenting regime changes through an unsupervise
learning scheme, to automatically summarize it into a finite

paper, we consider the problem of supervised functional
data classification (discrimination) where the observetio
are temporal curves presenting regime changes over time.
We mainly focus on generative approaches which may help
us to understand the process generating the curves. The
generative approaches for functional data are essentially
based on regression analysis, including polynomial regres
o§ion, splines and B-splines [10[,![3],.11], [14], or alsonge
erative polynomial piecewise regression aslin [3], [5]. Non
parametric statistical approaches have also been profmsed
functional data discrimination as inl[9].1[7] and clusteyin
as in [7]. The generative models aim at understanding the
process generating such data to handle both the problem of
4 heterogeneity between curves and the process governing the
regime changes, in order to fit flexible models that provide

number of homogeneous clusters, each of them is decomposedbetter classification results. In this paper, we proposeva ne
into several regimes. The model parameters are learned by generative approach for modeling classes of complex-shape

maximizing the observed-data log-likelihood for each clas by
using a dedicated expectation-maximization (EM) algoritim.
Comparisons on simulated data and real data with alternatie
approaches, including functional linear discriminant andysis
and functional mixture discriminant analysis with polynomial
regression mixtures and spline regression mixtures, showhat
the proposed approach provides better results regarding th
discrimination results and significantly improves the cunes
approximation.

I. INTRODUCTION

curves where each class is itself composed of unknown ho-
mogeneous sub-classes. In addition, the model is pantigula
dedicated to address the problem when each homogeneous
sub-class presents regime changes over time. We extend
the functional discriminant analysis approach presented i
[5], which relates modeling each class of curves presenting
regime changes with a single mean curve, to a mixture
formulation which leads to a functional mixture-model lihse
discriminant analysis. More specifically, this approacbsua

In many areas of app"cation' such as diagnosis of conﬁnixture of regression models with hidden |OgiStiC processe
plex systems[[5[[18], electrical engineering [13], speeckRHLP) [3], [1€] for each class of functional data and desive
recognition (e.g. the phoneme data studied[ih [7]), rad& functional mixture discriminant analysis framework for
waveform [6], etc, the data are curves or functions rathdunctional data classification. The resulting discrimioat

than finite dimensional vectors. Statistical approaches
Functional Data Analysis (FDA) concern the paradigm

f@pproach is therefore a model-based functional discrintina
ofinalysis in which learning the parameters of each class of

data analysis for which the individuals are entire funcioncurves is achieved through an unsupervised estimation of a
or curves rather than finite dimensional vectors. The goafixture of RHLP (MixRHLP) models. _
of FDA, as in classical data analysis, include data repre- In the next section we give a brief background on dis-

sentation for further analysis, data visualization, exgiory

criminant analysis approaches for functional data classifi

ana|ysi3 by performing unsupervised approaches’ regressication .including functional linear and mixture d.iSCTimma
classification, etc. Additional background on FDA, examanalysis, and then we present the proposed mixture model-
ples and analysis techniques can be found[id [17]. FroRased functional mixture discriminant analysis with hidde

a statistical learning prospective, this can be achieved Ifocess regression for curve classification, which we will

learning adapted statistical models, in different corstestg.,
supervised, unsupervised, etc. The challenge is therédo

abbreviate as FMDA-MixRHLP, and the corresponding pa-
rerameter estimation procedure using a dedicated expettatio

build adapted models to be learned from such data livingpaximization (EM) algorithm. _
in a very high or an infinite dimensional space. In this Let us denote by(xi,1),...,(xq,¥yn)) @ given labeled
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training set of curves issued fro¥ classes where,; <
{1,...,G} is the class label of théh curvex;. We assume
thatx; consists ofm observationgz;i, ..., z:»), regularly
observed at the time points,, ..., t,,) with t; < ... <tp,.
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Il. BACKGROUND ONFUNCTIONAL DISCRIMINANT the model for each class in this case consists therefore in
ANALYSIS estimating the regression model parametgsby maximum

In this section, we give a background on generativgke”hOOd which _is iq this case equivalent to performi_ng
discriminant analysis approaches for functional datasifias least squares estimation. A similar FLDA approach that fits a
cation. specific generative piecewise regression model governed by

Functional discriminant analysis extends discriminarft hidden logistic process to homogeneous classes of curves
analysis approaches for vectorial data to functional data 8réSenting regime changes has been presented in [S].
curves. From a probabilistic point a view, the conditional However, all these approaches, as they involve a single
density of each class of curves is then assumed to beMPdel for each class, are only suitable for homogeneous
(parametric) density defined in the functional space, rath&lasses of curves. For complex-shaped classes, when one
than in a finite dimensional space of the multidimensionlt more classes are dispersed, the hypothesis of a single
data vectors, which is the case for discriminant analysis féndel description for the whole class of curves becomes
vectorial data. The functional discriminant analysis pigte ~ restrictive. This problem can be handled, by analogy to
is as follows. Assume we have a labeled training set dfixture discriminant analysis for vectorial data [12], by
curves and the classes’ parameter vectols, ..., ¥) adopting a mixture model formulation [16], [20] in the
where ¥, is the parameter vector of the density of C|asg;u_nct|onal space for each class of curves. The_ func_tlonal
g(g=1,...,G) (e.g., provided by an estimation procedurén'Xture can for example be a polynomial regression mixture
from a training set). In functional discriminant analysss, OF @ spline regression mixture [10LI[3]. [11]. This leads to
new curvex; is assigned to the clags using the maximum Functional Mixture Discriminant Analysis (FMDA) [3], [11]

a posteriori (MAP) rule, that is: The next section describes the previous work on FMDA
. which uses polynomial regression and spline regression mix
§; = arg max wgp(xz|yz =4t g) 1) tures.

1<9<G S0 0 o(x; |y = 4w, ’
Lg=1 WaP(Xilys =9 2 B. Functional Mixture Discriminant Analysis with polyno-
wherew, = p(y; = g) is the prior probability of clasg, mial regression and spline regression mixtures

which can be computed as the proportion of the ciaissthe A first idea on Functional Mixture Discriminant Analysis
training set, ang(x;|y; = g,t; ¥,) its conditional density.

) . o . (FMDA), motivated by the complexity of the time course
There are different ways to model this conditional densityyane expression functional data for which modeling each
By analogy to linear or quadratic discriminant analysis fof|ass with a single function using FLDA is not adapted,
vectorial data, the class conditional density for eachsclag,,q proposed in [11] and is based on B-spline regression
of curves can be defined as a density of a single model;iyi res. In the approach of [11], each classf functions
€.g., a polynomial regression model, spline, including By mogeled as a mixture ok, sub-classes, each sub-class
spline [14], or a generative piecewise regression modél avit ;. k =1 K,) is a noisy B-spline function (can also

. - =1,...,K,

hidden logistic process (RHLP)I[5] when the curves furtheg, 5 polynomial or a spline function) with parametdrs;.

present regime changes over time. These approaches l§gfl mqdel is therefore defined by the following conditional
to Functional Linear (or quadratic) Discriminant Analysisyivture density:

which we will abbreviate as (FLDA).

The next section briefly recalls the FLDA based on poly- Xy
nomial or spline regression. p(ilyi = 9,4 W)= agr p(xilyi = g, 2 = k, t; W)
k=1
A. Functional Linear Discriminant Analysis Ky
Functional Linear (or Quadratic) Discriminant Analysis :Z ageN (%i; TByp, 05 m), 3)
(FLDA) [14] arises when we model each class conditional k=1

density of curves with a single model. More specifically, thevhere then;,'s are the non-negative mixing proportions that
conditional densityp(x;|y = g¢,t; ®¥,) in Equation [(1) can sum to 1 such thadv,, = p(z; = k|y; = g) (agr represents
for example be the one of a polynomial, spline or B-splinéhe prior probability of the sub-clask of classg), z; is

regression model with parametels,, that is: a hidden discrete variable ifll, ..., K } representing the
W) — N T 2| 5 labels of the sub-classes for each class. The parameters of
p(xilyi = 9,8 ¥y) = N(xi; TBy, 0glm), (@) this functional mixture density (Equatiofll (3)) for eachssla

whereg, is the coefficient vector of the polynomial or splined denoted by

regression model representing clasando? the associated _

noise variance, the matri¥' is the matrix ‘of design which ¥o = (g gy Tor,o s Wy, )

depends on the adopted model (e.g., for polynomial regresan be estimated by maximizing the observed-data log-
sion, T is them x (p + 1) Vandermonde matrix with rows likelihood by using the expectation-maximization (EM) al-
(1,t5,t3,...,t%) for j=1,...,m., p being the polynomial gorithm [€] [1E] as in [11].

degree) and\/](.;u, 3) represents the multivariate Gaussian However, using polynomial or spline regression for class
density with mearnu and covariance matri¥. Estimating representation, as studied inl [3],] [5] is more adapted for



curves presenting smooth regime changes and for the splimegression models governed by a hidden logistic process
the knots have to be fixed in advance. When the regime,;, = (hgk1,-- -, hgrm) that allows for switching from one
changes are abrupt, capturing the regime transition pointsgime to another among, polynomial regimes over time.
needs to relax the regularity constraints on splines whichhus, the distribution of a curve; belonging to sub-clask
leads to piecewise regression for which the knots can lod classg is defined by:

optimized using a dynamic programming procedure. On the

other hand, the regression model with a hidden logistic p(Xilyi = 9,20 =k, 6, Wgi) =

process (RHLP) presented (1 [5] and used to model each ho- m gk

mogeneous set of curves with regime changes, is flexible and H Z Takr (L3 ng)/\/(xij; ﬁfthj, oj,w) 4)
explicitly integrates the smooth and/or abrupt regime glean j=1lr=1

via a logistic process. As pointed inl [5], this approach how- B 5 9

ever has limitations in the case of complex-shaped classsWQere :Ilgl’“ - éW]ZkLﬂikl’ "'I’{BQI?RQJE’Jgklv e thgkngt)
of curves since each class is only approximated by a singﬁﬁ: (g = e =y g) is its parameter vector.
RHLP model e quantity k- (t;; wer) represents the probability of

In this paper, we extend the discrimination approach pr(g?gimer wi.thir.1 sgb-classk.of classg and is modeled by
a logistic distribution, that is:

posed in[[5] which is based on functional linear discriminan
analysis (FLDA) using a single density model (RHLP) for

X . L ) Takr (L3 Wk )=p(hgrs = 7|t5; Wk
each class, to a functional mixture discriminant analysis aer (£33 W )=Plhaks = lts; Wor)

€xXp (wngO + wgklﬁj)

framework (FMDA), where each class conditional density =—F= ) (5)
model is assumed to be a mixture of regression models 2021 exp (Woero + wyerit;)
with hidden logistic processes (which we abbreviate as o

Wherewg, = (wgk1, ..., werr,,) IS its parameter vector,

MixRHLP). Thus, by using this Functional Mixture Dls;n'léJng — (wghro, wyrr1)” being the2-dimensional coefficient

criminant Analysis approach, We may therefore overco Vector for therth logistic component. The hidden process

the limitation of FLDA (and FQDA) for modeling complex- h,. governing each sub-class is therefore assumed to be

shaped classes of curves, via the mixture formulation. Fur6 istic. The relevance of the loqistic process in terms of
thermore, thanks to the flexibility to the RHLP model tha{t gistic. " 9 Process
exibility of transitions has been well detailed inl [4],) [5]

approximates each sub-class, as studiedlin [4], [5], we wil Thus, the resulting conditional distribution of a curxe

also be able to automatically and flexibly approximate thgsued from clasg is given by the following conditional
underlying hidden regimes. mixture density:

The proposed functional mixture discriminant analysis

with hidden process regression and the unsupervised fearni (xilyi =g, t: @ )_i (2= ks = g)p(Xelys = g, 24 = b £ B 1)
procedure for each class through the EM algorithm, afe ™= 9 b T *kzlp PERH= XY=, 5= T Sk
presented in the next section. K, m Rk
j— L. L. T . 2

[Il. PROPOSEDFUNCTIONAL MIXTURE DISCRIMINANT kzlag’“ UlZl”9’”‘(’5]’Wg’“)N(x””ngrtJ"’gkr) ©)
ANALYSIS WITH HIDDEN PROCESS REGRESSION MIXTURE - T

Let us assume as previously that each clasgg = Where ¥, = (ag,..., a4k, ¥e,..., Pgk,) is the
1,...,G) has a complex shape so that it is composedpf Parameter vector for classyy, W,, being the pa-

homogeneous sub-classes. Furthermore, now let us suppG¥@eters, of each of its R"}LP component - density
that each sub-clask (k = 1,...,K,) of classg is itself H_j:l > ngr(tj;ng)N(xij;ﬁgkrtjvggkr) as given by

governed byR,;, unknown regimes. We let therefohg;,; = Equation [4). Notice that the key difference between the
r € {1,..., Ry} denotes the discrete variable representingroposed FMDA with hidden process regression and the
the regime label for sub-clagsof classg. FMDA proposed in[[11] is that the proposed approach uses a

. ) ) generative hidden process regression model (RHLP) for each

A. Modeling the classes of curves with a mixture of regregyp.class rather than a spline; the RHLP is itself based on
sion models with hidden logistic processes a mixture formulation. Thus, the proposed approach is more

In the proposed functional mixture discriminant analysisdapted for capturing the regime changes within curves.
approach, we model each class of curves by a specificNow, once we have defined the model for each class
mixture of regression models with hidden logistic processef curvesg, we have to estimate its parametebs. The
(MixRHLP) as in [3], [18]. According to the MixRHLP next section presents the unsupervised learning of the Imode
model, each class of curvesis assumed to be composedparameters¥, for each class of curves by maximizing the
of K, homogeneous sub-groups with prior probabilitie®bserved-data log-likelihood through the EM algorithm.
ag1,..., 09k, Each of the K, sub-groups is governed
by R, hidden polynomial regimes and is modeled by @. Maximum likelihood estimation via the EM algorithm
regression model with hidden logistic process (RHLP). The Gjyen an independent training set of labeled curves, the

RHLP model [4], [5] assumes that the curves of each sulrarameter vectow, of the mixture density of clasg given
class (or cluster} of classy are generated h§(, polynomial by Equation [(B) is estimated by maximizing the following



observed-data log-likelihood: and the posterior regime probabilities for each sub-cliess (
_ I the probability that the observed data poing at time ¢;
E(Tg)_logﬂgf(x'w'—g’t"IJ“’) originates from therth regime of sub-class for classg),

. given by:
T 2
_Z‘yz(l]ogz aqkjl_[lrzlﬂ—qlw tJ7W(Jk (xij;ﬁgkrtﬁggkr)- Ti(jg;k'r:p(hjgk — T|$z]7yz =g,2; = k t]7 \II(Q))
o () T(a)y 20
The maximization of this log-likelihood cannot be perfodne _ Mgk (65 W o N (@355 By 55 Tgry ) (10)
i imi it i i i Ry T 2
in a closed form. We maximize it iteratively by using Sk ngz(tg,W§k) (fcw,ﬁg,fZ)t gl(c%))

a dedicated EM algorithm. The EM scheme requires the

ge?mflonlpkf tlhﬁ c%mfple'g[(?]-data |09-|I|(<je|ll\;\_0%d|_-|l'ge CO(fjﬂfl”r? 2) M-step: This step updates the value of the parameter
ata log-likelihood for the proposed Mix model for imizi i (@Y gi

each class, given the observed data which we denof@ by ‘EI’g tly maX|m.|tzk|]ng the tf;Jdr;Ctl?rr]lCi(_‘I’.g, w,”) given by

({x;]y; = g}, t), the hidden cluster Iabels Szl, ...zn), Equation[(8) with respect t&,, that is:

and the hldden processh ..., hmgk), governing (g+1) _ (@)
each of thek, clusters, is glven% v = argn\},agXQ(‘I’g’ ).
m Rgk . L
It can be shown that this maximization can be performed
(2 1 7‘1 T b . . . .. .
"):z%;q;z ’“[ Ogag’“tzgrz:lh”k 08 Tghr (£33 W) by separate maximizations w.r.t the mixing proportions
1m o (g, .-, 0yK,) subjegt to the constrainEkK 10gk = 1,
+3°5 hjgir IOgN(yij§ﬁ§krtj7U§kr)]- 7) a_nd w.r.t t.he- regression parametei8, .., 0., } and the
o o hidden logistic process parametdns , }.

The mixing proportions updates are given, as in the case

where z;;. and h;..,- are indicator binary-valued variables !
ik dghr y of standard mixtures, by

such thatz;, = 1 if z; = k (i.e., if the ith curvex; is
generated by the cluster (sub-clakpandz;; = 0 otherwise; (q+1) Z (@)
and hjgrr = 1if hg = 7 (i.€., thesth curve belongs to the Tigk:
sub-clasg: and itsjth pointx;; belongs to theth regime),
and h;g- = 0 otherwise. ng bemg the cardinal number of clags The maximization

The'next paragraph shows haw the observed-data o1 e [FESSon PGS, SRSt ) peoTing e
likelihood £(¥,) is maximized by the EM algonthm where the weights are the product of the posterior protmbili

C. The dedicated EM algorithm for the unsupervised Iearnw/fg,)C of sub-classk and the posterior probabﬂﬂymk, of
ing of the parameters of the MixRHLP model for each claskegime r of sub-classk. Thus, the regression coefficients
updates are given by:
For each clasg, the EM algorithm starts with an initial
parameter®?) and alternates between the two following Bl @@ ¢ (T @ (@
steps until convergence: Bokr *[ Z 217qu ijgkrt ] Z 217
1) E-step:This step computes the expected complete-data ilyi=g7 ilyi=gd
log-likelihood, given the observation®, and the current and the updates for the variances are given by:
parameter estlmatlonIl( , ¢ being the current iteration () @
number: 2+ _ Dilyimg 21 Vighr Tijghr (Tis —

(k=1,....K,), (1)

9 ilyi=g

:Eljtj (12)

igk Uqlﬂ

B ;) (13)
Tghr mo (0 () '
Q¥ ¥(") =E [Lc(,:D, 2, (DI v Zivims Lir Vighs Tijohs

Kg m Finally, the maximization w.r.t the logistic processesgpae-
=> nyg,l log agr+ ZZZV(Q) @ Jogmer(t;; wor) ters{wg} consists in solvmg multinomial logistic regression

igkTijgkr
ily;=gk=1 e v e problems weighted byy kT(q)kr which we solve with a
Kg m multi-class IRLS algorlthm (e g., sekl [3]). A single update

+> ZZZW(Q) @ Jog N (xij;ggmtj7g§kr) . (8 of the IRLS algorithm at iteration is given by:

igk Uqlw

ily;=g k=1 j=1 r=1 WD _ W(l),[ 82ngk) }_1 0Qw,,,
As shown in the expression 6J(¥,, ¥ ‘J)) this step simply 9" 9k LOwgrOw g, T
requires the calculation of the posterlor sub-class pritibab .
ties (i.e., the probability that the observed curyeriginates Where Qw,, denotes the terms in th@-function (8) that
from sub-class (clustet) for classg) depend onw ..

a e The pseudo codéd 1 summarizes the EM algorithm for the
Yigw=p(= = klxi,ys = 9,6 T proposed MixRHLP model.

f;i)p(leyi =g,2 =k, t;8)

(14)

l l
ng:Wf,k) 8ng Wok= w(k)

Z =g = Lt ‘IJ(Q)) D. Curve classification and approximation with the FMDA-
! (1)%1 p(xilyi = g, 2 = o e 2w MixRHLP approach
q q X q ~
W 12 L S0 ke (1 gk) (i3 Bgrr tir iy ) Once we have an estimat®#, of the parameters of
Zl 10/‘1) 17, 02 mgun (t; WP IN (i3 B9 ¢5,0%2)  the functional mixture density MixRHLP (provided by the
(9) EM algorithm) for each class, a new cureg is then




Algorithm 1 Pseudo code of the proposed algorithm for theuhich is a sum of polynomials weighted by the logistic

MixRHLP model for a set of curves. probabilitiesr ., that model the regime variability over time.
Inputs: Labeled training set of n  curves .
((x1,41) -, (Xn,y,)) sampled at the time points E. Model selection
t = (t1,...,tm), the number of sub-classes (clustefs) The number of sub-classes (clustefs) for each class
(9 =1,...,G), the number of polynomial regimes,, and ¢ (¢ = 1,...,G) and the number regimeR,,, for each
the polynomial degree. sub-class can be computed by maximizing some information
1: Initialize: (") = (a(ﬁ), .. ,,a(g%g,gll(ﬁ), o ‘I';?(g) criteria e.g., the Bayesian Information Criterion (BICP[1
2: fix a thresholde > 0 (e.g.,e = 107°), - Vv,
3: setq < 0 (EM iteration) BIC(K, R,p) = L(¥y) — —* log(n), (16)

4: while increment in log-likelih o . I .
e increment in log-likelihood> ¢ do where ¥, is the maximum likelihood estimate of the pa-

Z f/o/r ;;Sfep K, do rameter vecti(()r\Ilg provided by the EM algorithmyg =
: o (@) C_ ; - K,—1+4>,* vg,, is the number of free parameters of
; ?;ripit?f?’f f?%r 12@ EOL ;1 using Equationl{9) o Mix.RHng r}nodgékl,Kg — 1 being the number of mixing
o compu7te T_Zg) g for i = 1....mandj — proportions andy ,, = (p+4)Rgx—2 represents_the number
' 1 m ugi%kg Equation[CI]d) ’ of free parame_ters of each RHLP model associated with sub-
T classk, andn is the sample size.
10: end for
11:  end for IV. EXPERIMENTAL STUDY

12: // M-Step

This section is dedicated to the evaluation of the proposed
13 for k=1,...,K, do

approach on simulated data, the waveform benchmark curves

14 compute the updataﬁ“) using Equationl(I1)  of Breiman [2] and real data from a railway diagnosis
15: for r=1,..., Ry, do application [4], [5], [18].

16: compute the updatg’"" using Equation[12)  We perform comparisons with alternative functional dis-
17: compute the updatei,(ﬁl) using Equation[{113) criminant analysis approaches using a polynomial regrassi
18: end for (PR) or a spline regression (SR) modell[14], and the one
19: //IRLS updating loop (Eq. (14)) that uses a single RHLP model as lin [5]. These alternatives
200wtttV o wl) will be abbreviated FLDA-PR, FLDA-SR and FLDA-RHLP,
21 g+qg+1 respectively. We also consider alternative functionaltomi

22:  end for discriminant analysis approaches that use polynomiakgegr
23: end while sion mixtures (PRM), and spline regression mixtures (SRM)

on W — (a(Q) A9 g

gl Qg gl

,\Ilé‘?(g) as in [11] which will be abbreviated as FMDA-PRM and
FMDA-SRM respectively.

We use two criteria of evaluation. The first one is the mis-
classification error rate computed by-dold cross-validation

. N ) __procedure and concerns the performance of the approaches
assigned to the class maximizing the posterior probability, yormg of curve classification. The second one is the mean

(MAP principle) using Equation({1). This therefore leady are error between the observed curves and the estimated
us to the functional mixture discriminant analysis clasaffi | oan curves. which is equivalent to the intra-class inertia
tion rule (FMDA-MixRHLP) which is particularly adapted 5, e regards the the performance of the approaches regard

to deal with the problem of classes composed of severﬁ.llg the curves modeling and approximation. For FLDA, as
sub-classes and to further handle the problem of regimg, ., ¢jas ; ; &

> < : g is approximated by a single mean cutyg this
changes within each sub-class. Regarding to curves 8o crite

A X , rionis therefore given by, >, _, Il xi—Xg %,
proximation, each sub-clase of class g is summarized ije for FMDA, each clasy is summarised by several
by apprommatlng it by a _5'”9'9 mean- curve, WhICh(Kg) mean curvegx,;}, each of them summarises a sub-
we denote byx,. Each pointig; (j = 1....m) 0f aqr and the intra-class inertia in this case is therefore
this mean curve is defined by the conditional expectatlo&iven by Zg Zi\yi:g Zf:gl | x; — %, |2 Notice that

Zgr; = Elzijlys = g, 2 = k. t;; ¥ ] given by:

Output: ¥ the maximum likelihood estimate o

each point of the estimated mean curve for each sub-class is
R . given by a polynomial function or a spline function for the
zgkj:/ Tiip(Tijlys = g, 20 = k153 Wor)dwy; case of polynomial regression mixture or spline regression
® o . mixture respectively, or by Equation {15) for the case of the
< ; N MixRHLP model.
= [ z; Toter (L33 Woi )N (xis; B by, 62, ) dai i ) ) ]
/R Y ; obr (L Wk )N (2453 Bgper ., G grer ) di 1) Experiments on simulated curveBi this section, we
Ry consider simulated curves issued from two classes of piece-
:Z et ng)/éjkrtj (15) yvi-se noisy functions. The first class has a pomplex she_lpe as
it is composed of three sub-classes (see Fiflre 1), while the

r=1



second one is a homogeneous class. Each curve consists of
three piecewise regimes and is composedasf points.
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Fig. 1

SIMULATED CURVES FROM A COMPLEX-SHAPED CLASS COMPOSED OF
THREE SUB-CLASSES EACH OF THEM IS COMPOSED OF THREE

PIECEWISE CONSTANT REGIMES

Figure 2 shows the obtained modeling results for the
complex-shaped class shown in Figlile 1. First, it can be
observed that the proposed unsupervised approach accu-
rately decomposes the class into homogeneous sub-classes
of curves. It can also be observed that the approach is able

Sub-class 1

Logistic prob.

Sub-class 2

=

to automatically determine the underlying hidden regimes 5 5 5 B 5 |5

for the sub-classes. Furthermore, the flexibility of the lo-
gistic process used to model the hidden regimes allows for
accurately approximating both abrupt and/or smooth regime ]
changes within each sub-class. This can be clearly seen on o 1 >y a 5
the logistic probabilities which vary over time accordimg t
both which regime is active or not and how is the transition
from one regime to another over time (i.e., abrupt or smooth
transition from one regime to another). It can also be ndtice
that, approximating this class with a single mean curve,
which is the case when using FLDA, fails; the class is clearly
heterogeneous. Using FMDA based on polynomial or spline
regression mixture (i.e., FMDA-PRM or FMDA-SRM) does
not provide significant modeling improvements since, as we
can clearly see on the data, the subclasses present abrupt 5 : 5

Logistic prob.
o O o ©

Sub-class 3

Logistic prob.
© O o ©

and smooth regime changes for which these two approaches

are not well adapted. This can be observed on the obtained

results of mean intra-class inertia given in Teble .

Table[1 also shows the misclassification error rates ob-

Fig. 2
THE ESTIMATED SUB-CLASSES COLORED ACCORDING TO THE
PARTITION GIVEN BY THE EM ALGORITHM FOR THE PROPOSED

tained with the proposed FMDA-MixRHLP approach anthpproAcH(TOP); THEN ARE PRESENTED SEPARATELY EACH SURCLASS

alternative approaches. As expected,

[ Approach | Classif. error rate (%)] Intra-class inertia|
FLDA-PR 21 7.1364 x 103
FLDA-SR 19.3 6.9640 x 103
FLDA-RHLP 18.5 6.4485 x 103
FMDA-PRM 11 6.1735 x 103
FMDA-SRM 9.5 5.3570 x 103
FMDA-MixRHLP 5.3 3.8095 x 103

TABLE |

OBTAINED RESULTS FOR THE SIMULATED CURVES

it can be seen thabr cURVES WITH THE ESTIMATED MEAN CURVE IN BOLD LINE(TOP

SUB—PLOT) AND THE CORRESPONDING LOGISTIC PROBABILITIES THAT
GOVERN THE HIDDEN REGIMES(BOTTOM SUB—PLOT).

model for complex-shaped classes (i.e., when using FLDA
approaches) is not adapted. It can also be observed that
the proposed functional mixture discriminant approactetdas
on hidden logistic process regression (FMDA-MixRHLP)
outperforms the alternative FMDA based on polynomial

the FMDA approaches provide better results compared tegression mixtures (FMDA-PRM) or spline regression mix-
FLDA approaches. This is due to the fact that using a singteres (FMDA-SRM). This performance is attributed to the



Class 1 Class 2

flexibility of the MixRHLP model thanks to the logistic
process which is well adapted for modeling the regim
changes.

In the second situation, the proposed approach is applii- |
on the waveform curves of Breimahn| [2]. ’
2) Waveform curves of BreimanThe waveform data
introduced by([2] consist of a three-class problem wheré eas

curve is generated as follows:

e x;(t) = ufi(t) + (1 — u) fa(t) + € for the class 1;

o x;(t) = ufo(t) + (1 — u)f3(t) + € for the class 2;

o x;(t) = ufi(t) + (1 — u)f3(t) + € for the class 3.
where « is a uniform random variable on(0,1),
fi(t) = max(6 — [t — 11,0); falt) = folt — 4); f(t) =
fi(t +4) and¢; is a zero-mean Gaussian noise with uni b V v
standard deviation. The temporal interval considereddéche  ° ° v o ©oe ° i ® ®
curve is [0;20] with a constant period of sampling of 1
second. For the experiments considered here, inorder ® h
a heterogeneous class, we combine both class 1 and clas
to form a single class called class 1. Class 2 will therefor.. °
used to refer to class 3 in the previous description of th
waveform data. Figurgl3 (top) shows curves from the tw
classes. i

Figure[3 (middle) shows the obtained modeling results fc. ’ '
each of the two classes by applying the proposed approach. Fig. 3
We can see that the two sub-classes for the first classes are

Il id ified. Th b-cl | h MODELING RESULTS FOR THE WAVEFORM CURVES(TOP) THE
well identified. These two sub-classes (C usters) are s ownWAVEFORMS(SOOCURVES PER CLAS3 WHERE THE FIRST CLASS IS

separately on FigurEI _3 (bOttom) WiFh their CorrespondingOMPOSED OF TWO SUBCLASSES (MIDDLE) THE WAVEFORMS AND THE
mean curves. We notice that for this data set, all FMD%STIMATEDSUBCLASSESFOR CLASY AND THE CORRESPONDING MEAN

approaches provide very similar results regarding both the,
classification and the approximation since, as it can be
seen, the complexity for this example is only related to

Class 1 Class 2

~—

URVES FOR EACH CLASSAND (BOTTOM) THE TWO SUBCLASSES OF
CLASS1 SHOWN SEPARATELY WITH THEIR CORRESPONDING MEAN

the dispersion of the first class into sub-classes, and there CURVES
are no explicit regime changes; each sub-class can therefor
also be accurately approximated by a polynomial or a splir= e e
function.
3) Experiments on real dataln this section, we use a
database issued from a railway diagnosis application as stts . § 0
ied in [5][4][18]. This database is composed 10 labeled 200
real switch operation curves. In [B][4][L8], the data wesedi = 3 s
to perform classification into three classes : no defecth wit **
a minor defect and with a critical defect. In this study, we “c—+ % s 5 &« ¢ i &t i e
rather consider two classes where the first one is composed
by the curves with no defect and with a minor defect so Fig. 4
that the decision will be either with or without defect. The75SWITCH OPERATION CURVES FROM THE FIRST CLASELEFT) AND 45
goal is therefore to provide an accurate automatic modeling CURVES FROM THE SECOND CLASERIGHT).

especially for Class 1 which is henceforth dispersed into

two sub-classes. The cardinal numbers of the classes are

ny = 75 and ny = 45 respectively. Figurél4 shows each

class of curves, where the first class is composed of twbat the proposed method ensure both a decomposition of
sub-classes. Figufd 5 shows the modeling results providdte complex shaped class into sub-classes and at the same
by the proposed approach for each of the two classes.tiine, a good approximation of the underlying regimes within
shows the two sub-classes estimated for class 1 and thach homogeneous set of curves. Indeed, it can be seen that
corresponding mean curves for the two classes. We aldite logistic process probabilities are close ltovhen the
present the estimated polynomial regressors for each setrd regression model seems to be the best fit for the curves
curves and the corresponding probabilities of the logistiand vary over time according to the smoothness degree of
process that govern the regime changes over time. We segime transition. Then, the obtained classification teshly
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Fig. 5

RESULTS OBTAINED WITH THE PROPOSED MODEL FOR THE REAL
CURVES. THE ESTIMATED SUB-CLASSES FOR CLASSL (TOP-LEFT) AND

THE CORRESPONDING MEAN CURVE{TOP) PROVIDED BY THE

PROPOSED APPROACHTHEN, WE SHOW SEPARATELY EACH SUBCLASS
OF CLASS1 WITH THE ESTIMATED MEAN CURVE PRESENTED IN A BOLD
LINE (TOP SUB-PLOT), THE POLYNOMIAL REGRESSORYDEGREED = 3),

THE CORRESPONDING LOGISTIC PROPORTIONS THAT GOVERN THE
HIDDEN PROCESSAND FINALLY IN THE BOTTOM PLOTS WE SHOW THE

SAME RESULTS FOR CLAS2.

considering the FLDA approaches and the FMDA approache@]
(which are more competitive) and gave the best results for

simulations, are given in Tablgl II.

We can see that, although the classification results arg
similar for the FMDA approaches, the difference in terms of

Approach | Classif. error rate (%)] Intra-class inertia]

FLDA-PR 11.5 10.7350 x 10°

FLDA-SR 9.53 9.4503 x 10°

FLDA-RHLP 8.62 8.7633 x 10°

FMDA-PRM 9.02 7.9450 x 109

FMDA-SRM 8.50 5.8312 x 10

FMDA-MixRHLP 6.25 3.2012 x 109
TABLE I

OBTAINED RESULTS FOR THE REAL CURVES

(mixtures) or spline regression (mixtures) does not fit at
best the regime changes compared to the proposed model.
Finally we notice that the proposed algorithm converges in
approximatively 80 iterations.

V. CONCLUSION

In this paper, we presented a new model-based approach
for functional data classification. It uses a specific func-
tional mixture discriminant analysis incorporating a tedd
process regression model, particularly adapted for mogeli
complex-shaped classes of curves presenting regime chiange
The parameters of each class are estimated in an unsuper-
vised way by a dedicated EM algorithm. The experimental
results on simulated data and real data demonstrated the
benefit of the proposed approach as compared to existing
alternative functional discriminant methods. Future waik
concern experiments on additional real data including time
course gene expression curves; We also plan to investigate
more model selection approaches which have been shown
to perform better then BIC in the case of finite mixture
models, such as the one proposedlih [1]. We will as well
investigate Bayesian learning techniques from functidasé
to explicitly incorporate some prior knowledge on the data
structure to better control the model complexity.
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