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An Incremental Self-organizing Neural Network Based on
Enhanced Competitive Hebbian Learning

Hao Liu, Masahito Kurihara, Satoshi Oyama, Haruhiko Sato

Abstract— Self-organizing neural networks are important
tools for realizing unsupervised learning. Recently, a difficult
task has involved the incremental, efficient and robust learning
in noisy environments. Most of the existing techniques are poor
in this regard. In this paper, we first propose a new topology
generating method called enhanced competitive Hebbian learn-
ing (enhanced CHL), and then propose a novel incremental
self-organizing neural network based on the enhanced CHL
method, called enhanced incremental growing neural gas (Hi-
GNG). The experiments presented in this paper show that the
Hi-GNG algorithm can automatically and efficiently generate
a topological structure with a suitable number of neurons and
that the proposed algorithm is robust to noisy data.

I. INTRODUCTION

SELF-ORGANIZING neural networks have played an
important role in the field of unsupervised learning over

the past few decades. Unsupervised learning has two main
objectives: clustering and data topology learning. Clustering
aims to divide a given data set into several clusters, where
each pair of data in the same cluster has greater similarity
than that in two different clusters [1]. On the other hand,
data topology learning can be described as follows: given a
high-dimensional data distribution, project input data into a
topological structure in which similar data in the input space
are projected into topological adjacent units [2]. Recently,
this technique has been widely applied to data mining, vector
quantization, pattern recognition, computer vision and many
other related fields [3].

Recently, with the increasing number and dimensions
of data, the learning algorithms are required to efficiently
deal with large number of signals. Moreover, a much more
difficult task for on-line learning is to efficiently and robustly
learn data from the distributions in which noisy data exist.
The main difficulty is that learning algorithms have no
prior knowledge of the whole data distribution. Thus, upon
the arrival of the first several data of a certain distribu-
tion, the amount of data is not sufficient to represent the
whole distribution. At this time, learning algorithms cannot
judge whether these data are noisy or normal. Consequently,
for each iteration, the existing techniques (such as self-
organizing map (SOM) [4], neural gas (NG) [5], etc.) have
to respond to the new data and update the weight vectors
of the corresponding neurons, which usually cause a critical
deviation of the topology reflection in the result.
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Another problem is that in most ‘growing-type’ self-
organizing neural networks, such as growing neural gas
(GNG) [6] (See more discussions in Section II), the number
of neurons will continuously increase owing to the growth
strategy. The large number of neurons increases the com-
putational cost of searching for the winner neurons in each
iteration, which makes the training procedure inefficient. In
fact, such a number cannot increase indefinitely because of
the limited computer resources, such as CPU speed and
memory size. To partially solve this problem, the maximum
number of neurons in the network is usually predefined by
an additional parameter. However, the consequent problem
is in determining this parameter. If the parameter is set with
a low value, some small clusters will be merged indicating
that the clustering result will be wrong. If the parameter is
set too high, many neurons will be generated and some large
cluster may be divided into several smaller clusters, which
may also results in a low clustering quality.

To solve the problems mentioned above, in this paper, we
will first extend the traditional competitive Hebbian learning
(CHL) [7] method (See more discussions in Section III-
A) as a new topology generating technique called enhanced
competitive Hebbian learning (enhanced CHL), and then
we will propose a novel incremental self-organizing neural
network based on the enhanced CHL method, called en-
hanced incremental growing neural gas (Hi-GNG). The main
contributions of this algorithm are summarized as follows:

1) The algorithm can efficiently learn a given data distri-
bution.

2) The algorithm can automatically adapt a suitable num-
ber of neurons to generate the topological structure.

3) The generated topological structure can be constantly
and robustly maintained without being influenced by
noisy data.

The rest of this paper is organized as follows. In Section
II, we briefly describes the overview of the self-organizing
neural networks. In Section III, we first review the CHL
method, and then propose the enhanced CHL method. In
Section IV, we propose the Hi-GNG algorithm. In Section
V, experimental results are presented. Finally, we summarize
the features of Hi-GNG and give conclusions in Section VI.

II. RELATED WORK

One of the most well-known techniques is SOM, also
known as the Kohonen network. The original SOM has two
layers: the input layer and the competitive layer. The com-
petitive layer consists of a set of units (also called neurons or
nodes) with lateral connections, which is usually constructed



as a two-dimensional topological structure. A weight vector
is assigned to each unit and is updated during training
procedures according to the simple competitive learning
(SCL) [8] strategy. When the training procedure is finished,
SOM divides the input space into several regions, which can
be considered that the input space is described by SOM as a
Voronoi diagram, and each best matching unit (BMU) is the
site of the corresponding Voronoi cell, indicating that SOM
is suitable for clustering tasks. Another powerful feature of
SOM is that high-dimensional data can be projected to a low-
dimensional topological structure, which means that SOM
can be applied to data visualization. Unfortunately, SOM
has some drawbacks, one of which is its fixed structure in its
competitive layer. The size of the network must be predefined
and is unchangeable during training procedures, which is
similar to providing an integer number k as a parameter in
the k-means clustering algorithm. In general, it is difficult to
determine k without any prior knowledge of the given data
set [9]. In addition, the fixed structure limits SOM to the
detection of clusters which are presented as complex shapes.

In order to overcome the drawback caused by the fixed
structure, a series of ‘growing-type’ self-organizing neural
networks have been proposed. These techniques usually have
dynamic network structures.

Growing cell structures (GCS) [10] have a flexible network
consisting of k-dimensional simplices. Each node is assigned
a local variable, called a signal counter, which presents the
local error of a neuron in the training procedure. GCS starts
with a random k-dimensional simplex, e.g. the network is
a triangular network if k = 2, and then, at timed intervals,
new nodes will be inserted by splitting the longest edge
emanating from the node with the maximum accumulated
error. However, the topology dimensions in GCS must be
kept strictly: when inserting a node, additional edges are also
required to be added in order to maintain the topological
structures. Further, another problem is that once a node is
created in GCS, it cannot be removed.

Unlike SOM and GCS, the GNG method has a more
flexible network structure in which nodes can be added or
removed, and there are no constrains for the topological
structure. Actually, it can be considered as a combination of
CHL, NG and the growing strategy of GCS. In the training
procedure, GNG starts with two neurons. An edge will be
created between two nodes with the highest activity if there
is no edge between them. New nodes are inserted in the
same way as that of GCS. The algorithm will stop if some
predefined condition is met. Because of the presence of these
important features, the GNG algorithm is considered to be
suitable for the task of on-line learning.

With the increasing number and dimensions of data, the
learning algorithms are required to efficiently deal with large
number of signals. In general, there are two main approaches
to speed up the GNG algorithm. The first approach is
to reduce the computational complexity of GNG, such as
density-based growing neural gas (DB-GNG) [11] and the
literature [12]. They usually establish a supporting structure,

such as an R-tree, slim-tree or KD-tree, in order to reduce
the cost of finding the nearest neuron. Another approach tries
to modify the growing mechanism, such as fast autonomous
growing neural gas (fAGNG) [13] and incremental growing
neural gas (IGNG) [14]. The fAGNG algorithm performs the
insertion of k neurons every λ signals. IGNG uses a distance-
check strategy to insert neurons, which means that there
is no necessary to calculate the local accumulated errors.
Furthermore, it is not required to find the neurons with the
maximum accumulated error when inserts neurons. These
features make IGNG more efficient than the original GNG
algorithm.

Considering that the given data distribution contains some
noisy data, it will become a very difficult task for the
methods mentioned above to learn such data distributions
robustly. Unfortunately, few self-organizing neural networks
were developed to address this problem. The self-organizing
incremental neural network (SOINN) [15] was designed for
the learning of non-stationary data distributions. SOINN has
two layers in its architecture. The first layer performs like
the GNG algorithm and the second layer is used to detect
the potential low-density areas using the output of the first
layer as its input. However, this two-layer architecture is
sometimes too complicated for an on-line learning algorithm
as users do not know when to stop the first layer and when
to start the second layer. In addition, two layers means that
there are more parameters to be determined. In order to
deal with noisy data, Robust Growing Neural Gas (RGNG)
[16] extended the GNG algorithm with a noisy data resistant
scheme. However, like the original GNG algorithm, RGNG
also needs to calculate the local accumulated errors, which
means that RGNG has a higher computational complexity
than the IGNG like techniques.

III. ENHANCED COMPETITIVE HEBBIAN LEARNING

A. Competitive Hebbian Learning

The classical Hebbian theory (also called Hebbian rule)
[17] describes a basic mechanism for how neurons can
connect with each other, more precisely, it shows how
to create the connections between neurons. According to
Hebbian theory, any two neurons sufficiently near to each
other that are repeatedly activated at the same time will tend
to become ‘associated’ indicating that a connection can be
created between them.

CHL can be considered as an extension of the classical
Hebbian theory in competitive learning systems. The key
idea of CHL is that given an input signal, we find the nearest
neuron and the second-nearest neuron in the network, after
which we create a connection (edge) between these two
neurons if such a connection does not already exist.

CHL is a good method for the creation of connections
between neurons in competitive learning systems. However,
CHL only provides a way of creating connections, but does
not address the elimination of the existing connections. Some
learning algorithms, such as GNG, use a local variable to
record the ‘age’ of a connection. The ‘age’ of a connection



will increase according to some updating strategy. If a
connection’s ‘age’ has exceeded a particular threshold, it will
accordingly be removed. In general, such a threshold is a
positive integer, e.g. the threshold is given by the parameter
αmax in the GNG algorithm. Here, αmax is usually set with
a big value because the network will not grow if αmax is
too small. Unfortunately, considering that the given data set
contains some noisy data, the final graph will be significantly
influenced by the noisy data if αmax is big, because the
local variable ‘age’ may be easily reset to zero and the
corresponding connections will be kept for a long time. This
means that the learning algorithm will not robustly reflect
the data relationships from noisy data distributions.

B. Enhanced Competitive Hebbian Learning

In order to solve this problem, we propose a new technique
to generate topological structures, called enhanced competi-
tive Hebbian learning (enhanced CHL). The enhanced CHL
method considers both the creation of connections between
neurons and the elimination of the existing connections
between neurons.

The aim of enhanced CHL is to generate an undirected
weighted graph, 〈G,w〉, where G = 〈V,E, ψG〉 consists of
a vertices set, an edge set and an incidence function. The
weighting w : E → R can be considered as a vector whose
coordinates are indexed by the edge set E. For example, let
{v1, v2} be an unordered pair of two vertices of G and e be
an edge of G. Then ψG(e) = {v1, v2} indicates that {v1, v2}
is associated with e, and w(e) represents the weight of the
edge e.

In this paper, the vertex and the weighted graph are called
a neuron and a network, respectively, and are denoted by n
and net, respectively. On the basis of these standard concepts
of graph theory, we give the formal definition of a connection
in the enhanced CHL method.

Definition 1: (connection) Let n1 and n2 be two neurons
in the network (n1 �= n2) and let {n1, n2} be the edge
between n1 and n2. A connection, denoted as c(n1, n2),
is a pair:

c(n1, n2) = 〈{n1, n2} , s〉 (1)
where s is a non-negative integer, called the connection-
strength of c(n1, n2). For convenience, we also call it
the connection-strength between n1 and n2, denoted by
s(n1, n2).

Given an input signal ξ and a network, net, the nearest
neuron, n�, and the second-nearest neuron, n��, to the signal
ξ can be obtained by Equation 2.

n� = argmin
ni∈N(net)

‖ξ −Wni
‖ (2)

n�� = argmin
ni∈N(net)\{n�}

‖ξ −Wni
‖

where Wni
is the weight vector of ni and N(net) is the

neuron set of the network.
Then let net be a network and n�, n�� be the nearest

neuron and the second-nearest neuron to an input signal ξ,

respectively (n�, n�� ∈ N(net). The enhanced CHL method
is described in the following four parts:

1) CREATION: Create a new connection c(n�, n��) if
c(n�, n��) does not exist. When the new connection
is established, the connection-strength is initialized
by: s(n�, n��) ← 1.

2) UPDATING: If the connection, c(n�, n��), already
exists, then its connection-strength is enhanced by:
s(n�, n��) ← s(n�, n��)+Δs, where Δs is a positive
integer. If ∃c(n�, ni) where ni ∈ N(net) such that
ni �= n��, then the connection-strength of these
connections are reduced by: s(n�, ni) ← s(n�, ni)−
1.

3) DECAYING: when the elapsed time is an integer
multiple of some desired number, the connection-
strength of every connection in the network will
be reduced by: s(ni, nj) ← s(ni, nj) − 1, ni, nj ∈
N(net).

4) ELIMINATION: if ∃c(ni, nj) where ni, nj ∈
N(net), ni �= nj such that s(ni, nj) = 0, then remove
the connection, c(ni, nj).

In the creation part, the enhanced CHL method follows the
idea of Hebbian theory, i.e. a connection is created between
two neurons if they are near enough and are activated at
the same time. However, in our model, we do not care
only about how to create a connection, but also about
the connection-strength of the created connection. The
connection-strength of the newly created connections are
initialized by one, indicating that these connections are
temporal ones. If they are not enhanced in the following
few steps, they can be quickly removed.

In the second part, the updating is also related to Hebbian
theory. If a connection between two neurons has already
been created in some earlier steps and subsequently the two
neurons are again activated at the same time, then the
connection-strength will be enhanced. Moreover, we also
consider the opposite situation: if the two neurons are not
simultaneously activated, the connection-strength between
them will be weakened.

In the decaying part, the connection-strength between
neurons will be gradually weakened with time. In order to
make an easy calculation, the connection-strength will be
reduced by one if the total elapsed time is an integer multiple
of some desired number.

In the eliminating part, the connections in the network
will be removed if their connection-strength values are
zero.

Like CHL, the enhanced CHL method is also a pure
topology generating method. To incrementally learn the given
data distribution, p(ξ), the learning algorithm also requires a
way of inserting neurons and a vector quantization technique
in order to generate and place the neurons in regions in
which the probability density P (ξ) > 0. These methods are
presented in Section IV.



IV. THE ALGORITHM OF ENHANCED INCREMENTAL
GROWING NEURAL GAS

In this section, we present the enhanced incremental
growing neural gas (Hi-GNG) algorithm which is based on
the enhanced CHL method.

In Hi-GNG, the classical SOM neuron model is modified
by assigning an additional local attribute called a maturity-
level. Now we give the definition of a neuron in the Hi-
GNG algorithm.

Definition 2: (neuron) A neuron, denoted by n, is a pair:

n = 〈W,m〉 (3)
where W is the weight-vector of n in the input space and
m is a non-negative integer called the maturity-level. We
denote the weight of n and the maturity-level of n by Wn

and m(n), respectively.
In this modified neuron mode, the new attribute m func-

tions as a local counter to count the number of times that
a neuron becomes the nearest neuron or the second-nearest
neuron. Given an integer number, m̂, as the threshold, if
the maturity-level of neuron n is greater than m̂, i.e.
m(n) > m̂, we say n becomes ‘mature’.

On the basis of this modified neuron model and the
enhanced CHL method presented in Section III-B, we present
the Hi-GNG algorithm as follows:

1) Initialized the network with an empty graph.
2) Randomly generate a signal ξ from P (ξ).
3) If the network is empty or the Euclidean distance

between the input signal and the nearest (or the second-
nearest) neuron satisfies Equation 4, then insert two
neurons.

∃n ∈ {n�, n��}, ‖ξ −Wn‖ > σ (4)

where ξ is the current input signal and Wn is the weight
vector of the nearest neuron (n�) or the second-nearest
neuron (n��).
Let n1 and n2 be the two newly inserted neurons. The
weight of n1 is set with Wn1

← ξ and n2 is placed very
close to n1 in the input space. Here, Wn2

is randomly
generated, such that ‖Wn1

−Wn2
‖ < σ

10 . Then, create
a connection between n1 and n2 with the connection-
strength: s(n1, n2) ← 1. Finally, the adaption of the
current input signal, ξ, is complete. Continue to adapt
the next signal.

4) Update the weight vectors of the neurons using Equa-
tion 5.

Wn =

{
Wn + εb (ξ −Wn) , if n = n�

Wn + εn (ξ −Wn) , if ∃c(n, n�) (5)

where n� is the nearest neuron to the input signal ξ,
and εb and εn are two real numbers in the range of
(0, 1), which represent the constant learning rate for
the nearest neuron and its topological neighbors. In
general cases, εb is greater than εn.

5) Increment the maturity-level of the nearest neuron,
n�, and the second-nearest neuron, n��.

6) Create a connection between n� and n�� if there
is no such a connection. Initialize the connection-
strength by one.

7) Increment the connection-strength using Equation 6,
if a connection exists between n� and n��.

s(n�, n��) ← s(n�, n��) + Δs (6)

where Δ s is a positive integer presenting the increment
of the connection-strength.

8) Reduce the connection-strength between the nearest
neuron, n�, and its topological neighbors using Equa-
tion 7.

s(n�, ni) ← s(n�, ni)− 1, if ∃c(n�, ni) (7)

9) Remove the connections whose connection-
strength is zero and if this isolates some neurons,
also remove the isolated neurons as well.

10) Reduce the connection-strength of all the
connections in the network using Equation 8, if
the number of iterations so far is an integer multiple
of the parameter α.

s(n�, ni) ← s(n�, ni)− 1, ni ∈ N(net) (8)

11) If the stopping condition is not met, then go to step 2).
Otherwise, output the network which only consists of
the neurons whose maturity-level is larger than the
parameter m̂

In step 3), as with the IGNG algorithm, the Hi-GNG al-
gorithm also applied a distance-check strategy when neurons
are inserted. However, the IGNG algorithm inserts only one
neuron, whereas the Hi-GNG algorithm inserts two neurons.
The main reason for inserting two neurons is that the distance
between the input signal and the nearest neuron is larger than
a threshold, which means that the current input signal is far
away from the signals learned so far. Thus, there is a high
probability that the current signal belongs to a new cluster
or is noisy signal. In this case, the network should create
a ‘new land’ (a new topological structure disjointed from
the existing structure) to represent a new cluster or a noisy
signal (this can also be regarded as a small cluster). If we
consider that each cluster is represented by a component in
the network graph, two connected neurons can be inserted to
create a minimal component for representing a new cluster.
A component which contains only one isolated neuron will
be directly removed in the next iteration because of step 9).

In step 5), the maturity-level is incremented, but note
that only the nearest neuron and the second-nearest neuron
will be manipulated, which is different from other techniques,
such as IGNG. The IGNG algorithm uses a local variable,
called ‘age’, to identify whether or not a neuron is ‘mature’.
The nearest neuron and all its topological neighbors will be
manipulated in the IGNG algorithm.

From step 6) to step 10), the enhanced CHL method is
applied. When a connection is created, the connection-
strength is very weak, which means that the new
connection must be enhanced within a small numbers of



Algorithm 1 Hi-GNG
Input: X , σ, εb, εn, Δs, α, m̂
Output: an undirected weighted graph only consists of the

mature neurons (m(n) > m̂) and their corresponding
connections.

1: Initialize the network with an empty graph;
2: g ← 0;
3: repeat
4: ξ ← generate a signal ξ from P (ξ) randomly;
5: Search the network for the nearest neuron, n� and the

second-nearest neuron, n�� by:
n� ← argminni∈N(net) ‖ξ −Wni

‖
n�� ← argminni∈N(net)\{n�} ‖ξ −Wni‖

6: if N(net) = φ or ‖ξ −Wn�‖ > σ or ‖ξ −Wn��‖ >
σ then

7: Insert two neurons, n1 and n2, to the network and
set them by:
Wn1 ← ξ and randomly generate Wn2 , such that
‖Wn1 −Wn2‖ < σ

10 . Then create a connection
between n1 and n2 and set the connection-strength
by: s(n1, n2) ← 1;

8: continue;
9: end if

10: Update the neurons by:
Wn� ←Wn� + εb (ξ −Wn�)
Wni ←Wni + εn (ξ −Wni) // ∃c(ni, n�)

11: Incremental the maturity level of n� and n�� by:
m(n�) ← m(n�) + 1
m(n��) ← m(n��) + 1

12: if c(n�, n��) has already exist then
13: Update the connection-strength of c(n�, n��) by:

s(n�, n��) ← s(n�, n��) + Δs;
14: else
15: Create a connection c(n�, n��) and set the connec-

tion strength as:
s(n�, n��) ← 1;

16: end if
17: Reduce the connection-strength of the connections

between n� and its topological neighbors by:
s(n�, ni) ← s(n�, ni)− 1;

18: Remove the connections whose connection-strength
is zero and if this make some neurons isolated, also
remove the isolated neurons.

19: if g mod α = 0 then
20: Reduce the connection-strength of all existing con-

nections by:
s(ni, nj) ← s(ni, nj)− 1;

21: end if
22: g ← g + 1;
23: until the stopping condition is reached

iterations, or it will be removed quickly owing to step
9). This strategy makes the Hi-GNG algorithm robust to
noisy signals. When a noisy signal is input, there is a high
possibility that Equation 4 is satisfied. Then, the algorithm
inserts two connected neurons to respond to this noisy signal.
Because the noisy signal can be expected to have a low
probability of being regenerated, it is also expected that
the connection between the just created two neurons is not
easily enhanced. Therefore, the neurons presenting the noisy
data can be quickly removed. This is similar to the short-
term plasticity in biological neural behaviors. On the other
hand, the connections between those neurons which present
the normal data are easily enhanced time and again. Such
neurons can therefore be kept in the network for a long time.
This appears like the long-term plasticity in biological neural
behaviors.

Details regarding the implementation of Hi-GNG are pre-
sented in Algorithm 1.

V. EXPERIMENTS

In the following experiments, two artificial data sets were
used to test the performance of Hi-GNG compared with
that of the GNG algorithm. We summarized the information
regarding these artificial data sets as follows:

1) Data Set 1 contained 1386 two-dimensional data in
four clusters. The cluster at the top of Fig. 1(a) was
represented by a twisty shape and another three smaller
clusters were located under the former bigger one. No
noisy data existed in this data set.

2) Data Set 2 had two banana shaped clusters, as illus-
trated in Fig. 1(b). In total, there were 16532 data
including some noisy data.
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Fig. 1. Artificial data sets used in the experiments. (a) Data Set 1. (b) Data
Set 2.

In the experiment involving Data Set 1, we captured
five snapshots during the learning procedure (Fig. 2). We
observed that the Hi-GNG algorithm generated neurons faster
than the GNG algorithm. At the beginning, Hi-GNG started
with an empty graph and inserted many neurons very quickly,
and the newly inserted neurons started as immature neurons
(represented by the ‘diamond’ shaped markers in Fig. 2(f)),
whereas the GNG algorithm started with two neurons and in-
serted neurons slowly (Fig. 2(a) - Fig. 2(c)). We also noticed
that in the Hi-GNG learning procedure, immature neurons
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Fig. 2. The snapshots in the learning procedure for Data Set 1. The first row shows the result for GNG and the second row shows the result for Hi-GNG.
The parameters of GNG were as follows: λ = 650, εb = 0.05, εn = 0.006, αmax = 80, α = 0.5, d = 0.0005. The parameters of Hi-GNG were:
σ = 5, εb = 0.05, εn = 0.006, Δs = 20, m̂ = 30, α = 80.
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Fig. 3. The snapshots in the learning procedure for Data Set 2. The first row shows the result for GNG and the second row shows the result for Hi-GNG.
The parameters of GNG were: λ = 250, εb = 0.05, εn = 0.006, αmax = 80, α = 0.5, d = 0.0005. The parameters of Hi-GNG were as follows:
σ = 10, εb = 0.05, εn = 0.006, Δs = 20, m̂ = 30, α = 50.

were widely placed according to the input distribution. In
each iteration, new neurons were directly inserted near to
the input data if the distance-check (by Equation 4) was
satisfied. About 1500-2000 iterations later, some immature
neurons became mature (represented by ‘solid circle’ shaped
markers in Fig. 2(g)), and when the number of iteration
was 5000, most immature neurons become mature and more
connections were established (Fig. 2(h)). When the number
of iterations was more than 20000, the data distribution was
well adapted by Hi-GNG (Fig. 2(i)) comparing with that of
the GNG algorithm, which still needed more iterations to

finish the adaption (Fig. 2(d)). Although we could choose a
smaller value for the parameter λ in GNG, a smaller value
may sometimes result in a bad adaption result.

In addition, we also observed that the number of neurons
generated by these two algorithms was significantly different
during the whole learning procedure (shown in Fig. 4(a)).
If we had not provided an upper limit for the number of
neurons, the insertion of neurons would have been a never-
ending operation in the GNG algorithm. On the other hand,
the number of neurons in Hi-GNG stopped increasing at
around 120 after 45000 iterations. Moreover, we separately



recorded the number of mature neurons and immature neu-
rons. The number of mature neurons started from zero and
slowly increased at the beginning of several hundreds of
iterations, but started to increase very quickly afterwards.
Two or three thousands of iterations later, the rate of increase
slowed again. Finally, the number became stable when it was
at around 120. The number of immature neurons also started
at zero, but on the contrary, it first increased quickly and then
also decreased quickly. Finally, the number became stable
around zero or two and there were very few fluctuations.

(a) The result for Data Set 1

(b) The result for Data Set 2

Fig. 4. The number of neurons during the learning procedures.

We also captured five snapshots of the experiment regard-
ing Data Set 2 (Fig. 3). First, we observed that Hi-GNG could
generate neurons faster than GNG, which was similar to
the previous experiment with Data Set 1. However, because
Data Set 2 contains noisy data, the topological structure
generated by these two algorithms were quite different. The
topological structure generated by GNG became twisty and
distorted after 20,000 iterations (Fig. 2(d)), and continuously
deteriorated with the increasing number of iterations (Fig.
2(e)). The reason was that the noisy data were usually far
away from the normal data, which resulted in a large distance
value being calculated using ‖ξ − W‖2. Then, this large
distance significantly affected the updating of the weights.
On the other hand, the topological structure generated by
Hi-GNG was stable and always reflected the distribution of
the normal data. We recorded the number of neurons to help
explain as to why these results were obtained (Fig. 4). As
previous result for Data Set 1, the number of mature neurons
in Hi-GNG became stable when the number of iterations was
more than 20,000. However, at the same time, the number of
immature neurons was not so stable and frequently changed.

This unstable number appeared when Hi-GNG responded
to the noisy data; new immature neurons were inserted
into the network as the large distance between the noisy
data and the nearest neuron, satisfying the distance-check
(Equation 4). Because the connection-strength between the
two newly inserted immature neurons was very weak and
not easily enhanced, it easily decreased to zero after a few
numbers of iterations, which led to the removal of the newly
inserted neurons. As a result, the mature neurons which
represented the normal data were kept and those immature
neurons which represented the noisy data were generated
and removed quickly. To better understand this experiment,
we have uploaded a video demonstration of this learning
procedure on the YouTube website, which can be found at
http://youtu.be/s7NhrPqaVXg.
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Fig. 5. The comparable results for Data Set 2 when the number of iterations
was 500,000. The maximum number of neurons was limited at 250 for GNG,
fAGNG and IGNG. The parameters of GNG were: λ = 250, εb = 0.05,
εn = 0.006, αmax = 80, α = 0.5, d = 0.0005. The parameters of
fAGNG were as follows: k = 3, λ = 250, εb = 0.05, εn = 0.006,
αmax = 80, α = 0.5, d = 0.0005. The parameters of IGNG were:
αmature = 20, εb = 0.05, εn = 0.006, αmax = 80. The parameters of
Hi-GNG were as follows: σ = 10, εb = 0.05, εn = 0.006, Δs = 20,
m̂ = 30, α = 50.

In addition, we compared the result of Hi-GNG with
those of fAGNG, IGNG and GNG. In this experiment, the
maximum number of neurons in GNG, fAGNG and IGNG
was set with 250. We captured the experimental snapshots
when the number of iterations was 500,000, because all
the algorithms became stable at that time (Fig. 5). We
observed that fAGNG and IGNG placed some neurons in
the low-density areas and all the neurons in the network
were connected with each other, which means that there was
only one component in the graph indicating that only one
cluster could be reported (shown in Fig. 5(a) and Fig. 5(b),
respectively). The GNG algorithm reported two components



in its topological graph indicating that there were two clusters
in the given data set (Fig. 5(c)). However, the two clusters
found by GNG were not the true clusters. On the other
hand, the Hi-GNG algorithm automatically inserted a suitable
number of neurons to generate the topological structure
without being provided the maximum number of neurons in
the network. The number of mature neurons became stable at
around 270 and the number of immature neurons fluctuated
around six. Furthermore, the generated topological structure
could always clearly reported that there were two clusters
which were exactly the true clusters in the given data set
(Fig. 5(d)).

VI. CONCLUSION

In this paper, we first proposed a new topology genera-
tion method, called enhanced competitive Hebbian learning
(enhanced CHL), which considers how to both create and
eliminate connections between neurons. On the basis of
the enhanced CHL method, we further proposed a novel
incremental self-organizing neural network, called enhanced
incremental growing neural gas (Hi-GNG). The experiments
presented in this paper proved that the Hi-GNG algorithm
could efficiently learn the given data distribution and the
generated topological structure was not influenced by noisy
data. In addition, Hi-GNG could automatically generate a
topological structure with a suitable number of neurons.

Although Hi-GNG is usually faster than the original GNG
algorithm, the efficiency can be further improved by indexing
the neurons by some supporting structures, such as R-tree,
slim-tree or KD-tree, in order to reduce the cost related with
the search for the nearest (or the second-nearest) neuron in
the training procedure.

Some promising applications of the Hi-GNG algorithm are
incremental clustering with noisy existing data sets, image
segmentation and 3-D surface reconstruction.
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[12] D. Fišer, J. Faigl, and M. Kulich, “Growing neural gas efficiently,”
Neurocomputing, vol. 104, pp. 72 – 82, 2013.

[13] J. Garcia-Rodriguez, A. Angelopoulou, J. Garcı́a-Chamizo, A. Psarrou,
S. Orts-Escolano, and V. Morell-Gimenez, “Fast autonomous growing
neural gas,” in The 2011 International Joint Conference on Neural
Networks(IJCNN 2011), 2011, pp. 725–732.

[14] Y. Prudent and A. Ennaji, “An incremental growing neural gas learns
topologies,” in The 2005 International Joint Conference on Neural
Networks(IJCNN 2005), vol. 2, 2005, pp. 1211–1216.

[15] S. Furao and O. Hasegawa, “An incremental network for on-line
unsupervised classification and topology learning.” Neural Networks,
vol. 19, no. 1, pp. 90–106, 2006.

[16] A. Qin and P. Suganthan, “Robust growing neural gas algorithm with
application in cluster analysis,” Neural Networks, vol. 17, no. 89, pp.
1135 – 1148, 2004.

[17] D. O. Hebb, The organization of behavior: a neuropsychological
theory. New York: John Wiley & Sons, 1949.


