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Abstract— Allowing a robot to autonomously navigate wide
and unknown environments not only requires a set of robust
strategies to cope with miscellaneous situations, but also needs
mechanisms of self-assessment for guiding learning and mon-
itoring strategies. Monitoring strategies requires feedbacks on
the behavior’s quality, from a given fitness system, to take
correct decisions.
In this work, we focus on how violations of expectations of
such fitness system can be detected. Following an incremen-
tal and bio-mimetic approach, we first present two different
sensorimotor strategies our robot can use to navigate: a Place
Cells based strategy and a road following strategy. Then, we
present a neural architecture that may be able to evaluate
both navigation strategies. This model is based on an online
novelty detection algorithm using a neural predictor. This
neural predictor learns contingencies between sensations and
actions, giving the expected sensation based from the previous
perception. Prediction error, coming from surprising events,
provides a direct measure of the quality of the underlying
sensorimotor contingencies involved.
We propose that this model might be a key structure toward
self-assessment. We made several experiments that can account
for such properties for both strategies.

I. INTRODUCTION

In this work, one of our goal is to provide biologically

plausible models for robotic navigation. Following the con-

cepts of bio-inspired robotic and a constructivist approach

we present integrated robotic control architectures resulting

from a close feedback loop between experiments on animals

and robots. This leads to a better understanding of the mech-

anisms by which the brain processes spatial information.

In previous works, we developped a model of visual Place

Cells that allows the robot to exhibit simple and robust

behaviors using only few Place/Action associations [2], [3].

Since this strategy has been sucessfully tested in small

environment, we met issues while trying to navigate larger

and more complex ones (see Section II-A). We propose

to add a second simple, efficient and biologically plausible

road following strategy in order to overcome issues we met

with the first one (see Section II-B). Finally, we propose a

generic neural architecture able to evaluate both sensorimotor

navigation strategies (see Section III). We wish this model

could allow the system to regulate its strategies depending

on their relevance and thus improve its autonomy.

Autonomy, in the field of robotics, is still an open and

poorly defined problem, for which concepts remain to be

invented. By autonomous, we mean a system able to develop

its knowledge and to evaluate itself to decide whether its

learning or behaviors are relevant or not according to the

context. This means that not only does the robot need to

code its knowledge but also the limits of its knowledge. This

becomes all the more important in integrated robotic systems

which have to make decisions based on observations drawn

from a multitude of modalities [18]. Adding self-assessment

capabilities to robots should be an interesting solution,

mainly in social robotics where humans play a role in

the cognitive development of the robot. It could allow the

system to ask human for details about its task when needed

as in the collaborative control system of Fong et al. [20].

The robot could also communicate its inability to improve

its learning. Moreover, it should be able to detect problems

by considering aspects of novelty in its predictions. The

problem of self-assessment is then sensibly close to the

class of novelty detection problems. Novelty detection is a

commonly used technique to detect that an input differs in

some respect from previous inputs. It is a useful ability for

animals to recognize an unexpected perception that could

be a potential predator or a possible victim [?]. It reduces

the large amount of information received by the animal so

that it can focus on unusual stimuli. A variety of novelty

filters have been proposed where most of them work by

learning a representation of a training set (containing only

normal data), then trying to underline datas that differ

significantly from this training set. In the litterature, one

can find different classes of methods such as statistical

outlier detection, novelty detection with supervised neural

networks, techniques based on self-organising map and

gated dipole methods.

The standard approach to the problem of outlier detection

[22], [23] is to estimate the unknown distribution µ of a set

of n independant random variables in order to be able to

detect that a new input X does not belong to the support



of µ. In the same way, extreme value theory [24] focus on

distributions of data that have abnormal values in the tails

of the distribution that generates the data.

The first known adaptive novelty filter is that of Kohonen

and Oja [25]. It proposes a pattern matching algorithm

where new inputs are compared with the best-matching

learned pattern, meaning that non-zero output is only seen

for novel stimuli. But such mechanism is certainly not

biologically plausible.

Supervised neural networks methods propose also novelty

detection solutions by recognizing inputs that the classifier

cannot categorize reliably. Such methods estimates kernel

densities to compute novelty detection in the bayesian

formalism [26], [27].

An other solution is given by gated dipole fields, first

proposed by Grossberg [28], [29], then used to compare

stimuli and model animal’s attention to novelty [32]. But

systems based on gated dipoles cannot generalise to stimuli

that do not have a dipole to represent them and cannot scale

with the size of the dataset.

Self-organising networks also provide solutions to detect

novelty using unsupervised learning [30] and particularly the

so-called Adaptive Resonance Theory (ART) [35] network

that uses a fixed vigilence threshold to add new nodes

whenever none of the current categories represents the data.

In a sense, the process of the ART network is a form of

novelty detection depending on a vigilence threshold.

Neural models of memory can also detect prediction error

by learning sequences of Place Cells that provides a simple

means of representing pathways through the environment

[36].

More recently, a model of artificial curiosity proposed by

Kaplan & Oudeyer [37] allows an agent to focus on novel

stimuli to improve its learning in challenging situations,

avoiding well known and totally unknown ones.

In the following we present a navigation strategy based on

our previous model of visual Place Cells and its limitation

for navigating complex environments.

II. FROM TWO SENSORIMOTOR NAVIGATION STRATEGIES

A. A model of Place Cells to perform sensorimotor naviga-

tion

In previous works, we developped a biologically plausible

model of the hippocampus in order to obtain visual Place

Cells (VPCs) [1] that allowed controlling mobile robots

for visual navigation tasks [2], [3]. The embedded pan-tilt

camera allows the capture of 15 images over a 360 degrees

panorama. Gradient images convolved with a difference-of-

gaussian filter allows to highlight a set of salient points in

the scene. A log polar transform of local views of 16*16

pixels centered on each focus point is computed in order to

improve pattern recognition against small rotations and scale

variations.

Local views correspond to the ”what” information coded

in the perirhinal cortex or in other areas of the ventral

visual pathway of the rat temporal cortex [5]. The azimuth

of these local views (the ”where” information) is provided

by the parietal cortex through the parahippocampal region.

The merging of ”what” and ”where” information may be

performed in the superficial layer of the enthorinal cortex or

in the postrhinal cortex [7], [6]. A neural network learns to

categorize constellations of landmarks and their azimuths in

the scene (5 landmarks per images) (see Fig.1) to produce

place cells. Activities of the different place cells depend

on the recognition level of corresponding constellations.

Robustness comes from the large number of local views

extracted (75 per panorama) and the use of a competition

between place cells (see [4] for more details).

A neural network learns to associate a particular PC

with an action (a direction to follow in our case). This

sensory-motor architecture (Per-Ac [8]) allows the system

to learn robust behaviors.

The activity of the cells, even in outdoor conditions, shows

a peak for the learned locations (see Fig. 2) and generalizes

quite correctly over large distance (2 to 3 m inside and 20
to 30 m outside). These broad activities are perhaps similar

to the broad place cells formed in the Entorhinal Cortex.

Fig. 2. Activity of 6 of our visual place cells recorded on a linear track
in a real outdoor environment. The different maxima of activity correspond
to the learned positions of the associated cells. Our architecture provide
good generalization properties since activities present large place field. Cell
5 corresponds to a learned place outside the recording area (on the right).
Cell 6 has not been recruited and shows null activity.

Even if our architecture has been succesfully tested in

small sized environments (typically one room), our visual-

only based mechanism shows limitations when trying to scale

to larger and more complex ones (multi-room, outdoors).

First the large number of Place Cells needed to cover this

kind of environment introduces a computational problem that

highly decreases the robustness of the localization. Moreover,

we encounter some situations in outside environment where

the large number of trees all around the system does not

leave enough available landmarks to recognize (the entire

panorama is full of green leaves that only represent noise

for the system) and the only way to overcome such problem

is to follow the road below. We propose to overcome these



Fig. 1. Sensorimotor model relying on vision. The gradient image is convolved with a difference of gaussian filter. Local maxima of the resulting image correspond to points

of interest on which the system focuses on to extract local views. A Place Cell (PC) learns to recognize a specific landmarks-azitmuths constellation. An association between

the current action (robot’s orientation) and this PC is learned by a least mean square algorithm (LMS), after what the system is able to move in the learned direction each time

the associated PC wins.

issues by adding to our current architecture a biologically

plausible road following strategy. Such strategy allows the

robot to follow roads rather than learning Place Cells, in

situations where it is neither necessary, nor efficient to do so.

Providing two different strategies to the robot is not sufficient

by itself to navigate autonomously. The system also needs a

metalearning mechanism that evaluate both strategies to be

able to select the right one in a given situation.

B. A simple algorithm to perform road following behavior

In this section we present a fast and robust biologically

plausible road following strategy. Nowadays, several meth-

ods trying to solve this problem consist in extracting road

boundaries. To detect boundaries, several methods have been

proposed such as Laser-based methods [9], Radar-based [10],

stereovision-based [11], color cue based [12], methods using

Hough transform [13], steerable filters [14] and spline model

[15]. All these methods are not suitable when the road does

not exhibit significant markings or boudaries. Kong & al. [16]

propose an other algorithm which allows to find vanishing

points and their confidence level using road segmentation

techniques. But such method requires Gabor filters to extract

textural features and road boundaries.

Here, we propose a simpler but efficient method that could

be biologically plausible. Our algorithm consists in finding,

among N (fixed number) potentially vanishing points, the one

that is the best candidate. As an example, if five potentially

vanishing points are proposed, there will be one in the center

of the image, one on the right (resp. left) and extreme right

(resp. left). Then, the robot will orient itself towards the best

potential vanishing point. To find the best potential vanishing

point, our method consists in determining four preferred

orientations for the gradient of each pixel in the image.

The algorithm is the following one :

• acquisition of a low resolution image (160 ∗ 120 pixels)

by a wide field camera (90 degrees field of view).

• edge extraction and gradient transformation.

• selection of the potential vanishing points: division of

the image in N bins over the horizontal axis. Each point

is placed in the center of a bin. A fixed parameter

defined the skyline elevation while there is no automatic

skyline detection at the moment (in following exper-

iments, this value is set at 20% from the top of the

image height).

• Four preferred directions are choosen for each vanishing

point (see Fig. 3)

Fig. 3. Explanation of the algorithm for five potential vanishing points
(respectively V1, V2, V3, V4 and V5). For outdoor and indoor cases, this
figure shows how vanishing points are distributed on the image and also
how the preferred direction are selected. A - For the outdoor example, the
vanishing point V2 is the best candidate. B - For the indoor example, the
vanishing point V3 is the best candidate.

• Each vanishing point V n is then coded by a neuron

ACT (n) which activity is done by the following equa-

tions :

ACT (n) = dir(n, 1)× dir(n, 2) + dir(n, 3)× dir(n, 4)
(1)

dir(n, i) =

N
∑

i=1

f(cos(θvp(i, n, l))×(1−‖ cos(θg(n, l))‖))

(2)

with :

1) f(x) =







x for 0.9 < x < 1
0 for x < 0.9
1 for x > 1

. The value of

0.9 have been choosen to allow an error of 25◦

on each preferred direction.

2) θvp(i, n, l) corresponds to angle between a pre-

ferred direction and the vector from pixel to po-

tential vanishing point



3) θg(n, l) corresponds to angle between the vector

from pixel to vanishing point and the vector cor-

reponding to gradient orientation

4) dir(n,1) is the preferred directions top-right of

neuron n, dir(n,2) top-left, dir(n,3) bottom-left and

dir(n,4) bottom-right.

• Then, a simple winner takes all competition selects the

best candidate between the N neurons.

The motor control of our model is directly inspired by

control theories of Braitenberg vehicles [19]. This control

is quite simple : when a vanishing point is detected on

the right (resp. left), the robot will turn right (resp. left).

Convergent behavior emerges from sensorimotor interactions

between the system and its environment, without any need for

an internal representation of the environment, or inference.

Consequently, angular precision is less important than sample

rate in such control.

We tested this algorithm on real images of road (See Fig.4)

in several situations.

Fig. 4. Results obtained with our vanishing points detection algorithm on
real images. For each cases: Up− Real image of a road. Down− Activity
levels of 41 neurons, each one firing for a particular vanishing point on the
image. A− In a simple case (road with boundaries), the vanishing point is
well detected in the center of the image and generalized quite correctly to
neighborhood B− Without boundaries, the vanishing point remain salient
since there is a significant gradient between road and grass. C− For a
twisting road, our algorithm detect two potential vanishing points, a centered
one and the other on the left side. Nevertheless, the more active is the one
on the left. D− Exemple of a vanhing point detected on the right side.

Thanks to this method, our system is able to follow any

types of vanishing points such as roads, corridors, paths

or railways. Furthermore, this algorithm has a satisfying

framerate of 20 images per secondes (for 41 vanishing

point neurons) and this framerate could increase if we

consider less neurons. Such high framerate is obtained

because only the higher gradients are considered in our

algorithm. Therefore, the intensity of the gradient have been

normalized by using the cosinus of the angle. So, in Fig.4

(case B) the gradient of road edges is not really high even

though the vanishing point is detected.

A drawback of our method is the adjustement of the sky-

line position. Moreover, in some environments, the vanishing

lines over the skyline could be an information (like in a

corridor or in forest) although high relieves or clouds that

can disturb localization of the vanishing point.

III. TOWARDS A FIRST METHOD FOR SELF-MONITORING

Here we present a generic model for self-assessment

based on novelty detection techniques. Our model consists

in two steps. First, to learn sensorimotor contingencies

induced by the navigation strategy involved in a normal

situation (training set), second to be able to detect extraneous

sensorimotor patterns in novel situations.

Our model is as follow (see Fig.5) :

Lets denote y, a vector of n neurons yi relative to agent’s

own sensations. It can be both place cells or vanishing point

cells in our case. y can be viewed as a set of random variable

yi.

x is a vector of neurons xi relative to agent’s proprioception,

where the winning neuron code for the current orientation.

P is the tensorial product between x and y with recurrent

connections of weight α. P codes a short term memory of

the agent’s perception, where Pi, j denote the particular tuple

of both xi and yi neurons.

Here we defined Perception as the integral of all Sensations

and Actions [31]:

Per(t) =

∫ t

−∞

Sen(t).Ac(t) (3)

Where Sen denotes a vector of sensations (the input vector

y in our case), and Ac denotes a vector of actions (the

proprioceptive vector x coding for the current orientation).

In our model, the matrix P estimates the robot’s perception

by integrating sensations and actions in a finite shifting

temporal window defined by the recurrent weight α:

P (t+ 1) = α.P (t) + (1− α).Sen(t).Ac(t) (4)

P (t) =

t
∑

i=0

αi−1.(1− α).Sen(t).Ac(t) (5)

Basically, it means that recent inputs have a higher weight

in our process than older ones. This type of filter has

been tested by Richefeu and Manzanera [17] in a motion

detection context. The parameter α is used in order to attach

more importance to the near past than to the far past.



Then, a vector ŷ, same size as y, estimates the mean E[y]
of the current sensation y from the perception matrix P by

a least mean square algorithm (LMS) [33]. We make the

assumption that y follows a Gaussian distribution required

by least-squares. An absolute difference between y and ŷ

represents the instant error vector e. In the same manner, a

vector ê, estimates the first moment about the mean,

µ2 = E[e], of the current error e = y− ŷ from the perception

matrix P by a LMS algorithm. The second order error is

defined as e2 = e−µ2. The second moment about the mean

is defined as µ3 = E[|e− µ2|]

The third order error is defined as e3 = e2 − µ3. Novelty

N is defined as the global fourth moment about the mean.

N is a single neuron that integrates all e3 neurons activities:

N = |
∑n

i=1
e3i|. N is summarized by :

N = E[|
n
∑

i=1

(|yi − E[yi]| − E[|yi − E[yi]|])

− E[|yi − E[yi]| − E[|yi − E[yi]|]]

(6)

N represent the prediction error of the network, that

will be used to detect unexpected events. The different mo-

ments about the mean µ2, µ3 and µ4 represent respectively

the pseudo-variance, the pseudo-skewness and the pseudo-

kurtosis (while their measure follows the L1-norm rather than

the L2-norm).

Our architecture is thus able to learn an internal model of

the dynamical interactions the system has with the external

world.

IV. EXPERIMENTS AND RESULTS.

We have tested our model of self-evaluation in several

situations for both strategies. Following experiments run in

2 different 3-dimensional simulated environments. We used a

simulated robotic platform that is 40*40cm wide and equiped

with 2 wheels, proximity sensors for obstacle avoidance and

a pan-tilt camera used to extract points of interest in the

visual panorama.

The place/action strategy has been tested in a simulated

room (Setup 1: see Fig.6) of 15*15m with a uniform floor

and salient landmarks on walls. The robot is trained by an

human teacher (supervised learning) to perform a round path

by learning Place Cell/Action associations. As a stereotypical

human/dog training interaction, the teacher uses a leash to

pull the robot in the desired direction. Thus, the robot is de-

tecting prediction error by comparing human order to its own

will. This novelty detection neuromodulates the vigilence of

the system so that it decides to recruit a new place cell and

learns the association to its current orientation. Following

such interactions, the robot is able to learn the path the human

is teaching. A proscriptive learning (correcting the system

rather than showing it the path) is necessary to get a stable

and robust attraction field [34]. No more than 8 place/action

associations are sufficient to perform a robust round trip in

our experiment. The evaluation mechanism learns the senso-

rimotor contingencies while the robot performs its round trip

in a normal situation (similar to the training set). In this setup,

the vector of sensation y is defined by the vector of 8 Place

Cells learned by the system. We set the recurrent weight

α=0.95 empirically, based on the frequency of changes in

sensations. The sensorimotor loop of that strategy is quite

slow since states only change when the robot navigates from

one place to an other (it mainly depends on the distance

between 2 places and the robot’s linear velocity). Indeed, an

α near to 1 results in a long temporal window (old states are

more important than recent ones). 3 laps were necessary for

the evaluation mechanism to completely predict its sensation

from all sensorimotor situations perceived during the trip.

Indeed, learning is completed only when the novelty level

reaches a minimum (typically below 0.4) and stagnates in

all places.

The road following strategy has been tested in a simulated

outside environment (Setup 2: see Fig.6) of 40*40m with

white roads over grass on the floor and trees texture on

walls. The system is then able to correctly follow roads when

one is in its field of view. On the other side, navigating on

grass results in random movements since there is no stable

and well-defined vanishing point to follow. The evaluation

mechanism learns the sensorimotor contingencies while the

robot performs road following in a normal situation (training

set). In this setup, the vector of sensation y is defined by 13

vanishing point neurons processed by the system. We set the

recurrent weight α=0.7 empirically, based on the velocity

of the sensorimotor loop. Indeed, the sensorimotor loop of

that strategy is significantly faster than for the place/action

strategy while vanishing point states change at a speed that

directly depends on the robot’s angular velocity. 5 minutes

of navigation were necessary for the system to completely

predict its sensation from sensorimotor situations perceived

while following a road. Learning is completed when the

novelty level reaches a minimum of 0.4 and stagnates.

Fig. 6. Experimental setup for the different strategies. A− Robotic
platform used in our simulations. B− Setup used to test the place/action
strategy. The system evolve in a simulated room of 15*15m. It learns 8
places associated with different actions (in red) to perform an ideal round
behavior (black dotted line). C− Setup used to test the road following
strategy. The system evolve in a simulated outside environment of 40*40m.
The robot can navigate both on roads or on grass.

A. Results relying on Place/Action experiments

After the system has completely learned the desired tra-

jectory (Setup 1) and sensorimotor predictions relative to

this trajectory, we tested it in several situations to show the



Fig. 5. Neural architecture relying on self-evaluation. A network learns the sensorimotor law of a strategy by learning to predict the current sensation
from the previous perception. We defined perception as the short term memory of recent sensation/action tuples. Such perception matrix is used to predict
an approximation of the 3 first moments about the mean of the sensation. A global novelty level gives to the system a direct feedback on the quality of
the behavior involved.

robustness of our model to detect whether such situation

is normal or abnormal. In a first experiment, we tested the

robustness of the strategy in a normal situation. The robot

performs 12 standard laps without perturbation. Results show

a robust and stable behavior with a trajectory close to the

desired one. The novelty level stays relatively low since it

never gets over 0.4, with a mean value of 0.2. It defines the

minimum prediction error the system is able to learn. Such

minimum error is directly linked to the degree of deepness

of the prediction process. Since we defined the novelty as

the fourth moment about the mean, our model is not able to

characterize statistical variations over such precision. A fifth

and sixth moment should be able to respectively learn the

novelty mean and variance.

In a second experiment, we introduce an obstacle in the

environment so that the system is forced to avoid it (direct

priority is given to the obstacle avoidance strategy by a sub-

somption architecture). The system gets around that obstacle

and successfully goes back to its original path thanks to the

generalization properties place cells provide. Novelty level

shows peaks when the system is avoiding the obstacle, since

the orientation taken does not correspond to the learned one

in that place.

In an other experiment, we propose to put off the light

suddenly so that the visual system is not able to maintain

coherent place cells activity. Thus, the system is not able to

recognize places anymore and becomes totally lost. It results

in random movements. Novelty level shows a sudden offset

but keep more or less the same variance. Indeed, the system

is not able to recognize places anymore, even if it tries to

predict it.

In the same way, the last experiment proposes to suddenly

shift the north direction by 90 degrees. The robot behavior

tends to be random after a few seconds. The novelty level

shows large variations after the event. Indeed, the system

sometimes takes an unexpected orientation, sometimes a

predicted one.

B. Results relying on road following experiments

This time the system evolves in the simulated outside

environment previously described (Setup 2) and tries to

perform road following. The evaluation mechanism is trained

to predict the sensorimotor laws involved in following a road.

In a first experiment, the environment only contains one

single road stopping at the middle of it, and grass elsewhere.

The robot starts on grass, in a corner, oriented towards

the road. Results show that it converges into the road in

order to be aligned with the road, then the system correctly

follows it until its end. Finally, it ends its trip by random

movements onto grass. Novelty level shows a progressive

decrease while the robot converges into the road, then stays

minimum and quite stable while following it. Novelty level

increases progressively when leaving the road and stays high

until the end of the experiment.

In a second experiment, we propose to test the robustness

of the self-evaluation mechanism on a 1 hour navigation

experiment. This time, the environment contains 2 crossing

roads covering diagonal distances (as seen in Fig.6: Setup

2). The purpose of this experiment is to test the evaluation

mechanism in almost all different situations. Results show

that the evaluation mechanism is able to differentiate between

normal and abnormal sensorimotricity quite correctly since

it predicts well its sensation while navigating on both roads,

and detects novelty anywhere else (on grass).

V. DISCUSSION

In this incremental design approach, one objective of our

robotic experiments is to show the limitations of models.

Hence, since our previous works on modeling place cells



Fig. 7. Results obtained for the place/action strategy (Setup 1). A− Up : Trajectory of the robot after performing 12 laps autonomously without
disturbance. Green Arrow indicate movements direction. Down : Evolution of the novelty level in time. Novelty level stays below 0.5 with a constant
variance as no abnormal event appears. B− Up : 2 laps trajectory of the robot while an obstacle suddenly appears in the environment. Obstacle avoidance
allows the robot to get over this situation. Generalization capabilities of the place cells allow it to go back into the learned path. Down : Novelty level
shows peaks for respectively the first (1) and second (2) time the system faces the obstacle. C− Up : The system perform its task correctly (from START
to 1) when the ambient light is suddenly switched off (1). It results in random movements, as no cues are visible. The robot is totally lost (from 1 to END)
Down : Novelty mean level suddenly grows by an offset corresponding to the error produced by pure random predictions. D− Up : The system perform
its task correctly (from START to 1) when the north orientation is suddenly shifted by 90 degrees (1). It results in random movements since unexpected
actions are performed in each places (from 1 to END). Down : Novelty variance grows significantly.
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Fig. 8. Results obtained in simulated outside environments using the road
following strategy (Setup 2). A− Up : Trajectory of the robot on a single
test. There is only one single road (dotted line) ending in the middle of the
open-space. The robot starts on grass, converge into the road, then follows
it until its end. Up : Novelty level shows a decrease as the system converge
into the road. It grows up progressively at the end of the road. B− Up :

Trajectory of the robot after 1 hour of autonomous navigation in a cross-
road environment. Color indicates novelty level (Red:1, Black:0). Down :

Evolution of the novelty level for a selected sample of time. Results show
a minimum novelty level (below 0.5) when the system follows roads (A)
and a high novelty level when navigating on grass (B) without any road to
follow.

allows our system to perform simple sensorimotor behaviors

in small size environments, we highlight the need to take

into account solutions to overcome some issues we met while

trying to navigate more complex ones. First, we extended our

architecture by adding a robust and biologically plausible

road following strategy. Such strategy allows the robot to

naturally converge into visible roads, following it on a robust

manner. It provide a second strategy to navigate in situations

where learning Place Cells is neither necessary, nor efficient.

Then, as using two different strategies is not sufficient by

itself to navigate autonomously, we showed that the system

also needs a mechanism that evaluate both strategies in

order to regulate these strategies. We proposed a model for

self-assessment based on statistical outlier detections in a

dynamic point of view. We defined perception as an internal

model of the sensorimotor interactions the system has with

the external world. Such model of perception provide a

generic grounding to perform predictions on agent’s sen-

sation. Novelty is then defined as the prediction error at a

n′th level, depending on the desired accuracy. Results show

that our model presents good generalization capabilities since

the same architecture can work for at least two different

sensorimotor strategies.

Current work focuses on using this self-assessment mech-

anism as an active judge to monitor (select or inhibit)

different strategies in particular contexts. The mechanism

should therefore select useful strategies, while discarding

others, based on its own evaluation of a given behavior in

a specific context. An emotional controller (involving basic

emotions like frustration and satisfaction), will be necessary

to take decisions. Moreover, the robot may stop and call for

help if no relevant strategies are found (if switching strategy

does not increase any progress at all). We will evaluate

the model performance on long range outside experiments

(navigating several kilometers) on a real outdoor robot.
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