A new fast learning algorithm with promising global convergence capability for feed-forward neural networks | IEEE Conference Publication | IEEE Xplore

A new fast learning algorithm with promising global convergence capability for feed-forward neural networks


Abstract:

Backpropagation (BP) learning algorithm is the most widely used supervised learning technique that is extensively applied in the training of multi-layer feed-forward neur...Show More

Abstract:

Backpropagation (BP) learning algorithm is the most widely used supervised learning technique that is extensively applied in the training of multi-layer feed-forward neural networks. Although many modifications of BP have been proposed to speed up the learning of the original BP, they seldom address the local minimum and the flat-spot problem. This paper proposes a new algorithm called Local-minimum and Flat-spot Problem Solver (LFPS) to solve these two problems. It uses a systematic approach to check whether a learning process is trapped by a local minimum or a flat-spot area, and then escape from it. Thus, a learning process using LFPS can keep finding an appropriate way to converge to the global minimum. The performance investigation shows that the proposed algorithm always converges in different learning problems (applications) whereas other popular fast learning algorithms sometimes give very poor global convergence capabilities.
Date of Conference: 04-09 August 2013
Date Added to IEEE Xplore: 09 January 2014
ISBN Information:

ISSN Information:

Conference Location: Dallas, TX, USA

Contact IEEE to Subscribe

References

References is not available for this document.