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Abstract—The k-means algorithm is a partitional clustering
method. Over 60 years old, it has been successfully used for a
variety of problems. The popularity of k-means is in large part
a consequence of its simplicity and efficiency. In this paper we
are inspired by these appealing properties of k-means in the
development of a clustering algorithm which accepts the notion
of “positively” and “negatively” labelled data. The goal is to
discover the cluster structure of both positive and negative data
in a manner which allows for the discrimination between the
two sets. The usefulness of this idea is demonstrated practically
on the problem of face recognition, where the task of learning
the scope of a person’s appearance should be done in a manner
which allows this face to be differentiated from others.

I. INTRODUCTION

IN data analysis, clustering refers to the process of dis-
covering groups (clusters) of similar data points. Being a

vital tool in the exploration, sparsification and dimensionality
reduction of data, it is unsurprising to observe that clustering
is intensively used in a wide range of applications, from
protein sequencing [1] to astronomical surveys of the sky [2].
The use of clustering is even more ubiquitous in image
and multimedia processing: at the lowest level, clustering
is used to build vocabularies of low-level features used
to represent individual objects [3], [4], [5], images [6] or
elementary motions [7]; at medium-level, clustering may be
used to list the cast of a movie [8] or detect coherently
moving objects [9], [10]; at the highest level, video clips
or images may themselves be clustered by the similarity of
their content [11], [12].

Despite continuing major research efforts, clustering re-
mains a most challenging problem. The application-specific
notion of what a good cluster is, the volume and dimension-
ality of data, its sparsity and structure, and the number of
clusters, are only some of the factors which govern one’s
choice of the clustering methodology. Popular algorithms
include those based on spectral approaches [13], various non-
parametric formulations e.g. using the Dirichlet process [14],
information theoretic ideas [15], and many others [16].

Yet, notwithstanding the cornucopia of sophisticated clus-
tering models described in the literature, to this day the most
popular and widely used clustering approach remains to be
the simple k-means algorithm [17].

II. K-MEANS CLUSTERING

Let X = {x1, x2, . . . , xn} be a set of d-dimensional
points. The k-means algorithm partitions the points into K
clusters, X1, . . . , XK , so that each datum belongs to one and
only one cluster. In addition, an attempt is made to minimize

the sum of squared distances between each data point and the
empirical mean of the corresponding cluster. In other words,
the k-means algorithm attempts to minimize the following
objective function:

J(X1, . . . , Xk) =

k∑
i=1

∑
x∈Xi

‖ci − x‖2, (1)

where the empirical cluster means are calculated as:

ci =
∑
x∈Xi

x /
∣∣Xi

∣∣. (2)

The exact minimization of the objective function in Eq. (1)
is an NP-hard problem [18]. Instead, the k-means algorithm
only guarantees convergence to a local minimum. Starting
from an initial guess, the algorithm iteratively updates cluster
centres and data-cluster assignments until (i) a local min-
imum is attained, or (ii) an alternative stopping criterion
is met (e.g. the maximal desired number of iterations or a
sufficiently small sum of squared distances).

The k-means algorithm starts from an initial guess of
cluster centres c

(0)
1 , c

(0)
2 , . . . , c

(0)
k . Often, this is achieved

simply by choosing k data points at random as the centres of
the initial clusters, although more sophisticated initialization
methods have been proposed [19], [20]. Then, at each
iteration t = 0, . . . the new datum-cluster assignment is
computed:

X
(t)
i = {x : x ∈ X ∧ argmin

j

∥∥x− c
(t)
j

∥∥2 = i}. (3)

In other words, each datum is assigned to the cluster with
the nearest (in Euclidean sense) empirical mean. Lastly, the
locations of cluster centres are re-computed from the new
assignments by finding the mean of the data assigned to each
cluster:

c
(t+1)
i =

∑
x∈X(t)

i

x /
∣∣X(t)

i

∣∣. (4)

The algorithm is guaranteed to converge because neither of
the updates in Eq. (3) nor Eq. (4) can ever increase the
objective function of Eq. (1).

Various extensions of the original k-means algorithm in-
clude fuzzy c-means [21], k-medoid [22], kernel k-means
[23]. Their relevance to the topic of the present paper is
tangential and the interested reader is referred to the cited
publications for further information.
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III. EXTENDED K-MEANS CLUSTERING

In the present paper we are interested in the problem of
clustering data which comprises two types of data points,
which we will call “positively labelled” and “negatively
labelled”, and which should be clustered in such a way to
allow for the two types to be discriminated between. Our
goal is to inherit the simple ideas underlying the classical k-
means algorithm, while extending the algorithm to deal with
this novel complexity in the data.

To motivate this problem formulation using a concrete
practical example, consider Figure 1(a). Its top row shows
10 detected faces from a 10s motion sequence of a person.
The other two rows similarly show two sets of 10 detected
faces from motion sequences of the same length, but of a
different person. The two sequences of the second person
were acquired at two different times. Figure 1(b) shows the
corresponding face sets (approximately 100 faces per se-
quence), rasterized and projected onto the first three principal
linear components. The green set corresponds to the sequence
of Person 1, while the blue and red sets correspond to the two
sequences of Person 2. We wish to sparsify and discover the
structure of the sets corresponding to different frequencies; at
the same time we wish to exploit the knowledge that some of
the sequences belong to different people, which we may wish
to distinguish between (i.e. we may wish to retain discrimi-
native information for the purposes of recognition). Consider
the scenario in which only the sequences corresponding to
the green and red sets are available for training, the k-means
algorithm is applied independently to both (we used k = 5),
and then the obtained cluster centres used to classify each
of the novel blue faces. Figure 1(c) shows the same data as
Figure 1(b), with the exception that the misclassified blue
faces are emphasized. Specifically, in this case a third of
novel faces are incorrectly recognized. The plot in Figure 2
shows this even more convincingly, by plotting the datum-
by-datum distance from the nearest cluster of each of the
training sequences. As we will show in Section IV, a major
reason for this poor performance is to be found in the lack
of available class information in clustering. Indeed, when the
proposed algorithm is applied, no misclassification occurs in
this instance.

Our key idea is motivated by the second k-means update
equation, i.e. Eq. 4. Instead of considering its ‘batch’ form
introduced in the previous section, consider the form that
the update takes if we partition the data points belonging
to the i-th cluster into two; call these clusters Ẋi and Ẍi,
where the iteration superscript has been temporarily omitted
for clarity. Let the corresponding empirical means be ċi =∑

x∈Ẋi
x /
∣∣Ẋi

∣∣ and c̈i =
∑

x∈Ẍi
x /
∣∣Ẍi

∣∣. The computation
of the empirical mean of the entire cluster Xi can then be
seen as taking ċi as the initial estimate and adjusting it by
adding to it a correction component in the direction (c̈i− ċi):

c
(t+1)
i = ċ

(t+1)
i + w × (c̈

(t+1)
i − ċ

(t+1)
i ). (5)

The parameter w determines the magnitude of the correction
in the direction (c̈i − ċi) and it is dependent on the number
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Fig. 2. Distances of the faces from the novel video sequence to
from the nearest clusters obtained using conventional k-means clustering
performed on the two training image sequences. The blue and green
lines show the distance from the nearest cluster of the training sequence
respectively correctly and incorrectly matched by the identity. Red dots
mark the incorrectly classified faces. Approximately 32% of the novel data
is misclassified.

of data points in each of the partitions Ẋi and Ẍi:

w =

∣∣Ẍi

∣∣∣∣Ẋi

∣∣+ ∣∣Ẍi

∣∣ (6)

This can be seen as the data points in Ẍi bringing new
evidence for the centre of the corresponding cluster, pulling
it towards its centre, as illustrated in Figure 3(a).

However, returning to the case of positively and negatively
labelled data, what if the two sets of data points, Ẋi and
Ẍi correspond to data which are differently labelled? What
should the effect on the cluster centre be if data in Ẋi is
positively labelled and data in Ẍi negatively? Motivated by
the formulation expressed by Eq. 5, in the paper we propose
that two things should happen. Firstly, the cluster should split
into two. This is because we know that we do not want to
have clusters which contain data points with both types of
labels. Secondly, we propose that the effect of each of the
new children clusters should be that of repelling (rather than
attracting like in Eq. 5) the other, as illustrated in Figure 3(b).

Formally, our algorithm can be summarized by the follow-
ing sequence of steps:

Initialization: Initially, all data belongs to a single
cluster.

Iteration t: As in the k-means algoritithm, each data
point is assigned to its nearest cluster:

X
(t)
i = {x : argmin

j

∥∥x− c
(t)
j

∥∥2 = i}. (7)

Iteration t: If a cluster X(t)
i contains both positively and

negatively labelled data, split it into two. The centres
of the two child clusters become:

c
(t+1)
i = ċ

(t+1)
i − w × (c̈

(t+1)
i − ċ

(t+1)
i ), and (8)

c
(t+1)
n+1 = c̈

(t+1)
i − w × (ċ

(t+1)
i − c̈

(t+1)
i ), (9)

where n is the previous number of clusters, ċ
(t+1)
i
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Fig. 1. (a) Three 10s long face motion sequences (due to space constraints only every 10th detected face is shown). (b) The three sets of rasterized face
images shown projected to the first three principal components. (c) Misclassified faces of the blue set (32% misclassification rate) when the green and red
sets are used for training and the k-means algorithm is used to represent the corresponding manifold structures.

is the mean of positively labelled data in X
(t)
i and

c̈
(t+1)
i is the mean of negatively labelled data in X

(t)
i ,

and w a non-negative weight.

Iteration t: If a cluster X(t)
i contains only positively or

negatively labelled data, update its empirical mean as
in the k-means algorithm:

c
(t+1)
i =

∑
x∈X(t)

i

x /
∣∣X(t)

i

∣∣. (10)

Termination: Terminate when the maximal desired
number of clusters is reached or when the algorithm
has converged (guaranteed in a similar manner to the
conventional k-means algorithm.

IV. EVALUATION

A. Synthetic data

We start this section by illustrating the operation of the
proposed algorithm on a synthetic 2D example. Consider
the top-left plot in Figure 4(a). It shows positively (blue)
and negatively (red) labelled data, constructed by hand. The
subsequent plots in this figure (left to right, and then top to
bottom) show the progress of the algorithm and the creation
of new clusters, as old clusters with conflicting data member
labels are split. We ran this experiment until convergence.
Note the higher density of clusters where the two classes

are closer and more sparsely distributed clusters where class
membership is clearer.

Next, we modified the previous experiment by augmenting
the positively labelled set with new data points, as can be
seen in the top-left plot in Figure 4(b). As before, we re-
run our algorithm from the start and until convergence, the
subsequent plots in this figure (left to right, and then top to
bottom) showing the progress. Compare the final, converged
state of this experiment with that of the previous. In the
regions of the plane distant from the region in which the
new data was added, the revealed data structure i.e. the loci
of the cluster centres, for both positively and negatively la-
belled data, remains the same. On the other hand, significant
changes can be observed in the regions in which the two
classes exhibit new proximity. Consequently, new cluster
centres, densest where the two classes are the closest, are
created to ascertain good discriminative performance.

Our last synthetic experiment was inspired by the observed
localization of effects that the addition of new data has on
our algorithm. In this experiment, we used the same as in the
previous experiment, but instead of running it from the start
as previously, we proceed from the clustering determined in
our first experiment i.e. before new data was added. The
progress of our algorithm is shown in Figure 4(c). Note that
the locations of clusters in the top-left plot of Figure 4(c)
is the same as in the bottom-right plot of Figure 4(a). As
before, we proceeded until convergence. A comparison of the



(a) Experiment 1: Synthetic data set 1

(b) Experiment 2: Synthetic data set 2 (expanded synthetic data set 1)

(c) Experiment 3: Synthetic data set 2, algorithm run from the final state of Experiment 1

Fig. 4. The evaluation of the proposed method in three experiments on synthetic data. (a) The result on the first synthetic data set until convergence.
(b) The result on the second synthetic data set (first set augmented with novel positively labelled data) until convergence. (c) The result on the second
synthetic data set, initialized with the clustering result of the first experiment, until convergence.

final results of this and the previous experiments reveals a
remarkable agreement between the determined cluster centres
loci.

B. Face recognition

Next, we evaluated the proposed algorithm on a chal-
lenging problem of immense practical significance: face
recognition across illumination. As particularly appropriate
for this experiment, we used the Extended YaleB database.
This is a most difficult data set used as a standard benchmark

for the comparison of face recognition algorithms in terms of
their robustness to severe illumination changes. It contains 40
people and 64 images per person, each image corresponding
to a different illumination. The variation in the direction of
the dominant light source illuminating a face is extreme: its
azimuth varies from -130◦ to 130◦, and its elevation from
-40◦ (i.e. pointing upwards) to 90◦ (i.e. directly overhead,
pointing downwards), giving a total of 64 different illumina-
tion conditions. Notice that the face is sometimes illuminated
from the rear lateral direction (and thus hardly illuminated



(a) Conventional k-means

(b) Proposed discriminative k-means

Fig. 3. The effect of different groups of data on cluster centres in (a)
the k-means algorithm, and (b) the proposed algorithm when the groups
correspond to different class labels.

at all), that extreme cast shadows are often present as are
highly bright saturated image regions. These challenges are
illustrated in Figure 5. The database does not include any
intentional variation in facial expression, but some variation
exists nonetheless, mainly in the form of squinting when the
subject is facing the dominant light source.

In this experiment, we adopted the leave-one-out approach.
Specifically, we select an image of a face which will be used
as a novel query face for classification. All other faces are
used for training. After clustering is applied (the conventional
k-means algorithm or the algorithm proposed herein), the
query face is recognized as the person with the closest cluster
centre (maximum maximorum). We iterate through all the
2560 available images and use each of them as the novel
face in turn. For the sake of a fair comparison, both for the
conventional k-means algorithm and the discriminative k-
means we used the parameter value of k = 8 (in other words,
for the proposed algorithm we would stop further refinement
and terminate the algorithm when this target number of
clusters is reached).

The confusion matrix we obtained by using the conven-
tional k-means algorithm in this evaluation framework is
shown in Fig.6(a). This figure shows the proportion of faces
of one individual which were misclassified as another, for
all pairs of individuals in the data set. In addition, the
red lines show ‘marginalized’ confusion, i.e. the proportion
of faces of one individual misclassified as any other. The
misclassification rate can be seen to be very high across the
data set, with the average of 18%. As expected from previous
work, both in neurophysiology and computer-based face

recognition, some individuals were more problematic than
others as witnessed by the variations in the ‘marginalized’
confusion.

Now, compare the error rate obtained by using the con-
ventional k-means algorithm in Fig.6(a) with that when the
proposed discriminative k-means clustering is used instead,
shown in Fig.6(b). Our algorithm consistently achieved su-
perior performance, resulting in the average error rate of
approximately 12%. At this point it should be repeated that
this improvement is achieved under the constraint of the same
number of target clusters – the discriminative performance
of the proposed method would have been improved further
had the iteration been allow to proceed until convergence
i.e. until the optimal number of clusters is reached; the same
could not necessarily be expected with the conventional k-
means algorithm.

Considering the superior performance of the proposed al-
gorithm on the one hand, and the difference in its approach in
comparison with the conventional k-means algorithm (which
may be succinctly described as ‘discrimination’ vs. ‘descrip-
tion’), we next examined the sum of squared distances (SSD)
from all data points to their corresponding cluster centres
for the two algorithms. The result is summarized in the plot
of Fig.7 which shows as a circle each different clustering
instance corresponding to a different face image being used
as a leave-one-out novel query. As expected, the SSD of
the proposed algorithm is higher than of the conventional k-
means – the red line shows the best straight line fit passing
through the origin, its slope being a ≈ 1.38. Note that
we also colour-coded each datum by the benefit that the
proposed algorithm demonstrated over the conventional k-
means (the more intensely blue the circle is, the greater
the improvement in recognition), as we were interested
in investigating whether there is any relationship between
this benefit and the obtained SSD. As the plot serves to
demonstrate, no such relationship was observed.

Lastly, we examined the running efficiency of the proposed
method. The measured time until the present number of
clusters k = 8 was reached is plotted in Fig.8 as a blue
line, and compared with the time until convergence on the
same data of the k-means algorithm. Perhaps surprisingly at
first, the time required by the proposed algorithm is much
shorter (by approximately 73%). There are two key aspects
of our method that explain this observation. Firstly, note that
since our algorithm starts from a single cluster, most of the
time the number of clusters that it handles (e.g. that distances
from all points are evaluated to) is smaller than k. Secondly,
unlike in the conventional k-means algorithm in which the
cluster centres are initially randomly assigned, when new
clusters are created in the proposed method, they are created
in a purposeful manner and are by construction placed where
new clusters are actually needed.

V. SUMMARY AND CONCLUSIONS

In this paper we described a novel clustering algorithm
inspired by the k-means algorithm. Unlike the k-means
algorithm, the proposed method has the notion of two class



Fig. 5. Examples of extreme illuminations present in the data set used for the evaluation of methods in this paper.

(a) Conventional k-means (b) Proposed discriminative k-means

Fig. 6. Confusion matrices obtained on the Extended YaleB data set (a) when the conventional k-means algorithm was used to extract the cluster structure
of each person’s appearance, and (b) when the proposed discriminative k-means clustering was used instead. The 1D plots (red lines) show ‘marginalized’
confusions. Note that the performance of the proposed algorithm is consistently superior, the error rate attained with the use of the conventional k-means
algorithm being approximately 50% higher throughout the data set.

labelled data, and aims to form clusters that best capture the
structure of each class for discriminative purposes. Initialized
with a single cluster, the proposed algorithm splits as needed
and updates their centres using an equation which is a gen-
eralization of the update equation of the k-means algorithm.
The superiority of our approach was demonstrated on both
synthetic data and a real problem of face recognition across
illumination changes.
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