
 

 

 

  

Abstract—The aim of this work is to present a novel 

technique for the identification of lumped circuit models of 

general distributed apparatus and devices. It is based on the use 

of a double modified complex value neural network. The 

method is not oriented to a unique class of electromagnetic 

systems, but it gives a procedure for the complete validation of 

the approximated lumped model and the extraction of the 

electrical parameter values. The inputs of the system are the 

geometrical (and/or manufacturing) parameters of the 

considered structure, while the outputs are the lumped circuit 

parameters. The method follows the Frequency Response 

Analysis (FRA) approach for elaborating the data presented to 

the network. 

I. INTRODUCTION 

URING the analog circuit design process, in many cases 

the phase of modelization, parameter identification and 

simulation of distributed circuits is still an arduous 

challenge. The difficulties are inherent in locating the 

parameters that can be extracted and in obtaining the 

requested precision for them. On the other hand, this phase 

can become essential to solve several problems, as, for 

example, the study of the transient part of the response, the 

evaluation of the electromagnetic compatibility, the estimate 

of the harmonic content, the detection and location of faults, 

the influence of a single parameter over the output final 

behavior. In the last few years several soft computing 

algorithms dealing with this subject have been developed, 

using artificial neural networks (ANNs) [1-3], genetic 

algorithms (GAs) [4,5], particle swarm optimizers (PSOs) 

[6,7].  

In this paper we propose a new neural architecture able to 

accomplish the identification task. It is constituted by the 

union of a pair of multi-valued neuron neural networks with 

complex weights [8]. In this kind of architecture it is possible 

to use a set of multifrequency measurements or simulations 

made on the device, taken at different values of geometrical 

parameters, and train a MultiLayer Multi-Valued Neuron  

Network (MLMVN), able to estimate the electrical 

parameters of the lumped model. A single network is not 
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sufficient to achieve the goal, because, in general, the 

supervised reference of the lumped model is not available. In 

order to overcome this limitation, another network must be 

added, having the role of approximating and “inverting” a 

network function of the chosen lumped model. The output of 

this layer consists of the numerical estimate of the electrical 

parameters of the device under analysis. The two neural 

networks are connected in cascade, in order to extract the 

best possible estimation of the electrical parameters of the 

equivalent lumped model. After the “two-phase” learning 

phase, the network is able to dimension the equivalent 

electrical model, for each different set of geometric 

parameters presented to the input. A further aspect to take 

into account for the correct identification of the model is the 

“solvability” of the model with respect to the parameters 

chosen for the identification. To this aim, a preliminary 

evaluation of the testability of the lumped model is 

performed for determining the solvability degree with 

respect to the circuit parameters [9]. If the proposed lumped 

model is not suitable or not complete, the neural learning 

process does not converge. Hence this kind of approach 

represents a useful information for the design process in the 

modeling and simulation phase.  

II. THEORETICAL FOUNDATION 

In this section a synthetic theoretical description of the 

modified neural network is presented. 

A. The multi-valued neuron (MVN) 

The discrete multi-valued neuron (MVN) was presented in 

[8] as a neural element based on the principles of multiple-

valued threshold logic in the field of complex numbers. 

These principles were  formulated in [10], then developed 

and generalized in [8], and recently summarized and 

extended to the last results in [11]. The continuous version of 

MVN used in this work performs a mapping between n 

inputs and a single output. This mapping is described by a 

multi-valued (k-valued) function of n variables f(x1,…,xn), 

that, in the limit-case of continuous type of activation 

function, has its inputs and output located on the unit circle. 

For the continuous MVN the activation function is: 

 
Arg ( ) /i zP z e z z= =                         (1) 

 

where z=w0+w1x1+… wnxn is the weighted sum, and Arg(z) is 

the main value of the argument (phase) of the complex 

number z. Thus, for the continuous MVN, the output is the 

projection of the weighted sum on the unit circle, as it is 
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determined by the activation function (1) (see Fig. 1). The 

MVN learning algorithm is based on the error-correction rule 

and it works as follows. Let D and Y be, respectively, the 

desired and actual outputs of the continuous MVN. Then the 

weight adjustment formula is: 

1
( )
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r r
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n z
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              (2)  

where X  is the neuron input vector with the complex-

conjugate components, r is the index of the learning 

iteration, n is the number of neuron inputs (dimension of the 

input vector), Wr and Wr+1 are the weighting vectors 

(complex), before (current) and after correction, 

respectively, Cr is the learning rate, empirically chosen 

around 1.  

 
Geometrically, (2) represents the movement along the unit 

circle in the shortest possible way from the “incorrect” actual 

output to the “correct” desired output (see Fig. 2). The 

training of the neuron using this rule is performed without 

requiring any derivative of the activation function and the 

convergence of the corresponding learning algorithm is 

proven in [12]. 

The MLMVN has a standard feedforward topology, where 

the inputs of all the neurons of a layer are connected to the 

corresponding outputs of the neurons of the previous layer. 

However, the use of MVN as basic neuron for the MLMVN 

determines some important characteristics and advantages of 

this network with respect to the standard multi-layer 

backpropagation perceptron based network (MLBPN). On 

the other hand, also in this kind of neural network a 

backpropagation algorithm is used to correct the weights 

during the training phase. How the learning algorithm is 

organized for an MLMVN with m layers is  shown in [13].  

For the output layer (if we have m layers, it is the mth layer) 

the weights for the kth neuron of this (mth) layer have to be 

adjusted according to the following rule:  
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        (3) 

where w%  represents the corrected weight, Nm-1 is the number 

of neurons in the (m−1)th layer (the last hidden layer 

preceding to the output one) corresponding also to the 

number of inputs of all neurons in the mth layer, Ckm is the 

learning rate (it should always be equal to 1), Yi,m-1 is the 

actual output of the ith neuron of the (m−1)th layer (it is 

intended corrected when has the 
~
 superscript and conjugated 

when has the “bar” superscript), and
( )

*

1

1
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 is 

the error of the kth neuron of the mth (output) layer, which is 

obtained from the global network error taken from the same 

neuron:  
* km km kmD Yδ = −                               (4) 

where Dkm and Ykm are, respectively, the desired and actual 

outputs of the kth neuron of the mth layer. 

For the hidden layers neurons, except the first one, the error 

is calculated using its backpropagation from the following 

layer and then the weights should be adjusted as follows:  
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where the indexes kj stand for the kth neuron of the jth layer, 

whose weights are adjusted, |zkj| is the absolute value of the 

current weighted sum of this neuron, Nj-1 is the number of 

neurons in the (j−1)th layer (this is also the number of inputs 

of all neurons in the jth layer), Ckj is the learning rate (it 

should always be equal to 1), Yi,j-1 is the actual output of the 

ith neuron of the (j−1)th layer (to be intended corrected when 

has the 
~
 superscript and conjugated when has the “bar” 

superscript), δkj is the error of the kth neuron of the jth layer. 

Finally, for the first hidden layer the error is backpropagated 

from the second hidden layer and then the weights should be 

adjusted as follows:  
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where the index k1 stands for the kth neuron of the 1
st
 layer, 

i
x  is the complex conjugate of the ith input component, n is 

the number of network inputs (it is also the number of inputs 

 
Fig. 1: Geometrical interpretation of the continuous MVN activation 

function. 
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Fig. 2: Geometrical interpretation of the MVN learning rule. 



 

 

 

of all the 1
st
 hidden layer neurons), Ck1 is the learning rate, 

and δk1 is the error of the kth neuron of the 1
st
 layer. The 

convergence of the learning process based on the learning 

rules (3)-(6) is proven in [12] and [13] for the MLMVN with 

a single output neuron and with multiple output neurons, 

respectively.  

As mentioned above, the main advantages of the MLMVN 

are its higher functionality comparing to the MLBPN, the 

simplicity of its learning, which is derivative-free and does 

not depend on the choice of a learning rate (it is self-

adaptive), and better performance in terms of 

classification/prediction rate [12-15].  

B. Modification of the MLMVN Learning Algorithm 

Using Complex QR Decomposition 

Despite the very good results of the described learning 

algorithm, it was noticed that convergence usually requires 

too many learning iterations. In order to reduce this time, an 

important modification of the MLMVN learning algorithm 

has been introduced by the authors, which ensures a faster 

convergence. The new approach is applied to the calculation 

of the errors of the output layer neurons. The modified 

learning procedure minimizes the learning error of every 

training epoch by means of the LLS (Linear Least Squares) 

algorithm which uses the complex QR decomposition. This 

modification significantly improves the MLMVN 

performance ensuring much faster convergence of the 

learning process. In order to achieve it we may consider the 

learning process not over the complete output, but trying to 

adapt in the right direction the weighted sum of the last layer 

inputs. To be more specific, we may estimate the desired 

value of the weighted sum by the desired output value. Let us 

consider, for example, the MVN learning rule (2). Let n be 

the number of neuron inputs, D be the desired output, z be 

the current value of the weighted sum. Then the error is the 

following:  

D zδ = −                                              (7) 

 Starting by this new definition of the error, the weights can 

be adjusted according to (2). Let z%  be the adjusted value of 

the weighted sum and 
0 1
, ,...,

n
w w w% % %  be the adjusted weights. 

Let us find z%  (from here let Cr = 1 for simplicity): 
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Thus, after the adjustment of the weights, the weighted 

sum is exactly equal to the desired output. This change of the 

error definition is illustrated in Fig. 3.  

It is possible to demonstrate [16] that, if our learning set 

contain M samples, and δj is the learning error for the 

considered sample, then the following system of linear 

algebraic equations is generated over the field of complex 

numbers, with unknowns 
0 1, ,..., nw w w∆ ∆ ∆ : 
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               (9) 

 

The system (9) is constituted by M equations with n+1 

unknowns. This system is typically overdetermined because 

M >> n+1 for most of the practical problems (as well as for 

most of the benchmarks). As well known (see for example 

[17]), using the LLS algorithm, it is possible to find the 

solution which minimizes the sum of the squared of the 

following terms: 

( )0 1 1
...      1,...,j j

j n n
w x w x w j Mδ − ∆ + ∆ + + ∆ =  

This algorithm can be efficiently implemented, for example, 

by means of the QR decomposition [18].  

The QR decomposition is a classical method for the 

factorization of a complex-valued m×n matrix A, with m ≥ n. 

It consists in the decomposition of a matrix as product of an 

m×m unitary matrix Q and an m×n upper triangular matrix R 

[18]: 

A = QR  

In our case we have to decompose the following M × (n+1) 

complex matrix:  
1 1
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The QR decomposition generates an M × M unitary matrix Q 

and an upper triangular matrix R of the following kind: 

1

0

n+ 
=  
 

R
R  

where Rn+1 is an (n+1) × (n+ 1) upper triangular matrix.  

The QR decomposition of a matrix always exists [18], even 

if the matrix does not have a full rank. To find the QR 

decomposition, the Householder transformation (called also 

Householder reflection) [19] can be used. This brings to the 

final relation: 

 

 

Fig. 3. Geometrical interpretation of the new error definition. 
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from which ∆w  can be easily found, since the matrix R is an 

upper triangular matrix.  

The computational complexity for the QR decomposition 

by Householder technique is ( ) ( )
2 31

1 1
3

M n n
 

Ο + − + 
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[20]. The computational complexity of each step of the 

MLMVN algorithm can be calculated combining the various 

products. xN  is the number of inputs of the network. For 

each of the M examples the following operations are 

repeated (in the most common case of one hidden layer): 

• n(Nx +1)+(n+1) operations for the output calculation;  

• 2 + 2n operations for the backpropagation of the 

error; 

• n[(Nx+1)+(Nx+1)] operations for the hidden layer 

weight adjustment (calculation and adjustment); 

• n(n+1) operations for the output layer weight 

adjustment. 

Then, adding up these terms, the computational complexity 

of the classical MLMVN algorithm can be finally 

determined, resulting of the order: 

( ) ( )( )3 1 4 1
x

M n N M nΟ ⋅ + + + . 

Recalling that, usually, M >> n+1, and Nx and n can 

reasonably be considered of the same order of magnitude, 

the extra complexity introduced by the QR decomposition is 

acceptable (due to the dramatic reduction of the number of 

training epochs, see Table I). If there are multiple output 

neurons in the network, the same procedure has to be 

separately applied to each output neuron. This new approach 

for the error calculation and weights adjustment must be 

used only for the output layer neurons, because in this case 

the exact errors can always be easily calculated. On the 

contrary, since for the hidden layer neurons the exact errors 

are never known and they are obtained using the 

backpropagation technique, the learning procedure described 

in section A must be used instead.   

To summarize, the proposed modified MLMVN learning 

algorithm consists of the following steps: 

1. for each neuron of the output layer, the inputs are 

stored in a complex M×(n+1) matrix A and the output 

errors are stored in a complex M-dimensional vector δδδδ; 

at the end of the learning epoch, the adjustments for the 

weights of the output neurons, ∆wi, i = 0,1, …, n (n is 

the number of neuron inputs) are computed using the 

complex QR decomposition, applied to the 

overdetermined system of linear algebraic equations  

A⋅⋅⋅⋅∆∆∆∆w
T
= δδδδT

; 

2. for the hidden layers neurons, the error is 

backpropagated and the weights are adjusted according 

to (5) for all the hidden layers except the first one, and 

according to (6) for the first hidden layer. The 

backpropagation of the error to each layer, except the 

output one, is done for each learning sample separately. 

The adjustments calculated at every step are kept and 

used in the following construction of the QR system and 

for the correction of the weights of the output neurons. 

The proposed modified learning algorithm gives noteworthy 

advantages in terms of learning speed, that is in terms of 

number of learning epochs required to obtain the desired 

error, while preserving the performance advantages of the 

MLMVN (or even slightly enhancing them) in terms of 

generalization capability. A complete comparison among the 

new version of the multi-valued neural network, the classical 

version, and other traditional NNs for classical and original 

benchmarks, can be found in [16]. In Table I a short extract 

of the comparison is reported.  

 
In Table I it can be seen that the canonical version of 

MLMVN outperforms the classical backpropagation in terms 

of error, but it needs many more thousands of epochs with 

respect to the new QR-modified version, which has the same 

error magnitude of the canonical one. 

III. NEURAL ARCHITECTURE FOR THE PARAMETER 

IDENTIFICATION 

In the previous section the better performance of the 

proposed network with respect to the other inversion 

paradigms (as MLBPN), in term of  both epochs required for 

the training and  number of required neurons, has been 

verified. Now it is used in a double configuration with the 

aim to find an approximate relation between the geometrical 

features of a distributed or complex system and its  lumped 

model in all the cases in which an exact relation cannot be 

easily found. The relation can be expressed as p = f(g), 

where p is the lumped model parameter vector and g is the 

geometrical parameter vector. We assume that in a generic 

distributed device or apparatus, the frequency response in a 

given significant range is dependent on the geometrical 

attributes of the device and that we can measure or, more 

usually, simulate this dependence (for instance via a 

sophisticated FEM simulator or by solving a set of 

differential equations). Then, if H=h(p,ω)=h(f(g),ω), where 

H is the response vector in the frequency domain (or the FFT 

of a time domain response), it can be assumed that the 

geometrical parameters are available and the frequency or 

time domain response can be measured or simulated for that 

set of geometrical parameters over a suitably chosen 

equivalent lumped model.  

In Fig. 4 the general scheme is shown (DMLMVN means 

Double MLMVN). The MLMVN1 neural network is used 

for approximating the relationship between geometrical 

TABLE I.  COMPARISON TABLE FOR MACKEY-GLASS BENCHMARK 

Type of  

network and 

learning 

algorithm 

N. of 

neurons 

in the 

hidden 

layer 

Min. test 

RMSE 

N. of 

training 

epochs 

for  the 

min. test 

RMSE 

Average 

test 

RMSE 

Average 

number 

of 

training 

epochs 

Av. Exec. 

time in 

sec (on a 

PC Dual 

Core 2.20 

GHz) 

MLMVN-

QR 
50 0.0065 35 0.0068 50 12 

MLMVN 50 0.0056 95,381 0.0066 162,18 8640 

MLBPN 50 0.0212 23,800 0.0235 27150 980 

 



 

 

 

parameters and  frequency response; it is trained over the set 

{g, H} during the learning phase, and it generates the 

estimated response H* during the work phase, separating 

magnitude and phase response (in other words, one neuron 

of the output layer is used for the magnitude and another one 

for the phase). Since the desired output is the equivalent 

model, we have to determine, basically, the relationship 

between the lumped parameters p and the geometrical 

parameters g, p = f(g). The problem is that the supervised 

signal for that inversion is unknown, because the lumped 

model must still be validated (i.e. associated to the right 

component values). In order to fill the gap, another MLMVN 

is included in the system (the part MLMVN2), whose aim is 

the inversion of the frequency response p = h
-1

(H). This 

network is trained over a set of data prepared using the 

lumped model of the circuit to be identified, collected 

(simulated) in a significant range of frequencies (the 

frequency range where the circuit operates). Hence the 

outputs of this stage consist of a numerical estimation p* of 

the electric features of the device under analysis, after the 

learning phase performed over the set {H, p}.  

For the second neural network the measurements 

corresponding to the values of the network function in a 

selected set of frequencies are the inputs and the parameter 

values of the lumped circuital model of the device are the 

outputs. Then the task of the second neural network is the 

parameter extraction of the lumped model starting from the 

network function measurements. In order to suitably design 

the architecture of the network, it is necessary to determine a 

priori the solvability degree of our problem. To this end let 

us consider a network function of a lumped circuit expressed 

in the following way: 
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where p=[p1, p2, .....pR]
t
 is the vector of the circuit 

parameters. Starting from a set of measurements  

corresponding to the values of the network function in a 

selected set of frequencies, it is possible to determine the 

coefficients of the network function, for example by means 

of a LSE (Least Squared Error) procedure [21]. At this point 

a nonlinear system expressing these coefficients as functions 

of the unknown circuit parameters can be considered. In 

order to determine the solvability degree of this system it is 

sufficient to evaluate the rank of the Jacobian matrix B 

associated to the system, where each column is related to a 

specific circuit parameter: 
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(12) 

 

If rank B is equal to the number of unknown parameters R, 

their values can be uniquely determined, if it is less than R, a 

locally unique solution can be determined only if R – rank B 

parameters are fixed a priori.  

This kind of approach is the same followed in the 

parametric fault diagnosis problems of analog circuits, where 

rank B is named testability [22-24]. Then it is possible to 

exploit all the theoretical results obtained in this field. In 

particular, in fault diagnosis field, each set of linearly 

dependent columns of B locates an ambiguity group 

constituted by the circuit parameters corresponding to these 

columns [23]. An ambiguity group is, essentially, a group of 

parameters where it is not possible to uniquely identify the 

value of each of them starting from the measurement data. 

The knowledge of the ambiguity groups allows us to choose 

the set of parameters to consider as unknowns, named 

testable group. As demonstrated in [25], both testability 

value and ambiguity groups do not depend on component 

values, then they can be determined by assigning arbitrary 

values to the parameters.  

In our case the lumped model of the device is chosen a 

priori, then the network function is determinable in symbolic 

form with respect to the unknown parameter values. No 

system has to be solved, only the matrix in (12) has to be 

considered in order to determine its rank and the sets of 

linearly dependent columns by using arbitrary values for the 

parameters. The rank gives us the solvability degree of the 

problem, that is it indicates how many parameters must be 

fixed a priori, the sets of linearly dependent columns give us 

the ambiguity groups, that allow us to determine the testable 

group, that is the parameters to consider as unknowns in 

order to obtain a unique solution. Furthermore, being the 

solvability degree (testability) linked with the selected 

network function, this information can be used to find the 

network function of the model giving the maximum 

solvability. Once the network function and the unknown 

parameters have been chosen, the unknown parameters 

become the outputs of the second neural network. The 

measurements are carried out and the learning process is 

performed. If the learning process converges, the validation 

of the lumped model is obtained and the circuit parameter 

extraction is achieved. The parameter extraction procedure 

can be summarised as follows:   

1. establish the lumped model equivalent circuit of the 

device; 

 
Fig. 4. General scheme of the neural system DMLMVN. 



 

 

 

2. calculate the solvability degree (testability) and 

evaluate which parameters can be assumed as 

unknowns;   

3. generate an adequate number of samples to be used in 

the training phase; 

4. train the NN2 part of the network illustrated in Fig. 4;  

5. train the overall network illustrated in Fig. 4; 

6. extract the parameters, as the output of the NN2 part of 

the whole system. 

It is worth pointing out that the solvability degree 

evaluation and ambiguity group determination can be very 

efficiently performed by means of symbolic techniques [24]. 

The symbolic algorithms used for this task [24] have low 

computational complexity and do not significantly increase 

the computational cost of the whole parameter extraction 

system. 

IV. EXAMPLES 

In this section two examples are used to illustrate the 

method for extracting the parameters of a lumped model 

from a set of measurements or simulations. It should be 

underlined that the data can come from measurements, 

simulations, or also from analytical formulas or equations 

that are approximated by the overall neural system.  

A. Lumped model of a winding inductor 

As a first example, let us consider the identification of the 

stray capacitance Cs of a winding inductor [26]. It is known 

that a winding inductor is a system that can be described with 

a lumped model based on the geometrical characteristics of 

the coil and of the conductors. In particular, inductor 

windings have a distributed parasitic capacitance, that can be 

modeled by a lumped capacitance connected between the 

terminals of the winding, as shown in Fig. 5, together with a 

cross-sectional view of a winding. 

 
The evaluated function is the impedance of the inductor. A 

set of examples is generated with SPICE simulator,  

constituted of 250 different combinations of the three 

geometric parameters given by the diameter of the coil turn 

dt, the inner diameter (Dc) and the outer diameter (Do) of the 

conductor wire. The dielectric constant of the coating 

material used for the nonimpregnated coil is εr = 3.5. For 

every combination of these parameters the impedance is 

sampled with 200 frequency points, in the range 1-100 MHz, 

which includes the resonance frequency of the inductor. As a 

result, the input pattern is constituted of a matrix with 250 

rows and 3 columns and the output pattern is a matrix of 250 

rows and 400 columns (magnitude and phase of the 

frequency response). In this case, the learning process 

successfully recognizes the parameter Cs, once   its 

distinguishability has been verified through the 

determination of testability and ambiguity groups. The fixed 

parameter L is set to the design value L= 75 µH, the parasitic 

resistance Rac is calculated via analytical formulas [26]. 

Table II shows a comparison among some values of stray 

capacitance extracted by the network and analytically 

evaluated for a given configuration. 

TABLE II.  STRAY CAPACITANCE VALUES 

Capacitance  

true value, nF 

Capacitance value 

from NN2, nF 
Error 

N° of 

epochs 

483.98 481.39 0. 54% 16 

695.76 700.96 0.747% 16 

472.27 461.84 2.21% 16 

The final error is kept small in every example, as it is 

evident, and it is calculated  comparing the output of the 

neural system with the one coming from analytical 

expressions. 

B. Lumped model of a microwave BP filter  

As second example, let us consider the lumped parameter 

model of a two-post microwave filter, like that represented in 

Fig. 6. The related equivalent circuit is shown in Fig. 7. The 

filter is a bandpass with a narrow band. In particular, it has a 

center frequency in the GHz range and a bandwidth in the 

MHz range. Furthermore, as outlined in [27], a very small 

variation in the geometric dimensions of the filter causes a 

consistent variation in the position of the center frequency. 

For this reason, in order to obtain a sufficient definition of 

the filter response, it is necessary to sample it with a very 

small frequency step. To this purpose, a uniform sampling is 

used, with 1500 samples over a 12.5 to 13.5 GHz band.  

The set of examples is composed of 1727 different 

geometric combinations on this interval corresponding to 

1727 different filter behaviours. A hybrid finite-element–

modal-expansion (FEM-ME) technique is used for the 

computation of the Generalized Scattering Matrix (GSM) of 

the device [28]. The geometry of the filter is completely 

represented by the three geometrical parameters indicated in 

Fig. 6: x, r and d. The equivalent lumped model is derived 

from the filter response, which is well represented by a 4
th

 

order transfer function. The determination of testability and 

ambiguity groups of the model is in this case more 

complicated; the lumped model filter, in fact, has a testability 

 
Fig. 5: Section representation of the winding inductor and electric 

scheme. 

 

Fig. 6: Geometry of the two-post waveguide filter. 



 

 

 

value equal to 6, 272 ambiguity groups and 1306 testable 

groups. The model identification has been made by choosing 

a set of unknown parameters constituted by the components 

R1, R6, R9, C1, C2, C3, and training the NN2 over a 

combination of 4000 variations of these parameters. After 

the completion of the learning phase of the inversion module 

NN2, the overall network is learned over the first set of 

samples in order to give as output the electrical lumped 

parameters R1, R6, R9, C1, C2, C3. In Fig. 8, a single output is 

reported in the frequency domain, relating to the geometrical 

parameter set: {x, r, d} = {8.525, 2.743, 18.11} mm. The 

training is carried out in about 50 epochs for the module 2 

and 35 for the module 1 (and final result) and it gives the 

following six parameter values: R1=208.31 Ω, R6=0.98706 

Ω, R9=0.21416 Ω, C1=0.9013 pF, C2=1.143 pF, C3=0.9879 

pF. 

 
In this second example the comparison has been made  

directly over the output frequency response (amplitude 

response), because the relationship between geometrical 

parameters and frequency response is calculated via FEM 

analysis and no analytical formula is directly available, 

differently from the previous case. The error over the central 

frequency is 2.92%, that over the amplitude is  2.67%. 

V. CONCLUSION 

A neural system, based on a pair of complex-valued neural 

networks, has been presented in this paper. It performs the 

identification of a lumped model associated to an electrical 

device by extracting the relations between the geometrical 

features of the device and the electrical parameters of the 

lumped model, using also the frequency response. The 

accuracy level of the achieved results for some significant 

cases proposes it as a valid tool for the modelization of 

distributed devices.  Future work will be devoted to a more 

accurate a-priori evaluation of the cumulated error.  
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