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On-Line Gaussian Mixture Density Estimator for Adaptive

Minimum Bit-Error-Rate Beamforming Receivers

Sheng Chen, Xia Hong and Chris J. Harris

Abstract— We develop an on-line Gaussian mixture density
estimator (OGMDE) in the complex-valued domain to facil-
itate adaptive minimum bit-error-rate (MBER) beamforming
receiver for multiple antenna based space-division multiple-
access systems. Specifically, the novel OGMDE is proposed
to adaptively model the probability density function of the
beamformer’s output by tracking the incoming data sample by
sample. With the aid of the proposed OGMDE, our adaptive
beamformer is capable of updating the beamformer’s weights
sample by sample to directly minimize the achievable bit error
rate (BER). We show that this OGMDE based MBER beam-
former outperforms the existing on-line MBER beamformer,
known as the least BER beamformer, in terms of both the
convergence speed and the achievable BER.

I. INTRODUCTION

The ever-increasing demand for mobile communication

capacity has motivated the development of multi-antenna

based space-division multiple access (SDMA) systems to

further enhance the achievable system capacity [1]–[5].

Adaptive beamforming is capable of separating users in the

spatial domain and provides a practical means of supporting

multiusers in SDMA systems. Traditionally, the beamform-

ing process is based on the minimum mean square error

(MMSE) criterion, and adaptive MMSE beamforming can be

implemented using the well-known least mean square (LMS)

algorithm which updates the beamformer’s weights sample

by sample. However, for a communication system, it is the bit

error rate (BER) that really matters, and adaptive minimum

BER (MBER) beamforming design was proposed in [4],

[5], which significantly outperforms the adaptive MMSE

beamformer, in terms of achievable system capacity and

BER. Adaptively estimating the probability density function

(PDF) of the beamformer’s output with the new coming data

sample by sample is the key to implementing an on-line

MBER beamformer. The least BER (LBER) algorithm [4],

[5] adopts a stochastic one-sample or single Gaussian kernel

estimate for the PDF of the beamformer’s output to realize

sample-by-sample adaptation of the beamformer’s weights,

in a manner similar to the LMS algorithm which uses a one

sample estimate for the mean square error (MSE) [6].

Despite of its simplicity and its superior performance over

the adaptive MMSE beamformer, the LBER beamformer [4],

[5] is sensitive to the noise in the received signal sample,
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owing to its stochastic nature of one-sample PDF estimate.

In the literature, there exist large amount of works [7]–[13]

using the Gaussian mixture model to estimate PDF in the

real-valued (RV) domain. These PDF estimators based on

a mixture of Gaussians are batch learning algorithms and

they are unsuitable for on-line applications. In this paper, we

propose a new on-line Gaussian mixture density estimator

(OGMDE) in the complex-valued (CV) domain to update the

PDF estimate of the beamformer’s output sample by sample.

Specifically, a new Gaussian kernel is formed for every new

data and it is then merged with the “nearest” existing Gaus-

sian kernel in the OGMDE. With the aid of this OGMDE

for on-line estimation of the beamformer output’s PDF, the

beamformer’s weights can be adapted sample by sample

to minimise the beamformer receiver’s BER in a manner

similar to the LBER beamformer [4], [5]. This new adaptive

MBER beamformer is referred to as the OGMDE aided

adaptive MBER (OGMDE-AMBER) beamformer. Because

this OGMDE-AMBER beamformer relies on a more accurate

on-line PDF estimate, unlike the one-sample PDF estimator

of the LBER beamformer, it outperforms the latter in terms

of both the convergence speed and the achievable BER.

Simulation results obtained demonstrate that the OGMDE-

AMBER beamformer significantly improve the receiver’s

performance, compared to the existing LBER beamformer.

The remaining of this paper is organised as follows.

Section II first introduces the multi-antenna based SDMA

system and then reviews the existing adaptive beamforming

receivers, including the LMS based MMSE beamformer and

the LBER based MBER beamformer. Section III derives the

new OGMDE, followed by the proposed OGMDE-AMBER

beamforming algorithm. Simulation results are presented in

Section IV to compare the performance of the OGMDE-

AMBER beamformer with the existing LBER beamformer,

while our conclusions are offered in Section V.

II. EXISTING ADAPTIVE BEAMFORMING RECEIVERS

A. System Model

The system supports M single-antenna users, and each

user transmits a quadrature phase shift keying (QPSK) signal

on the same carrier frequency of ωc = 2πfc. The baseband

CV signal of user m, sampled at the symbol rate, is given

by dm(k) = Ambm(k), where 1 ≤ m ≤ M , the transmitted

QPSK symbol bm(k) takes the value from the symbol set

{±1± j} and Am is the CV channel coefficient for user m,

while k denotes the sample index. The channel is assumed

to be narrow-band and does not induce intersymbol inter-

ference. In order to separate users in the spatial or angular



domain, the base station receiver is equipped with a linear

antenna array consisting of L uniformly spaced elements.

The symbol-rate received signal samples at the output of the

L-element antenna array can be expressed as

xl(k) =
M∑

m=1

Ambm(k)ejωctl(θm) + nl(k)

=x̄l(k) + nl(k), 1 ≤ l ≤ L, (1)

where tl(θm) is the relative time delay at array element l
for user m with θm being the direction of arrival for user m
and nl(k) is a CV additive white Gaussian noise (AWGN)

with E[|nl(k)|2] = 2σ2
n. Without loss of generality, user 1 is

the desired user, and the rest of the users are the interfering

users. Since the received signal power for user m is 2|Am|2,

the system’s desired signal to noise ratio (SNR) is defined by

SNR = |A1|2/σ2
n, and the desired signal to interference ratio

(SIR) with respect to the interferer m is given by SIRm =
|A1|2/|Am|2 for 2 ≤ m ≤ M . The received signal vector

x(k) =
[
x1(k) x2(k) · · ·xL(k)

]T
is given by

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (2)

where the noise vector n(k) =
[
n1(k) n2(k) · · ·nL(k)

]T
,

the system matrix P =
[
A1s1 A2s2 · · ·AMsM

]
with

the steering vector for user m given by sm =[
ejωct1(θm) ejωct2(θm) · · · ejωctL(θm)

]T
, and the transmitted

QPSK symbol vector b(k) =
[
b1(k) b2(k) · · · bM (k)

]T
.

A beamforming receiver is employed to recover the desired

user 1 data, and the beamformer’s output is given by

y(k) =wHx(k) = wHx̄(k) + wHn(k) = ȳ(k) + e(k)

=c1b1(k) +

M∑

m=2

cmbm(k) + e(k), (3)

where w =
[
w1 w2 · · ·wL

]T
is the CV beamformer weight

vector, and e(k) is Gaussian distributed having a zero mean

and a variance of E[|e(k)|2] = 2σ2
nwHw, while

wHP =
[
c1 c2 · · · cM

]
. (4)

Provided that c1 is real and positive, the optimal decision

rule for detecting b1(k) is given by

b̂1(k) =sgn
(
yR(k)

)
+ jsgn

(
yI(k)

)
, (5)

where yR(k) = ℜ[y(k)] and yI(k) = ℑ[y(k)] are the real

and imaginary parts of y(k). Noting c1 = wHA1s1 = wHp1,

where p1 is the first column of P , we can see that the

steering vector s1 and the channel coefficient A1 of the

desired user are required at the receiver. To ensure a real and

positive c1, the following rotation operation can be applied

to the weight vector

wnew =
cold
1∣∣cold
1

∣∣w
old. (6)

This does not alter the BER, as the BER is invariant to a

positive scaling of w [14]. Given a block of training data

{b1(k),x(k)}K
k=1, an estimate of p1 is readily given by

p̂1 =
1

K

K∑

k=1

x(k)

b1(k)
. (7)

Alternatively, the moving average can be used to track p1

p̃1(k + 1) =(1 − µp)p̃1(k) + µp

x(k)

b1(k)
, (8)

where 0 < µp < 1 is the step size of the moving average.

B. Adaptive MMSE Beamforming

Classically, the beamformer’s weight vector is determined

by minimising the MSE criterion of E[|b1(k)−y(k)|2], which

results in the following MMSE solution

wmmse =
(
PP H + σ2

nIL

)−1
p1, (9)

where IL denotes the L×L identity matrix. Adaptive MMSE

beamforming can be realised on a sample-by-sample basis

using the LMS algorithm, yielding the beamforming weight

updating equations

w̃lms(k + 1) =w̃lms(k) + µlms

(
b1(k) − y(k)

)∗
x(k), (10)

c1 =w̃H
lms(k + 1)p1, (11)

w̃lms(k + 1) =
c1

|c1|
w̃lms(k + 1), (12)

where µlms is the step-size of the LMS algorithm and ( )∗

denotes the conjugate operator.

C. Existing Adaptive MBER Beamforming

Denote the Nb = 4M number of legitimate sequences of

b(k) as b(i), 1 ≤ i ≤ Nb. Further denote the first element of

b(i), corresponding to the desired user, as b
(i)
1 = b

(i)
1R

+ jb
(i)
1I

.

The noise-free part of the received signal vector x̄(k) takes

the value from the CV vector signal set defined by X
△
={

x̄(i) = Pb(i), 1 ≤ i ≤ Nb

}
. The set X can be partitioned

into the four subsets, depending on the value of b1(k) as

X±,±
△
=

{
x̄(i) ∈ X : b1(k) = ±1 ± j

}
. Similarly the noise-

free part of the beamformer’s output ȳ(k) takes the value

from the CV scalar signal set

Y
△
=

{
ȳ(i) = wHx̄(i), 1 ≤ i ≤ Nb

}
, (13)

which can be divided into the four conditional subsets

Y±,±
△
=

{
ȳ(i) ∈ Y : b1(k) = ±1 ± j

}
, (14)

each having the size of Nsb = Nb/4. The four subsets

defined in (14) are symmetrically distributed in the CV plane

with respect to the real axis and/or imaginary axis, and we

can readily obtain the following relationships [15]

Y−,+ =Y+,+ − 2c1, (15)

Y+,− =Y+,+ − 2c1j, (16)

Y−,− =Y+,+ − 2c1(1 + j). (17)



The conditional PDF of y(k) given b1(k) = +1 + j is

p(y|+1+ j) =
1

Nsb2πσ2
nwHw

∑

ȳ(i)∈Y+,+

e
−

∣∣y − ȳ(i)
∣∣2

2σ2
nwHw . (18)

The two marginal conditional PDFs are then given by

p(yR| + 1 + j) =
1

Nsb

√
2πσ2

nwHw

∑

ȳ(i)∈Y+,+

e
−

(
yR − ȳ

(i)
R

)2

2σ2
nwHw ,

(19)

p(yI | + 1 + j) =
1

Nsb

√
2πσ2

nwHw

∑

ȳ(i)∈Y+,+

e
−

(
yI − ȳ

(i)
I

)2

2σ2
nwHw .

(20)

Define b1(k) = b1R
(k) + jb1I

(k), b̂1(k) = b̂1R
(k) + ĵb1I

(k),
and

PER
(w) =Prob

{
b̂1R

(k) 6= b1R
(k)

}
, (21)

PEI
(w) =Prob

{
b̂1I

(k) 6= b1I
(k)

}
. (22)

It is straightforward to verify that

PER
(w) =

1

Nsb

∑

ȳ(i)∈Y+,+

Q
(
g
(i)
R (w)

)
, (23)

PEI
(w) =

1

Nsb

∑

ȳ(i)∈Y+,+

Q
(
g
(i)
I (w)

)
, (24)

where

Q(u) =
1√
2π

∫ ∞

u

e
−

v2

2 dv, (25)

g
(i)
R (w) =

sgn
(
b
(i)
1R

)
ȳ
(i)
R

σn

√
wHw

=
sgn

(
b
(i)
1R

)
ℜ

[
wHx̄(i)

]

σn

√
wHw

, (26)

g
(i)
I (w) =

sgn
(
b
(i)
1I

)
ȳ
(i)
I

σn

√
wHw

=
sgn

(
b
(i)
1I

)
ℑ

[
wHx̄(i)

]

σn

√
wHw

, (27)

Then the BER of the beamformer with w is given by

PE(w) =
1

2

(
PER

(w) + PEI
(w)

)
. (28)

The BER can also be calculated based on Y+,−, Y−,+ or

Y−,−. The MBER solution is determined by the optimisation

wmber = arg min
w

PE(w). (29)

which can be solved by a gradient-based algorithm, such as

the simplified conjugate gradient algorithm [5], [14]–[16].

To adaptively implement the MMSE solution, the unknown

second-order statistics or MSE can be estimated based on

a block of training data. Furthermore, by considering a

single-sample “estimate” of the MSE, the stochastic adaptive

algorithm known as the LMS algorithm is derived in (10)

to (12). A similar adaptive implementation strategy can be

adopted for adaptive MBER beamforming. The PDF p(y) of

y(k) can be estimated using the Parzen window estimate

[17]–[19] based on a block of training data. This leads

to an estimated BER for the beamformer. Minimising this

estimated BER based on a gradient optimisation yields an

approximated MBER solution [4], [5]. In order to derive

a sample-by-sample adaptive algorithm, the works [4], [5]

further consider a single-sample “estimate” of p(y)

p̃(y, k) =
1

2πρ2
e
−
|y − y(k)|2

2ρ2
, (30)

where the parameter ρ is known as the kernel width. The

corresponding one-sample BER “estimate” is given by

P̃E(w, k) =
1

2

(
P̃ER

(w, k) + P̃EI
(w, k)

)

=
1

2

(
Q

(
g̃R(w, k)

)
+ Q

(
g̃I(w, k)

))
(31)

with

g̃R(w, k) =
sgn

(
b1R

(k)
)
yR(k)

ρ
, (32)

g̃I(w, k) =
sgn

(
b1I

(k)
)
yI(k)

ρ
. (33)

The “instantaneous” gradient of P̃E(w, k) is given by

∇P̃E(w, k) =
1

2

(
∇P̃ER

(w, k) + ∇P̃EI
(w, k)

)
(34)

with

∇P̃ER
(w, k) = − 1

2ρ
√

2π
e
−

y2
R(k)

2ρ2
sgn

(
b1R

(k)
)
x(k),

(35)

∇P̃EI
(w, k) =

1

2ρ
√

2π
e
−

y2
I (k)

2ρ2
sgn

(
b1I

(k)
)
jx(k). (36)

This leads to the stochastic gradient adaptive algorithm

referred to as the LBER algorithm [4], [5]

w̃lber(k + 1) =w̃lber(k) − µlber∇P̃E

(
w̃lber(k), k

)
, (37)

c1 =w̃H
lber(k + 1)p1, (38)

w̃lber(k + 1) =
c1

|c1|
w̃lber(k + 1), (39)

where µlber is the step size of the LBER algorithm.

III. THE OGMDE-AMBER BEAMFORMING RECEIVER

We only need to estimate the conditional PDF p(y|+1+ j)
of (18), which is associated with the conditional subset Y+,+

or the first quadrant of the CV plane. Noting the relationships

of (15) to (17), the following shifting operation

ys(k) =y(k) + awHp1 = wH
(
x(k) + ap1

)
= wHz(k),

(40)

“shifts” the beamformer output y(k) to the first quadrant of

the CV plane, where c1 = wHp1 is real and positive, while

a =
(
1 − sgn

(
b1R

(k)
))

+
(
1 − sgn

(
b1I

(k)
))

j. (41)



A. PDF Estimation Using OGMDE

We consider the PDF estimator for p̂(y|+ 1 + j) based on

the mixture of N Gaussians given by

p̂(N)
(
ys;λN ,ηN ,ρN

)
=

N∑

i=1

λiG
(
ys; ηi, ρi

)
, (42)

s.t. λi > 0, 1 ≤ i ≤ N, and λT
N1N = 1, (43)

where λi, ηi and ρi are the RV mixing weight, the CV

mean and the RV kernel width of the ith Gaussian kernel,

respectively, λN =
[
λ1 λ2 · · ·λN

]T
, ηN =

[
η1 η2 · · · ηN

]T
,

ρN =
[
ρ1 ρ2 · · · ρN

]T
, 1N is the N -dimensional vector

whose elements are all equal to one, and

G
(
ys; ηi, ρi

)
=

1

2πρ2
i

e
−
|ys − ηi|2

2ρ2
i . (44)

The two marginal PDFs of (44) are understood to be

G
(
ysR

; ηiR
, ρi

)
=

1√
2πρi

e
−

(
ysR

− ηiR

)2

2ρ2
i , (45)

G
(
ysI

; ηiI
, ρi

)
=

1√
2πρi

e
−

(
ysI

− ηiI

)2

2ρ2
i , (46)

where ηi = ηiR
+ jηiI

. The PDF estimator (42) with a small

number of Gaussian mixtures N is capable of accurately

estimating an arbitrary and unknown PDF p(y|+ 1 + j), and

N = 4 to 8 is sufficient for our application. At sample time

k = 0, the initial estimate for p(y| + 1 + j) is given by

p̂(N)
(
ys;λN (0),ηN (0),ρN (0)

)
=

N∑

i=1

1

N
G

(
ys; ηi(0), ρ0

)
,

(47)

where for 1 ≤ i ≤ N , λi(0) = 1
N

and ρi(0) = ρ0 with ρ0 a

predetermined kernel width, while ηi(0) are randomly drawn

points from the first quadrant of the CV plane.

At sample time k, the new data point ys(k) is received,

and we need to update
{
λN ,ηN ,ρN

}
in the PDF estimate

p̂(N)
(
ys;λN (k − 1),ηN (k − 1),ρN (k − 1)

)
=

N∑

i=1

λi(k − 1)G
(
ys; ηi(k − 1), ρi(k − 1)

)
(48)

accordingly, while keeping the same number of mixtures

N as well as meeting the constraint (43). A nature way

is to place a Gaussian kernel on ys(k) and to merge this

new kernel with its nearest existing mixture component

G
(
ys; ηi

′ (k − 1), ρi
′ (k − 1)

)
, where

i
′

= arg min
1≤i≤N

∣∣ys(k) − ηi(k − 1)
∣∣. (49)

This can be realised in the following two steps.

1) A temporary estimate with (N + 1) Gaussian mixtures is

first created by adding the newly created (N +1)th Gaussian

kernel based on ys(k) to the estimate (48) according to

p̂(N+1)
(
ys;λN+1(k),ηN+1(k),ρN+1(k)

)
=

N

N + 1

N∑

i=1

λi(k − 1)G
(
ys; ηi(k − 1), ρi(k − 1)

)

+
1

N + 1
G

(
ys; ys(k), ρ0

)
. (50)

Clearly, we set λN+1(k) =
1

N + 1
and

λi(k) =
Nλi(k − 1)

N + 1
, 1 ≤ i ≤ N, (51)

to satisfy the constraints λi(k) > 0 for 1 ≤ i ≤ N + 1
and λT

N+1(k)1N+1 = 1, while using ηN+1(k) = ys(k),
ρN+1(k) = ρ0 as well as for 1 ≤ i ≤ N

ηi(k) =ηi(k − 1), (52)

ρi(k) =ρi(k − 1). (53)

2) Merge the i
′

th, where i
′

is determined in (49), and (N +
1)th mixtures in the temporary estimate (50) into the single

new i
′

th mixture, so that

λi
′ (k)G

(
ys; ηi

′ (k), ρi
′ (k)

)
≈

Nλi
′ (k − 1)

N + 1
G

(
ys; ηi

′ (k − 1), ρi
′ (k − 1)

)

+
1

N + 1
G

(
ys; ys(k), ρ0

)
. (54)

Thus, the new i
′

th weight λi
′ (k) is given by

λi
′ (k) =

Nλi
′ (k − 1) + 1

N + 1
, (55)

while the new i
′

th mean and kernel width, ηi
′ (k) and ρi

′ (k),
are updated by matching the mean and kernel width of the

two mixtures with the new single Gaussian, leading to

ηi
′ (k) =

Nλi
′ (k − 1)ηi

′ (k − 1) + ys(k)

Nλi
′ (k − 1) + 1

, (56)

2ρ2
i
′ (k) =

Nλi
′ (k − 1)

(
2ρ2

i
′ (k − 1) +

∣∣ηi
′ (k − 1)

∣∣2)

Nλi
′ (k − 1) + 1

+
2ρ2

0 + |ys(k)|2
Nλi

′ (k − 1) + 1
−

∣∣ηi
′ (k)

∣∣2. (57)

The derivations of (56) and (57) are given in Appendix A.

The PDF of the decision variable ys(k) at sample time k
can thus be approximated by

p̂
(
ys, k

)
=p̂(N)

(
ys;λN (k),ηN (k),ρN (k)

)

=

N∑

i=1

λi(k)G (ys; ηi(k), ρi(k)) , (58)

in which the i
′

th weight, mean and kernel width are given

in (55), (56) and (57), respectively, while the ith weights,

means and kernel widths, where 1 ≤ i ≤ N and i 6= i
′

,

are given in (51), (52) and (53), respectively. Note that only

ηi
′ (k) and ρ2

i
′ (k) contain the new information provided by

ys(k) and, therefore only ηi
′ (k) and ρ2

i
′ (k) depend on the

current beamformer wight vector w.



B. OGMDE-AMBER Beamforming

Given the PDF estimate (58) provided by the OGMDE,

we have the corresponding approximate BER expression

P̂E(w, k) =
1

2

(
P̂ER

(w, k) + P̂EI
(w, k)

)
. (59)

We now explicitly derive P̂ER
(w, k) as follows

P̂ER
(w, k) =

∫ 0

−∞

N∑

i=1

λi(k)G (ysR
; ηiR

(k), ρi(k)) dysR

=

N∑

i=1,i 6=i
′

λi(k)

∫ 0

−∞

G (ysR
; ηiR

(k), ρi(k)) dysR
+B̂ER

(w, k),

(60)

where

B̂ER
(w, k)=

λi
′ (k)√

2πρi
′ (k)

∫ 0

−∞

e
−

(
ysR

− ηi
′

R
(k)

)2

2ρ2
i
′ (k)

dysR

=λi
′ (k)Q

(
gi

′

R
(w, k)

)
(61)

with

gi
′

R
(w, k) =

ηi
′

R
(k)

ρi
′ (k)

. (62)

Similarly,

P̂EI
(w, k) =

N∑

i=1,i 6=i
′

λi(k)

∫ 0

−∞

G (ysI
; ηiI

(k), ρi(k)) dysI

+ B̂EI
(w, k), (63)

where

B̂EI
(w, k) =λi

′ (k)Q
(
gi

′

I
(w, k)

)
(64)

with

gi
′

I
(w, k) =

ηi
′

I
(k)

ρi
′ (k)

. (65)

The “instantaneous” gradient of P̂E(w, k) is given by

∇P̂E(w, k) =
1

2

(
∇B̂ER

(w, k) + ∇B̂EI
(w, k)

)
(66)

in which

∇B̂ER
(w, k) = − λi

′ (k)√
2π

e
−

η2
i
′

R
(k)

2ρ2
i
′ (k) ∂gi

′

R
(w, k)

∂w
, (67)

∇B̂EI
(w, k) = − λi

′ (k)√
2π

e
−

η2
i
′

I
(k)

2ρ2
i
′ (k) ∂gi

′

I
(w, k)

∂w
. (68)

After some manipulations as shown in Appendix B, we have

∂g
i
′

R

(w, k)

∂w
=

2ρ2
i
′ (k) − η

i
′

R

(k)
(
y∗

s (k) − η∗
i
′ (k)

)

4ρ3
i
′ (k)

(
Nλi

′ (k − 1) + 1
) z(k),

(69)

∂g
i
′

I

(w, k)

∂w
=
−2ρ2

i
′ (k)j − η

i
′

I

(k)
(
y∗

s (k) − η∗
i
′ (k)

)

4ρ3
i
′ (k)

(
Nλi

′ (k − 1) + 1
) z(k).

(70)

This leads to the OGMDE-AMBER algorithm

ŵamber(k + 1) =ŵamber(k) − µamber∇P̂E

(
ŵamber(k), k

)
,

(71)

c1 =ŵH
amber(k + 1)p1, (72)

ŵamber(k + 1) =
c1

|c1|
ŵamber(k + 1), (73)

where µamber is the step size of the OGMDE-AMBER

algorithm.

IV. SIMULATION RESULTS

The simulated system consisted of M = 4 users and the

receiver linear uniform antenna array had L = 3 elements.

The array element spacing was γ/2 with γ being the wave-

length. Fig. 1 illustrates the locations of the desired user

and three interfering users graphically. The simulated channel

conditions were Am = bm + j 0.0 for 1 ≤ m ≤ 4, with bm >
0 so chosen to provided the required received signal powers.

Specifically, the desired user 1 as well as the interfering

users 2 and 3 had the equal power, but the interfering

user 4 had 6 dB more power than the user 1. Therefore,

SIR2 = SIR3 = 0 dB, while SIR4 = −6 dB. Fig. 2 compares

the BER of the MMSE beamformer with that of the MBER

beamformer, where the superior performance of the MBER

beamforming technique is evident. The MMSE solution was

calculated according to the closed-form solution of (9), while

the MBER solution was obtained numerically by solving

the optimisation (29) using the simplified conjugate gradient

algorithm. The performance difference between the MMSE

solution and the MBER solution can be clearly explained

by examining their corresponding marginal conditional PDFs

p(yR|+ 1 + j) depicted in Fig. 3, given SNR = 17 dB. Note

that owing to the symmetric distribution of the conditional

PDF p(y| + 1 + j), its two marginal conditional PDFs,

p(yR| + 1 + j) and p(yI | + 1 + j), are identical. Therefore,

we only need to inspect one of them. From Fig. 3, it can be

seen that the marginal conditional PDF p(yR|+1+ j) of the

MMSE solution clearly extends into the area of yR > 0, and

γ /2 γ /2

15
o

45
o30

o

70
o

interferer
user 3

desired
user 1

interferer
user 4

interferer
user 2

Fig. 1. Angular locations of the four users with respect to the three-element
linear array having γ/2 element spacing, where γ is the wavelength.
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this explains its inferior BER performance shown in Fig. 2,

compared with the MBER solution.

The performance of the stochastic LBER algorithm is well

known to depend on the initial weight vector w̃lber(0) [4],

[5], [14], [15]. Clearly, the performance of the OGMDE-

AMBER algorithm also depends on the initial weight vector

w̃amber(0), as it also relies on a stochastic gradient based

sample-by-sample updating. We first set the initial weight

vector to the MMSE solution and examined the convergence

performance of the three stochastic gradient algorithms, the

LMS, the LBER and the OGMDE-AMBER, in Fig. 4, where

SNR = 17 dB and the learning curve of each adaptive

algorithm was averaged over 100 runs. An appropriate step

size for the LMS algorithm was found to be µlms = 0.003,

while the step size µlber = 0.03 and the kernel variance

ρ2 = 3σ2
n ≈ 0.06 were found to be appropriate for the LBER

algorithm. For the OGMDE-AMBER algorithm, we chose
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Fig. 3. Marginal conditional PDFs p(yR|+1+ j) of the MMSE and MBER
beamformers for the 4-user 3-element linear antenna array system shown in
Fig. 1, where SNR = 17 dB, SIR2 = SIR3 = 0 dB and SIR4 = −6 dB.
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Fig. 4. Learning curves of the three stochastic gradient adaptive algorithms,
the LMS, the LBER and the OGMDE-AMBER, averaged over 100 runs for
the 4-user 3-element linear antenna array system shown in Fig. 1, where
SNR = 17 dB, SIR2 = SIR3 = 0 dB and SIR4 = −6 dB. The initial
weight vector was set to the MMSE solution.

N = 4 and ρ2
0 = 2σ2

n ≈ 0.04, while starting with a large

step size of µamber = 0.4 and reducing it to µamber = 0.2 at

sample number k ≈ 300. As expected, the BER of the LMS

algorithm could not be lower than the MMSE solution. Fig. 4

confirms that the OGMDE-AMBER algorithm achieved a

faster convergence rate and attained a lower steady-state

BER, compared with the LBER algorithm.

We next set the initial beamformer’s weight vector to

[0.0 + 0.1j 0.1 + 0.0j 0.1 + 0.0j]T and examined the learning

curves of the three stochastic gradient adaptive algorithms in

Fig. 5, where SNR = 17 dB and the results were averaged

over 100 runs. Again, we set the step size of the LMS

algorithm to µlms = 0.003, while we used the step size

µlber = 0.03 and the kernel variance ρ2 = 3σ2
n ≈ 0.06 for

the LBER algorithm. For the OGMDE-AMBER algorithm,

we used N = 5 Gaussian components and set ρ2
0 = 2σ2

n ≈
0.04. We started with the step size of µamber = 0.4 and

reduced it to µamber = 0.2 at sample number k ≈ 200.
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Fig. 5. Learning curves of the three stochastic gradient adaptive algorithms,
the LMS, the LBER and the OGMDE-AMBER, averaged over 100 runs for
the 4-user 3-element linear antenna array system shown in Fig. 1, where
SNR = 17 dB, SIR2 = SIR3 = 0 dB and SIR4 = −6 dB. The initial
weight vector was set to [0.0 + 0.1j 0.1 + 0.0j 0.1 + 0.0j]T.



The results shown in Fig. 5 again demonstrate the superior

performance of the OGMDE-AMBER algorithm over the

LBER algorithm, in terms of both convergence rate and

steady-state BER.

V. CONCLUSIONS

In this contribution, we have developed an on-line Gaus-

sian mixture density estimator in the complex-valued domain,

which adaptively model the probability density function of

the beamformer output by tracking the incoming data sample

by sample. With the aid of this novel OGMDE, our proposed

stochastic-gradient based adaptive minimum bit error rate

beamforming receiver is capable of directly minimising the

system’s achievable bit error rate by adapting the bermform-

ing weight vector sample by sample. The simulation results

obtained have demonstrated that this new OGMDE-AMBER

algorithm outperforms the existing stochastic-gradient based

adaptive MBER algorithm, known as the least bit error rate

algorithm, in terms of both convergence rate and steady-state

bit error rate.
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APPENDIX

A. Merging Two Gaussians as One

Consider merging a mixture of two Gaussians

p̂(2)
(
ys;λ2,η2,ρ2

)
=

2∑

i=1

λiG
(
ys; ηi, ρi

)
, (74)

into one mixture by matching the resultant mean and kernel

width. The CV mean η of the two mixtures is given by

η =

2∑

i=1

λi

(∫
ysR

G
(
ysR

; ηiR
, ρi

)
dysR

+ j

∫
ysI

G
(
ysI

; ηiI
, ρi

)
dysI

)
=

2∑

i=1

λi

(
ηiR

+ jηiI

)

=
2∑

i=1

λiηi, (75)

while the RV kernel width ρ of the two mixtures satisfies

2ρ2 =

2∑

i=1

λi

∫
y2

sR
G

(
ysR

, ηiR
, ρi

)
dysR

− η2
R

+

2∑

i=1

λi

∫
y2

sI
G

(
ysI

, ηiI
, ρi

)
dysI

− η2
I

=
2∑

i=1

λi

(
ρ2

i + η2
iR

)
− η2

R +
2∑

i=1

λi

(
ρ2

i + η2
iI

)
− η2

I

=

2∑

i=1

λi

(
2ρ2

i +
∣∣ηi

∣∣2) −
∣∣η

∣∣2. (76)

B. The Derivation of
∂gi

′

R
(w, k)

∂w
and

∂gi
′

I
(w, k)

∂w
From (62) and (65), we have

∂g
i
′

R

(w, k)

∂w
=

1

ρ2
i
′ (k)

(
ρi

′ (k)
∂η

i
′

R

(k)

∂w
− η

i
′

R

(k)
∂ρi

′ (k)

∂w

)
,

(77)

∂g
i
′

I

(w, k)

∂w
=

1

ρ2
i
′ (k)

(
ρi

′ (k)
∂η

i
′

I

(k)

∂w
− η

i
′

I

(k)
∂ρi

′ (k)

∂w

)
.

(78)

Noting ys(k) = wHz(k) of (40) and ηi
′ (k) of (56), the

partial derivatives of η
i
′

R

(k) and η
i
′

I

(k) with respect to w

are given respectively by

∂η
i
′

R

(k)

∂w
=

1

2
(
Nλi

′ (k − 1) + 1
)z(k), (79)



∂η
i
′

I

(k)

∂w
= − j

2
(
Nλi

′ (k − 1) + 1
)z(k). (80)

Also we have

∂ρi
′ (k)

∂w
=

1

4ρi
′ (k)

∂2ρ2
i
′ (k)

∂w
. (81)

From (57) as well as (79) and (80), we have

∂2ρ2
i
′ (k)

∂w
=

y∗
s (k) − η∗

i
′ (k)

Nλi
′ (k − 1) + 1

z(k). (82)

Thus

∂ρi
′ (k)

∂w
=

y∗
s (k) − η∗

i
′ (k)

4ρi
′ (k)

(
Nλi

′ (k − 1) + 1
)z(k). (83)

Substituting (79) and (83) into (77) yields

∂g
i
′

R

(w, k)

∂w
=

2ρ2
i
′ (k) − η

i
′

R

(k)
(
y∗

s (k) − η∗
i
′ (k)

)

4ρ3
i
′ (k)

(
Nλi

′ (k − 1) + 1
) z(k),

(84)

while using (80) and (83) in (78) leads to

∂g
i
′

I

(w, k)

∂w
=
−2ρ2

i
′ (k)j − η

i
′

I

(k)
(
y∗

s (k) − η∗
i
′ (k)

)

4ρ3
i
′ (k)

(
Nλi

′ (k − 1) + 1
) z(k).

(85)


