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Abstract—In last years, enhancing the vehicular traffic flow
becomes a mandatory task to minimize the impact of polluting
emissions and unsustainable fuel consumption in our cities. Smart
Mobility optimisation emerges then, with the goal of improving
the traffic management in the city. With this aim, we propose in
this paper an optimisation strategy based on swarm intelligence
to find efficient cycle programs for traffic lights deployed in large
urban areas. In concrete, in this work we focus on the improve-
ment of the traffic flow with the global purpose of reducing
contaminant emissions (CO2 and NOx) and fuel consumption
in the analyzed areas. For the sake of standardization, we follow
European Union reference framework for traffic emissions, called
HandBook Emission FActors (HBEFA). As a case study, we
have concentrated in two extensive urban areas in the cities
of Malaga and Seville (in Spain). After several comparisons
between different optimisation techniques (Differential Evolution
and Random Search), as well as other solutions provided by
experts, our proposal is shown to obtain significant reductions of
fuel consumption and gas emissions.

I. INTRODUCTION

In last decades, the high level of pollution in the air and the
hydrocarbons consumption derived from the urban traffic are
becoming serious issues, since they affect the citizens’ health,
the global economy, and the difficulty of city management.
Hence, the improvement of vehicle mobility is a key task in
urban areas, and might have a positive impact in the efficacy
of traffic flow management. However, this is not always
affordable due to the cost of new physical infrastructures (e.g.,
info LED panels). Therefore we address our efforts towards
an efficient generation of cycle programs of traffic lights.
In this sense, we provide a low cost alternative to alleviate
city traffic flow [13], [14], [15]. Nevertheless, the number of
traffic lights is rising in modern cities, and its scheduling is
becoming more and more complex due to their huge number
of combinations that should be considered. Thus, the use of
automatic intelligent tools for the optimal cycle programming
of traffic lights is an essential task in traffic flow management.

In this sense, the application of intelligent optimisation
techniques, like metaheuristic algorithms [1], has become
important since their adequacy has been already demonstrated
for the generation of traffic lights programs [6], [15], [17]
with the aim of enhancing the global traffic flow. However, to
the best of our knowledge, there is no related work focusing
on the environmental perspective, with the aim of reducing
contaminant emissions and fuel consumption: this is what
we do in this paper. In addition, in most cases, the use of

such intelligent systems is limited to the optimisation of small
instances with only one or two junctions and 8 traffic lights at
most, which is far from the study of whole cities.

The main motivation of this work is therefore to propose an
optimisation strategy based on a Particle Swarm Optimisation
algorithm (PSO) [10] named PSO-tl, to efficiently obtain cycle
programs of traffic lights from an environmental perspective,
with the target of reducing CO2 and NOx emissions, as
well as the total fuel consumption of vehicles. Moreover,
we optimise the cycle programs of big urban areas with
a large number of traffic lights and vehicles, showing that
metaheuristics are strongly advisable techniques for future
development in this domain.

PSO is an easily configurable algorithm, which in general,
develops a quick convergence towards high quality solu-
tions [10]. In fact, this is a desirable characteristic, since it
allows us to obtain good solutions with fast techniques. For the
evaluation of the cycle programs (coded as vector solutions),
we have used the Simulator of Urban Mobility (SUMO) [11].
From the simulator we obtain a continuous source of informa-
tion about the vehicle flow. This is a key aspect when using
an advanced algorithm to generate automatic timing programs
for traffic lights. In addition, SUMO allows us to work with
the standard model of emissions HBEFA [9], by which we
obtain the information about pollution and fuel consumption.
This valuable information is used by the algorithm to evaluate
candidate solutions.

In this study we have used two scenario instances located
in the city downtown of Malaga and Seville (Spain), with
hundreds of traffic lights and different traffic densities (250 and
500 vehicles). The experimental comparisons of our PSO-tl
with other techniques such as Differential Evolution(DE) [18],
Random Search (RANDOM), and Sumo Cycle Program Gen-
erator (SCPG) [11], will show with no doubt the significant
improvement obtained by our proposal in terms of CO2, NOx
emissions (which are the most commonly found compounds
in tailpipe’s concentration tests of vehicles with gasoline and
diesel engines), and fuel consumption.

The remainder of the article is organized as follows. Next
section presents an overview of related works in the current lit-
erature. In Section III, the cycle program optimisation problem
and the standard model of emissions HBEFA are described.
After this, Section IV introduces our optimisation strategy,
paying special attention to the fitness function based on en-



vironmental factors. Section V is devoted to the experiments
and the analysis of the solutions. Finally, Section VI outlines
some conclusions and future work.

II. RELATED WORK

Several works can be found in the related literature that deal
with the traffic congestion problem by means of accurate signal
lights timing programs [12], [16]. We are mostly focusing
on those studies that use Metaheuristic approaches [2] for
optimising traffic light staging problems.

A first attempt was proposed by Rouphail et al. [19], where
a Genetic Algorithm (GA) was coupled with the CORSIM [7]
microsimulator for the timing optimisation of nine intersec-
tions in the city of Chicago (USA). Following the model
proposed in Brockfeld et al. [3], Sánchez et al. [15] designed
a GA with the objective of optimising the cycle programming
of traffic lights in a commercial area in the city of Santa
Cruz de Tenerife (Spain). In that approach, the computation
of valid states was done before the algorithm began, and it
highly depended on the scenario instance tackled. A GA was
also used by Turky et al. [21] to improve the performance of
traffic lights and pedestrian crossing control in a single four
way, two lane intersection.

Peng et al. [17] presented a Particle Swarm Optimisation
(PSO) with isolation niches for the scheduling of traffic lights.
In that approach, a purely academic instance with a restrictive
one-way road with two intersections was used to test the
proposal. Kachroudi and Bhouri [8] applied a multiobjective
version of PSO for optimising cycle programs using a pre-
dictive model control based on a public transport progression
model. In that approach, private and public vehicle models
were used to carry out simulations on a virtual urban road
network made up of 16 intersections and 51 links.

These studies have focused on different aspects of the
traffic light programming. However, a common limitation to
all of them is that they considered just a small scenario with
specific traffic conditions. This means that the resulting cycle
programs might not scale to larger instances. More recently,
Garcı́a-Nieto et al. [6], [5] proposed a PSO approach with
SUMO microsimulator for traffic light programming in large
realistic urban areas. In this work, the global journey time
and the number of vehicles that reach their destinations in
observation time.

In general, all the approaches mentioned above are mainly
focused on global trip times and waiting times of vehicles in
traffic lights, although none of them considered the influence of
pollutant emissions and fuel consumption factors in solutions.

In contrast, our proposal deals with the optimisation of
several emission factors: CO2, NOx , and fuel consumption,
for large realistic urban areas, with the aim of providing
the experts with optimised traffic lights programs oriented to
environmental savings.

III. HOW TO DEFINE CYCLE PROGRAMS

In a road network, the traffic lights are located in the
intersections. The traffic flow is controlled according to the
cycle programs and their phase duration. In an intersection,
all traffic lights are controlled by a common cycle program

because they should be synchronized for security reasons.
In addition, for all traffic lights in an intersection, the color
combination during their phase must be always valid, obeying
real traffic rules with the aim of avoiding collisions and
accidents, in general. In our model, we just consider valid
combinations of color states for any intersection, which are
constant during all the optimisation process. In this way, we
avoid invalid combinations of color states, while at the same
time, it also restricts the search to only valid states.

In this context, our main objective consists in finding
optimised cycle programs for all traffic lights located in a
specific urban area. A cycle is defined as the period of time,
in which a set of traffic lights in the same intersection has the
same color state. In addition, these cycle programs should be
coordinated with the traffic lights of the adjacent intersections,
with the intention of improving the traffic flow according to
the provisions of road traffic regulation.

A. Encoding

Following the SUMO’s specification for programming cy-
cles, we have encoded solutions as vectors of integers. In this
way, each element of the vector (variable) represents the phase
duration (color combination) of the traffic lights involved in a
particular intersection. Fig. 1 shows an example of encoded
solution that represents the intersection “i”, which has 12
signals (colors) with current state “Grr GGGr rrG GG”,
meaning that seven traffic lights are green 7 (G), and the other
six ones are red (r) for 36 seconds. In this way, the next phase
changes the traffic lights state to another valid combination
“yGG rrry GGr yy” (being ’y’ amber), for 6 seconds, and
so on. Once the last phase of an intersection is finished (the
number of phases of each intersection could be different, it
depends on the number of traffic lights and their location), the
first phase will be the next one, i.e. the last phase is followed
by the first one, and this cycle is repeated for the entire work
of a city. Our representation allows us to take into account
the interdependence between variables, not only for the phase
duration in the same intersection, but also for phases of traffic
lights in adjacent intersections.

In addition, SUMO allows us to simulate environmental
factors based on the HBEFA model (HandBook Emission
Factors for Road Transport) [9]. By using this model, we
are able to simulate different vehicle characteristics such as
accelerating, decelerating, braking, maximum speed, as well
as their implications in the emissions based on the HBEFA
model: hydrocarbons, particles, CO, CO2, NOx levels, and
other pollution agents. In this study we have focused on the
following contaminating agents: CO2 and NOx, as well as
fuel consumption (Fuel = F ).

B. Fitness Function

In order to evaluate the generated cycle programs we have
defined the fitness function f(s) in Equation 1. It considers the
traffic information obtained by the simulation with real data
of the city.

f(s) =
∥
∑

Vl
CO2(s) ∥l + ∥

∑
Vl
NOx(s) ∥l + ∥

∑
Vl
F (s) ∥l

#edges
+ ρ · V (s)

(1)



Fig. 1. Cycle program (phase duration) of traffic lights in a intersection

The main objective consists of minimizing the emission
levels and the general fuel consumption of the studied in-
stances. Equation 1 considers all the vehicles (V ) emissions
indexes, normalized by the length of the street (l) where the
values were obtained, that is CO2 and NOx in mg/s, and the
fuel consumption F in l/s. This sum of three terms is divided
by only the number of streets (#edges) which were transited
by the vehicles. Finally, we have also considered the vehicles
that do not arrive at their destination in the study time (V ),
by multiplying them by an average of the environmental cost
ρ. The use of the ρ constant is necessary in order to compute
the environmental indicators for the vehicles that are stuck in
traffic (do not arrive at their destination in simulation time).
We have set the environmental cost of the vehicles that do not
arrive at their destination to be ρ = 0.75 as an approximation
of the average journey cost in different traffic conditions.

IV. OPTIMISATION STRATEGY

Our optimisation strategy follows two stages: fist, we use
our particular implementation of a Particle Swarm Optimisa-
tion for traffic lights (PSO-tl) to generate optimal cycle pro-
grams to reduce the vehicular contaminant emissions. Second,
we gather data from the SUMO micro-simulator to enhance
the optimisation process with the information extracted from
the simulation of the realistic scenarios.

- PSO-tl. This is a population-based metaheuristic algo-
rithm that follows the search procedure induced of the Standard
PSO 2011 [4]. Besides, we have adapted the algorithm in
order to find optimal (or quasi-optimal) cycle programs for
traffic lights. In PSO-tl, the initial swarm is composed of
a number of particles (solutions) initialized with a set of
random values representing the phase durations. These values
are within the time interval [5, 60] ∈ N , and constitute the
range of possible time spans (in seconds) a traffic light can be
kept on a signal color (only green or red, the time for amber is
a constant value). We have specified this interval by following
several examples of real traffic light programs provided by the
Malaga’s City Council (Spain).

In PSO-tl, each potential solution to the problem is called
a particle position and the population of particles is called the
swarm. In this algorithm, each particle position xi is updated
each iteration g by means of the Equation 2.

xig+1 = xig + vig+1 (2)

where the term vig+1 is the velocity of the particle, given by
Equation 3.

vig+1 = w · vig +Grig − xig +HS(Gr, ∥ Gr − x⃗g ∥) (3)

where w is the inertia weight of the particle (it controls the
trade-off between exploration and exploitation) and Grig is
given by the following equation:

Grig =
xig + p′ig + l′ig

3
, (4)

where p′ig is the best solution that the particle i has seen
so far, given by Equation 5, and l′ig is the best particle of
a neighborhood of k = 3 (also known as the social best)
randomly (uniformly) selected from the swarm, given by
Equation 6

p′ig = xig + c · (pig − xig) (5)

l′ig = xig + c · (lig − xig) (6)

where the acceleration coefficient c > 1 is a uniform random
value obtained from a distribution with µ = 1/2 and ρ = 1/12.
This coefficient is sampled a new for each component of the
velocity vector.

Finally, HS is a random number generator in a hyper-
sphere, with Gr as gravity centre, i.e., Gr is calculated as the
equidistant point between p′g, l′g and xg. This mechanism helps
us to be independent from the coordinate system, improving
this aspect in contrast to the previous versions of PSO [4].

Since optimal cycle programs require solutions encoded
within a vector of positive integers (representing phase du-
rations in seconds), we have used the quantisation method
provided in the standard specification of PSO 2011 [4]. This
quantisation is applied to each new generated particle, and
transforms the continuous values of particles to discrete ones.



Fig. 2. Malaga and Seville instances exported from OpenStreetMaps and imported to SUMO

Algorithm 1 Pseudocode of PSO-tl
Input: A scenario instance ϕ(c) of a given c
Output: Best found solution b encoding a cycle program

1: S ← initializeSwarm()
2: while g < MAXIMUMg do
3: for each particle xig in S do
4: xig+1 ← update(xig, v

i
g, p

i
g, bg) //Equations 2, and 3

5: qig+1 ← Q(xig+1) //Mid-Thread quantisation
6: evaluate(qig+1,ϕ(city)) //Micro-simulation of ϕ(c)
7: end for
8: bg+1 ← updateLeader(bg ,qig+1) //if better
9: end while

It consists of a Mid-Thread uniform quantiser as specified in
Equation 7. The quantum step is set here to ∆ = 0.5.

Q(x) = ∆ · ⌊x/∆+ 0.5⌋ (7)

The pseudo-code of PSO-tl is introduced in Algorithm 1.
The algorithm starts by initializing the swarm (Line 1), which
includes both the positions and velocities of the particles. The
corresponding pi of each particle is randomly initialized, and
the leader b is computed as the best particle of the swarm.
Then, for a maximum number of iterations, each particle is
updated (Line 4), quantised (Line 5), and evaluated (Line 6),
according to a scenario instance ϕ(city). At the end of each
iteration, the leader b is also updated (Line 8). Finally, the
best solution (cycle program in individual b) found so far is
returned.

The simulation procedure is then used for assigning a
quantitative quality value (fitness) to the solutions, thus leading
to optimised cycle programs tailored to a given urban scenario
instance. This task is tackled by the SUMO microscopic traffic
simulator. When PSO-tl generates a new solution, it is used for

updating the cycle program (candidate solution). Then, SUMO
is started to simulate the instance with streets, directions,
obstacles, traffic lights, vehicles, speed, routes, etc., under
different traffic patterns, and with the new defined schedule
of cycle programs. After the simulation, SUMO returns the
global information necessary to compute the fitness function
(Equation 1), particularly the data from emissions and fuel
consumption for each vehicle in each street. The new cycle
program is statically loaded for each simulation procedure, and
what real traffic light human schedulers actually demand are
constant cycle programs for specific areas and for preestab-
lished time periods (rush hours, night periods, etc.), which led
us to take this focus.

V. EXPERIMENTS

In this work, we have used two traffic scenarios with infor-
mation obtained from real digital maps (illustrated in Fig. 2).
These scenarios are located in urban areas of approximately
750 m2 of Malaga and Seville cities. The information used
concerns: traffic rules, traffic element locations, buildings, road
directions, streets, intersections, etc. Moreover, we have set
the number of vehicles circulating, as well as their speeds,
by following current specifications available in the Mobility
Delegation of these cities 1. These areas have the following
characteristics:

1) Malaga. In the zone between Andalucia and Aurora
avenues, this scenario (Fig. 2, top) is composed by
streets with different widths and lengths, and several
roundabouts. It contains junctions including from 4
to 16 traffic lights each one.

2) Seville. Located in the popular district of Nervion
in the city center of Seville (Fig. 2, bottom), it is

1Malaga (http://movilidad.malaga.eu/), Seville (http://www.trajano.com/).
This information was collected from sensorized points in certain streets
obtaining a measure of traffic density at several time intervals.



made up of intersections between streets including
each one from 4 to 17 traffic lights. The complete
area shows a representative organization with almost
all the junctions connecting between three and four
streets.

The number of studied intersections is 70 for the two
instances. We have to notice that in spite of having in both
instances a similar number of intersections (70), the number
of signal lights is not exactly the same, since they contain
different intersection shapes (312 traffic lights in Malaga and
358 ones in Seville). In addition, for each scenario we have
generated two instances with different traffic densities, 250 and
500 vehicles circulating, in a simulation time of 1,200 seconds
(micro-simulation iterations). This time was determined as a
maximum time for a car to complete its route, even if it must
stop in all the traffic lights it finds. Each vehicle performs its
own route from its own origin to destination circulating with
a maximum speed of 50 km/h (typical in urban areas). The
routes were previously generated by following random paths.

A. Experimental Setup

We have implemented our PSO-tl in C++ following the
skeleton structure of the MALLBA framework of metaheuris-
tics [1]. The simulation phase is carried out by executing (for
the evaluation of particles) the traffic simulator SUMO release
0.12.0 for Linux. All the executions were run in a cluster of
16 machines with Intel Core2 Quad processors Q9400 (4 cores
per processor) at 2.66 GHz and 4 GB memory running Ubuntu
12.04.1 LTS and managed by the HT Condor 7.8.4 cluster
manager.

For each scenario instance we have carried out 30 indepen-
dent runs of our PSO-tl. The swarm size is 30 particles, and
we performed 300 optimisation iterations, resulting in a total
of 9,000 evaluations in SUMO per execution and instance. As
previously mentioned, the particle size directly depends on the
number of phase timespans of traffic lights of each instance,
being 304 and 368 for the instances of Malaga and Seville,
respectively.

For the sake of a fair experimentation, we have also re-
implemented two other algorithms also in the scope of the
MALLBA library: the Differential Evolution (DE) [18] in its
canonical version (DE\rand\1) named Differential Evolution
for traffic lights (DE-tl), and a Random Search Algorithm
(RANDOM). Thus, by performing the same experimentation
procedure, we expect to obtain some insights into the power
of our proposal (how much intelligent it is) regarding a
technique without any heuristic information in its operation
(RANDOM), and with regards to another metaheuristic (DE-
tl). The maximum number of evaluations for these algorithms
is also 9,000.

Finally, we have added a fourth algorithm to the compar-
ison. It is a deterministic algorithm provided by SUMO for
generating cycle programs (SUMO Cycle Program Generator
- SCPG). This last algorithm basically consists in assigning the
phase durations to the intersections fresh values in the range
of [6:31], according to three different factors the proportion of
green states in the phases, the number of incoming lanes to the
intersection, and the braking time of the vehicles approaching
to the traffic lights. Further information about this algorithm

can be found in [11]. Then, we also compare the cycle
programs obtained by our PSO-tl against the ones obtained
by SUMO.

B. Experimental Results

First of all, in this section we analyze the behaviour of
our proposal from a computational performance perspective.
In Table I we show the results of quality (fitness) obtained by
our PSO-tl algorithm. These results are the Maximum, Median,
Minimum, Mean, and Standard Deviation of the statistical
distributions obtained for the Malaga and Seville scenarios
(out of 30 independent run), with a traffic density of 250
and 500 vehicles. We also show the results obtained by the
algorithms DE-tl, RAND, and SCPG. They have followed the
same experimental procedure and been applied to the same
scenario instances. In addition, in the same table, the last row
for each instance shows the result of the statistical tests (non-
parametric) [20] of Friedman and Holm to determine which
algorithm is the best (ranking) and whether or not there exists
significant differences between the best one (control) and the
others. Specifically, these results are the p-values adjusted
by the Holm test (HAp) for a statistical confidence level of
α = 0.05.

C. Performance Comparisons

As it can be noticed, in Table I, the PSO-tl approach obtains
the best fitness value (minimization) for all traffic scenarios.
The difference is statistically significant between the resulting
distributions. Although there exist two exceptions, one for the
Seville scenario with 250 vehicles, in which, the results of DE-
tl are statistically similar (p-value = 7,18E-02) in comparison
with PSO-tl. The other exception is for Malaga with 500
vehicles, where the results of DE-tl are statistically equivalent
(p-value = 1,09E-01), but with a worse ranking for DE-tl in
both cases. In particular, the DE-tl algorithm is the second best
in ranking, followed by RAND and SCPG.

In this sense, another interesting observation consists in
the fact that all search-based algorithms with a stochastic
component obtain, in general, better results that the algorithm
suggested by the experts (SCPG), which is deterministic.
Even the RAND algorithm generates, after several simulations,
better cycle programs for traffic lights than SCPG. This means
that the problem is highly difficult and lack of clear patterns
for experts when we go to a large scale optimisation scenario.
These results give us some confidence in our optimisation strat-
egy, since in most experiments, PSO-tl provided us quantitative
benefits with respect to the method used by the experts (i.e.,
it is very robust).

D. Environmental Factors Analysis

In this section we analyze the direct impact of our proposed
solutions over the studied environmental factors. To do so, we
use the cycle programs obtained in the experiments.

As aforementioned, according to the HBEFA model [9],
the two chemical compounds CO2 and NOx are the most
commonly found in tailpipe’s concentration tests of vehicles
with gasoline and diesel engines. Consequently, in this study
we have computed the traces of the two chemical factors gen-
erated by all vehicles in the two scenarios. Fig. 3 (right) shows



TABLE I. QUALITY VALUES OBTAINED IN MALAGA AND SEVILLE WITH 250 AND 500 VEHICLES

City Value
Traffic Density (Number of Vehicles)

250 500
PSO-tl DE-tl RAND SCPG PSO-tl DE-tl RAND SCPG

Maximum 1,04E+02 1,08E+02 1,11E+02 1,05E+02 2,95E+02 3,06E+02 3,42E+02 5,59E+02
Median 9,76E+01 1,02E+02 1,08E+02 1,05E+02 2,41E+02 2,62E+02 3,07E+02 5,59E+02

Malaga Minimum 9,12E+01 9,83E+01 1,04E+02 1,05E+02 1,92E+02 2,25E+02 2,66E+02 5,59E+02
Mean 9,72E+01 1,02E+02 1,08E+02 1,05E+02 2,41E+02 2,64E+02 3,04E+02 5,59E+02
Standard Deviation 3,00E+00 1,93E+00 1,50E+00 0,00E+00 2,50E+01 1,94E+01 1,95E+01 0,00E+00
HAp - 1,42E-02 1,78E-08 1,33E-16 - 1,09E-01 5,20E-06 5,49E-16
Maximum 2,04E+02 2,19E+02 2,16E+02 3,96E+02 5,89E+02 5,91E+02 5,58E+02 7,27E+02
Median 1,73E+02 1,89E+02 2,10E+02 3,96E+02 4,74E+02 5,00E+02 5,34E+02 7,27E+02

Seville Minimum 1,54E+02 1,79E+02 1,97E+02 3,96E+02 4,21E+02 4,79E+02 5,09E+02 7,27E+02
Mean 1,78E+02 1,92E+02 2,08E+02 3,96E+02 4,75E+02 5,10E+02 5,36E+02 7,27E+02
Standard Deviation 1,49E+01 9,08E+00 5,79E+00 0,00E+00 3,17E+01 2,96E+01 9,55E+00 0,00E+00
HAp - 7,18E-02 1,52E-07 6,82E-17 - 9,32E-03 9,58E-07 1,89E-17
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Fig. 3. Emissions of CO2 (first and second column from the left) and environmental cost for all algorithm (right)

the bars graph of the general concentrations of CO2 (g/s)
and NOx (g/s) of the best cycle programs generated by each
algorithm, for the Malaga and Seville scenarios. In addition,
we also show the values of hydrocarbons consumption (Fuel
en l/s).

In general, we observe that the environmental cost of
the cycle programs generated by PSO-tl are lower than the
ones generated when following other strategies.. While SCPG
obtains low values of solution quality in the factors of pollution
and consumption, the differences with regards to the other
approaches are even higher when there are a high density
of vehicles (500). This fact allows us to guess that PSO-tl
might obtain even larger differences in high scale scenarios
with thousands of vehicles. Especially, in the case of Seville
with 500 vehicles, where the improvement obtained by PSO-
tl for CO2 emissions with regards to SCPG is 43.2%; the
improvement in terms of NOx is 40.9%; and the improvement
with respect to hydrocarbons consumption is 43.4%. All of
them mean highly important reductions of the experts’ cycle

programs.

In Fig. 3, we show the evolution graphs of CO2 emitted
with cycle programs generated by PSO-tl with 250 (first
column from the left) and 500 (second column from the left)
vehicles, for Malaga and Seville. In the case of Malaga with
250 vehicles, we obtain a slight improvement in comparison
with the solution proposed by the experts. However, when we
simulate with twice this number of vehicles (500), we obtain
a high improvement with regards to the SCPG solution. This
behaviour is also observed in both instances of Seville. In
addition, for this last city we observe a higher variability in
the cycle programs obtained by PSO-tl than for the Malaga
scenario. This fact gives us an idea of the difference of
complexity of these two scenarios, showing seville as a more
complex topology than Malaga. In any case, our proposal
provides an important reduction of the level of pollution
compared to the experts’ solutions represented by a dotted line
of SCPG results.



VI. CONCLUSIONS

In this paper, we propose an optimisation strategy based
on PSO and a simulation with SUMO for the generation of
cycle programs of traffic lights. Our main objective is to reduce
the CO2 and NOx emissions, as well as the consumption of
hydrocarbons through the improvement of the traffic flow. As
a case of study, we have used realistic models of urban areas
of 0.75km2 located in Malaga and Seville with traffic densities
of 250 and 500 vehicles.

As main conclusions, the following ones could be ex-
tracted:

• Our optimisation proposal achieves significant im-
provements in terms of polluting emissions and
consumption of hydrocarbons, in comparison with
other search-based stochastic techniques (DE-tl and
RAND), as well as with regards to expert’s cycle
programs (SCPG).

• The specific reduction of the three studied factors
(CO2, NOx, and Fuel) depends on the instance, but
they are always in the range 12% - 43%. Seville
scenario seems to be more complex that Malaga due
to its complex topology.

• If we extrapolate the results, this means that in a
real case concerning the city of Malaga, with 600,000
inhabitants approximately, and 2.15 tons of CO2 per
inhabitant/year,2 we will save around 510,000 tons
of CO2 (40% less) that will not be thrown to the
atmosphere per year in this city.

We plan to extend the study to large scale instances, thus,
we are interested in creating instances as close as possible to
a whole city. This is a scientific challenge that could be faced
using specially designed operators for this particular problem.
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