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An implementation of the path integrator mechanism of head
direction cells for bio-mimetic navigation.

Ankur Sinha and Jack Wang

Abstract—Head direction cells are thought to be an integral
part of the neural navigation system. These cells track the
agent’s current head direction irrespective of the host’s location.
In doing so, they process a combination of inputs: angular
velocity and visual inputs are major effectors; to correctly
encode the agent’s current heading. There are close to fifteen
models of head direction cell systems found in literature today.
Very few of these models have been implemented for bio-
mimetic navigation in robots. In this paper, we describe an
implementation of the head direction cell system on the ROS
robotic platform as a first step towards a bio-mimetic navigation
system for the PR2 robot.

I. INTRODUCTION

NAVIGATION is a necessary capability any animal must
possess to survive. Similarly, it is also a capability that

must be implemented while designing a robotic system ca-
pable of carrying out any meaningful tasks. It is well known
that even smaller mammals, such as rats, have sufficiently
well developed navigation systems that enable them to carry
out tasks necessary for their survival, such as foraging for
food or finding shelter. It is, therefore, of great interest to
study these biological navigation systems and attempt to
implement bio-mimetic navigation systems on robots.

Biological navigation is quite different from classical
robotic navigation. Classical robotic navigation stems from
nautical navigation[1] and attempts to track the precise
spatial parameters of the agent at all times. Biological
navigation, on the other hand, does not always follow the
same localization and planning methods. Trullier et al.[2]
and later Franz & Mallot[1], reviewed biological navigation
in detail and documented that the methods used in biolog-
ical navigation are goal oriented. Some levels of biological
navigation, for instance, do not require the animal to be
aware of its precise location or global heading. The animal
navigates purely with reference to a prominent landmark in
its environment, for example. Trullier, Franz, Mallot and their
colleagues categorized biological navigation into behavioural
levels on the basis of the information required in navigation
tasks. Their reviews, however, studied biological navigation
at a high, behavioural level. At a much lower level, the neural
processes that make navigation in biology possible form a
vast area of research in themselves.

Discoveries of neurons that provide information on the
agent’s spatial parameters, such as head direction cells[3],
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[4], place cells[5] and grid cells[6], have lead to the formation
of a cognitive map theory[7], [8], [9], [10], [11], [12] of
biological navigation. This theory states that via a combina-
tion of neurons with specific behaviours, animals maintain a
“cognitive map” of their environment.

The information contained by head direction, place and
grid cells together is equivalent to the spatial parameters that
are kept track of in classical robotics: position, heading and
velocity. Head direction cells encode the agent’s current head
direction in the horizontal plane irrespective of its location.
Place cells, similarly, encode the agent’s current location
in an environment in the form of place fields. Both these
neuron sets have path integrator components that integrate
angular and translational velocities respectively to calculate
the agent’s current head direction, like a biological INS[13].
Similar to head direction and place cells, grid cells also
encode spatial information about the agent by encoding a
representation of Euclidean space.

Head direction cells are capable of contributing to two
types of navigation systems. The first, as mentioned, is the
path integrator system where angular velocity is integrated
to encode the current heading of the animal. The second,
landmark navigation, is borne out the association of their
preferred directions to prominent visual cues in the envi-
ronment. In this paper, we detail an implementation of a
model of the path integrator mechanics of head direction cell
sets, as proposed by Stringer et al.[14], on the ROS robotic
platform[15] as a starting point towards a head, place and
grid cell based bio-neuro-mimetic navigation system. We also
cover some extensions that we’ve made to Stringer et al.’s
model that will enable head direction cells to associate with
visual cues in the future.

In section I-A , we provide an introduction to head direc-
tion cells and briefly discuss their computational modelling
in section I-B. We then detail our model in section II.
In section III, we present our results and briefly discuss
challenges and our future work plans in section IV. Finally,
we summarize and conclude in section V.

A. Head direction cells

Since their discovery by Ranck[4], head direction cells
have been subjected to a great amount of research. Head
direction cells are neurons that maintain a firing response that
encodes the agent’s current head direction. Each individual
neuron in a head direction cell system fires maximally when
the agent faces a particular direction. This is referred to as
the preferred direction of the particular neuron. A set of such
neurons, the preferred directions of which together encom-



pass all 360 degrees, therefore, acts like an internal compass,
tracking the head direction of the animal as it moves about.
This section briefly covers the properties of head direction
cells. For detailed information on the properties of head
direction cells, we refer the reader to Taube’s comprehensive
reviews[16], [17], [18].

Head direction cells have been found in components of
the limbic system: the postsubiculum[4], the anterior dorsal
nucleus of the anterior thalamus[19], the dorsal sector of the
caudal lateral dorsal thalamic nucleus[20], areas of the ret-
rosplenial cortex[21], portions of the extra-striate cortex[21],
lateral mammillary nuclei[22]. Other than these components
of the limbic system, many of which are also present in the
classical Papez circuit, head direction cells have also been
located in the dorsal striatum[23], [24].

Cells that fire only as a function of the animals cur-
rent heading have also been found in the presubiculum
of monkeys[25]. These cells were not influenced by the
monkey’s location and were seen to be independent of the
monkey’s “spatial view”.

Experiments in which various components of the environ-
ment were selectively modified to ascertain their effect on
head direction cell firing have been undertaken in abundance.
Head direction cells are found to anchor their preferred
directions to salient visual landmarks: experiments where
salient visual cues were temporarily removed saw the pre-
ferred directions return to their original configuration when
the cues were reinstalled[26], [27], [28]. Blair and Sharp did
similar experiments to ascertain how visual and vestibular
cues interact[29] and observed that they, along with landmark
and motor signal information, were responsible for the firing
of head direction cells. In a more recent study, Zugaro et
al. established that head direction cells could reorient in the
presence of familiar visual landmarks in as short a time
as 80 msec[27]. Rotation of auditory cues were not found
to effect the head direction cells in a similar manner[30].
Olfactory cues have been found to cause a shift in the
preferred direction of head direction cells in about half of the
cases. However, the shift, as with visual cues, was less than
the shift of the cue itself[31]. While there a shift in preferred
directions was noted when the environment was changed
from cylindrical to rectangular, no shift was observed when
the environment was changed from cylindrical to square[26].

The firing rate of head direction cells has been found to
be proportional to both translational motion[32], [33] and
angular velocity in general[19], [34], [35].

Head direction cells in the anterior dorsal nucleus have
been found to exhibit anticipatory firing, in that they pre-
dicted the animal’s future head direction about 25 msec
in advance[35], [36]. Time shift analysis[34] and further
recordings[36] confirmed this property in the anterior dorsal
nucleus. Head direction cells in the postsubiculum were not
found to exhibit predictive properties.

It is noteworthy that an attractor nature is generally
assumed for the head direction cell network. While this
may be true for head direction cells in the postsubiculum,

the absence of GABA containing interneurons which are
responsible for providing inhibitory influences necessary for
attractor formation in the anterior dorsal nucleus indicates
otherwise in this region[37], [38].

B. Computational modelling of head direction cells

Various computational models of the head direction cell
system have been proposed in literature. These models are
identical in that they all attempt to replicate the biological
data that is known about head direction cells: firing rate
profiles, neural processing, underlying architecture.

The first attempt at an explanation of the path integrator
dynamics of head direction cells was given by McNaughton
et al[39]. While this was more an outline and was not com-
putationally modelled, it laid the foundation for a processing
system based on associations between sets of neurons. Mc-
Naughton and colleagues proposed that the head direction
system followed a look up table system where associations
were built between the current heading, angular velocity and
future velocity. For each possible pair of angular velocity
and head direction, a future head direction would be mapped.
They proposed that such mappings could easily be set up in
an artificial neural network. While such mappings can be set
up, it is improbable that all values of angular velocity and
head direction can be included. The proposal also did not
explain how such a method would result in near Gaussian
triangular firing rate profiles as seen in head direction cell
systems.

Skaggs et al. replaced the look up table concept with a
ring attractor network[40]. This was the first model to use
local co-operation and global inhibition that would result in
a single peak of activity in the network. The manuscript,
while explaining the dynamics of the system, did not discuss
mathematical details that would govern the system.

From this point on, models used the same attractor based
network to simulate path integrator characteristics of head
direction cell systems. Models differed in underlying details,
such as the neural components used in the system or the
synaptic connections between these components. Another
difference was the method of implementation used.

Blair & and Sharp preferred to use the NEURON
simulator[41] to provide a simulation of head direction
cells[35] that included anticipatory firing characteristics that
they had earlier discovered[35]. The NEURON simulator also
permitted much lower level modelling where the researchers
could simulate inhibitory and excitatory synapses between
neuron sets that they mapped to brain regions based on
anatomical data.

Redish et al.[42] proposed a coupled attractor model of
head direction cells. The postsubiculum and anterior dorsal
nucleus were both modelled as attractors and synaptic con-
nections set up in such a way that the hill of activity in the
attractor signifying the anterior dorsal nucleus always lead
the other by a certain amount.

Zhang put forward an analytical model where he used
quick changes in synaptic weights to generate the required
attractor characteristics[43].
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Fig. 1: The head direction cell set schematic.

All of the above mentioned models used synaptic weights
that were predefined. Stringer et al. proposed a system based
on Hebbian learning to explain how the synapses may be set
up by self organization[14]. They only applied the method to
model a path integrator system. Kyriacou extended the model
to include kinesthetic inputs[44]: he implemented the model
on a robot and used an omnidirectional camera to simulate
visual inputs in the system. In another work, Kyriacou
documents how a evolutionary algorithm[45] may be used
to ascertain the parameters that controlled the dynamics of
such a network[46].

Other models include but are not limited to: Arleo &
Gerstner’s implementation on the mobile Khepera robot[47];
Song & Wang’s implementation that used a lower level
spiking neuron architecture[48]; Degris and colleagues’ im-
plementation of Song & Wang’s work on to the Pekee
robot as part of the Psikharpax project[49]; Goodridge &
Touretzky’s model of the anticipatory characteristics of head
direction cells that did not use an attractor network following
observations that GABA containing interneurons that are
necessary for attractor formation were absent in the anterior
dorsal nucleus[38]; and Zeidman & Bullinaria’s extension
to Goodridge & Touretzky’s model to include optic flow
information[50].

II. METHODS: THE MODEL

A. Structure

Our model is based on the self organizing model proposed
by Stringer et al.[14]. Their original model presented a
biologically plausible method of setting up synaptic weights
in the head direction cell system, via Hebbian learning[51]. It
only applied the method to the path integrator system of head
direction cells and did not discuss visual inputs and landmark
navigation. We’ve incorporated vision cells into their model
in an attempt to extend it to project both vestibular and visual
inputs on the head direction cell set as has been found.

The head direction cell system here makes use of three
sets of neurons as shown in the Figure 1. The head direction
cell set is a fully connected recurrent network, i.e., each
neuron HDi is connected to every other neuron HDj

via synapses, the weights of which are denoted as wHDij .
Here, HDi and HDj are the pre-synaptic and post-synaptic
neurons respectively. The head direction cells, therefore,
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Fig. 2: Firing rates during test run.

form a one dimensional circular array. While cells with
adjacent preferred directions appear next to each other in
our implementation (and most models), this is not how head
direction cells are found in the brain. In fact, as long as the
synaptic connections are set up appropriately, the location of
neurons is irrelevant to the functioning of the system.

Rotation cells ROTk are also connected to each head
direction cell via synapses denoted wHD ROT

ijk . Here, these
synapses are not simply synapses between a singular head
direction cell and a rotation cell. Rather, they’re effective
synapses between the pre-synaptic neuron HDi, the post-
synaptic neuron HDj and the rotation cell ROTk. The
two rotation cells fire depending upon clockwise and anti-
clockwise rotation inputs respectively as shown in Figure 5.

The visual cell set represents an abstraction of the visual
processing system and each visual cell V ISl is connected to
every head direction cell HDi via synapses wHD V IS

il .

B. Dynamics

Our model is a firing rate based model, which provides a
level of detail that is sufficient for our system. The activation
of each head direction cell HDi is given by:

τ
dhHDi (t)

dt
= −hHDi (t) +

φ0
CHD

∑
j

(wRCij − wINH)rHDj (t)

+
φ1

CHD×ROT

∑
jk

(wROTijk rHDj rROTk )

+
φ2

CHD×V IS

∑
jl

(wV ISjl rHDj rV ISl )

(1)

Here, τ is the time constant while φ0, φ1, φ2, CHD,
CHD×ROT , CHD×V IS and wINH are tunable parameters.
These parameters control the effect the respective inputs have
on the head direction cell attractor. wINH represents global
inhibition that the GABAergic interneurons exert on the
system. The combination of local excitation of head direction
cells and the global inhibition gives the system continuous
attractor characteristics.



The firing rate of each head direction neuron is a sigmoid
function of its activation:

rHDi (t) = f(hHDi (t)) =
1

1 + e−2β(hHD
i (t)−α) (2)

where α and β are constants. Figure 2 shows firing rate
profiles exhibited by the head direction cell set during a run
at different times. Due to the regular learning employed in
this implementation, the firing rates of all head direction cells
are similar. This isn’t the case in biology, where the firing
rates of head direction cells vary from one another.

The synapses between all neuron sets are set up using
Hebbian learning:

∆w = k.(rpost ∗ rpre) (3)

Here, ∆w is the change in synaptic weight. k is the learning
rate of the synapse. rpre and rpost are the firing rates of
the pre-synaptic and post-synaptic neurons respectively. This
learning rule does not, however, include synaptic depression,
or bounding of synaptic weights. We use a competition based
normalization rule to bound our synapses:

ŵ =
w

|w|
(4)

Here |w| is the norm of the w matrix and ŵ is the
normalized synaptic weight. It is worth noting that the above
normalization departs from the Hebbian learning requirement
of locality[52],i.e., the synapse between two neurons should
only be modified by their behaviour. We briefly discuss other
formulations of Hebbian learning in section IV.

III. EXPERIMENTAL PROCEDURE AND RESULTS

We implemented the model based on the ROS(Robot
operating system)[15] platform which provides support for
a number of robots, including the PR2. ROS provides
underlying tools that enable us to develop offline using
simulators and then move the code as-is on to the robot. For
development and testing, we collected data bags from the
IMU sensors of the PR2 robot to run our simulations. We
used a hundred head direction cells to cover the 360°direction
space. We used two rotation cells, one each for clockwise and
anti clockwise rotation, and a single visual cell (Figure 1).
The values of constants used in our implementation are given
in table I.

The system runs in three phases:

A. Setting up of synaptic weights to appropriate values

During this first phase, we set up the synaptic weights
in the network to their appropriate values. The network is
initialized with all synaptic weights as zero, implying that
no learning or association has taken place between the sets
of neurons. In order to set up both the internal head direc-
tion cell synapses wHDij and the effective rotation synapses
wROTijk , we simulate rotation in the system in both clockwise
and anti-clockwise directions. Each head direction cell is
assigned a preferred direction such that the set encompasses
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the complete 360° range. As done previously in literature, we
model the head direction cell firing profile as a Gaussian:

rHDi = exp(−1 + ∆S2

2σHD
2 ) (5)

∆S is the angular distance between the current head
direction and the head direction cell’s preferred direction:

∆S = min(|x|, |360− x|) (6)

where, for each neuron HDi with preferred direction
xpreferredi , for a head direction θ

x = θ − xpreferredi (7)

σHD is a constant that controls the width of the Gaussian
profile, and consequently, controls the angular width that a
head direction cell is active in.

In order to calibrate the network’s synapses, one of the
rotation cells is activated, simulating clockwise or anti-
clockwise rotation. Simultaneously, the firing rate profile, as
obtained by equation (5), is simulated in the head direction
cell and is moved to represent the change in heading of the
agent. The synapses are modified as per the Hebbian learning
rule discussed in section II.

Figure3 shows the synaptic weights between head direc-
tion cells, wHDij , before normalization. Note that as a result
of Hebbian learning from the simulated Gaussian firing rate
profiles, cells with preferred directions near each other have
stronger synaptic connections than cells that are far apart, as
is expected.

B. Initializing the network to an initial direction

Once the synaptic weights are set up appropriately, a
packet of activity must be stimulated in the attractor. This
packet of activity is the initial or reference heading of the
agent. An initial packet of activity is forced on the system by
projecting the required profile on to the head direction cell
attractor from the visual input for a short period of time. The
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TABLE I: Constants used in the implementation

Number of head direction cells 100

Number of rotation cells 2

Number of vision cells 1

α 1.5

β 3

φ0 100

φ1 200

φ2 100

CHD 100

CHD×ROT 200

CHD×V IS 100

k 1

wINH 0.2

σHD 10

firing of the vision cell can be simulated by simply setting
its firing rate to the maximum value, 1, in equation (1):

rV IS1 = 1 (8)

In order to set the initial direction to the preferred direction
of head direction cell i, we simply set the synapses between
the vision cell and head direction cells to the synaptic weight
between head direction cell i and every other head direction
cell.

wV IS1,j = wHDij (9)

During our experiments, we observed that forcing an initial
packet of activity did not guarantee a functional system. The
attractor should maintain the packet of activity in the absence
of external inputs. The parameters φ0 and wINH that effect
the recurrent behaviour of the network must be fine tuned to
ensure that the activity packet stabilizes as shown in figure 4,
the other outcome being the activity packet flattening out.1

The continuous attractor, if set up properly, permits the
packet of activity to lie in a state of neutral equilibrium, like
a ball lying on a perfectly horizontal table surface.

1We are most grateful to Dr. Simon Stringer for his input on this subject.
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Fig. 6: Correcting drift using a single visual cue

C. Running the system with angular velocity data

Figure 5 shows the behaviour of the network when tested
with angular velocity data. The firing rates of the two rotation
cells are a linear function of the angular velocity inputs.
The figure shows that the head direction indeed responds
to angular velocity inputs. Of special interest is the graph’s
behaviour at time=1300 which shows circular nature of the
network. The agent continues to change its head direction
and seamlessly moves from 360°to 0°. We tested the system
with several bags of data and observed encouraging results.

The rate at which the head direction firing profile moves
depends on the strength of the rotation neurons’ projections
on it. In the current configuration, the system has not been
optimised to correctly map the rotations of the agent, i.e.,
the movement of the head direction activity profile does not
reflect the true rotation of the agent in the world frame. This
isn’t because it cannot be done: the accuracy can be improved
fine tuning the value of φ1 which controls the strength of the
rotation neurons’ projections on to the head direction cells.
However, as we briefly discuss in the next sub section, our
current work focusses on associating head direction cells to
salient features in the environment for landmark navigation,
and since this will function as a drift correction mechanism
in itself, we’ve permitted the system to drift and have put off
optimization of these constants.

D. Correcting drift using salient visual cues: preliminary
tests

Figure 6 shows the results of a simulation where the head
direction cell set is assumed to incur drift and, a projection
from the visual feature cell, which would be caused by the
agent observing a familiar feature, is used to correct this
drift. We discuss our ideas on using multiple visual features
in the next section.

IV. DISCUSSION

Researchers have attempted to implement bio-inspired
navigation systems in the past, although the level of in-
spiration and the extent of implementation has varied. The
Psikharpax project[53], [54], for example, attempted to create
an artificial rat and implemented head direction and place
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Fig. 5: Test runs with angular velocity data from the PR2 robot

cells as its basis for navigation. RatSLAM[55], on the other
hand, uses similar “pose cells” to propose a solution to the
SLAM problem. (For more examples, see Franz & Mallot’s
review[1].)

Bio-mimetic navigation provides two closely related re-
search areas. The first is to improve our understanding of
biological navigation. This is done at different levels, for
example, by via behavioural studies or neuron recordings.
The second, computational modelling, serves as a tool to
verify collected information and proposed theories, while
providing alternative navigation systems that can, in the
future, be used in robotics. Even though bio-mimetic sys-
tems are not yet considered mature enough for use in task
oriented robotics ahead of classical navigation techniques,
it is accepted that even smaller animals such as ants and
rats possess navigational capabilities that are superior to
classical robotic navigation techniques. The complexity of
the underlying neural systems is a primary factor that makes
bio-mimetic systems difficult to implement.

While the complexity presented by neural processing is
difficult to simulate in its entirety, systems that achieve a
high level of similarity can be designed. The model of
the head direction system implemented here, for example,
deviates from known information on head direction cells in
certain aspects but does still sufficiently carry out its intended
function.

Challenges and future work

The implementation of the path integrator half of the head
direction cell system is the starting point in our attempt to
develop a bio-mimetic navigation system for the PR2 robot
using the ROS platform. The information this provides is not

yet sufficient to carry out actual navigation. In the absence
of a set of salient visual cues, the system will continue to
drift as it runs, like any other INS[56]. An INS is generally
coupled with other input sources, such as GPS[57], that reset
the accumulated drift at regular intervals. The head direction
system can similarly correct drift by detecting familiar visual
features in the environment. Our next goal, is therefore, to
associate the head direction cell system to environmental
cues that will reset the head direction system to its associated
direction whenever they are observed. Since the system will
associate with a set of cues, it will capable of approaching
these cues. The agent will be able to carry out the local
navigation strategies: search, direction-following, aiming and
guidance, as enumerated by Franz & Mallot[1].

A further goal of ours is to implement a model of place
cells that will hold location information about the agent.
Place cells follow a system similar to head direction cells.
They too carry out path integrator and associate to visual cues
in the environment. Implementing a coupled place and head
direction cell model will provide both location and heading
information to the agent along with some information on
visual features that they associate with. This will further
improve the landmark navigation capabilities of the system.

An important part of the model is the Hebbian learning
rule mentioned in equation (3). The formula that we’ve
used currently is the simplest mathematical formulation of
a Hebbian synaptic modification rule. As is visible, this rule
does not provide for synaptic saturation. As long as the pre-
synaptic and post-synaptic neurons fire simultaneously, the
synapse between them will continue to strengthen. While
this formulation covers strengthening of synapses by long
term potentiation (LTP)[58], [59], it does not implement the



flip side: long term depression (LTD)[60]. Just as LTP causes
strengthening of synapses when presynaptic and postsynaptic
neurons fire nearly simultaneously, LTD causes weakening
of synapses if such simultaneous firing does not occur. The
inability of the learning rule to provide for synaptic saturation
and weakening makes it less biologically plausible. It also
makes the implementation more difficult: if the synapses do
not saturate at a known value, it is difficult to use constant
values for parameters that control the projection of inputs on
to head direction cells: φ0, φ1, φ2. During our simulations,
we discovered that unbounded synapses constitute one of
the cases where the projections on the head direction cells
increase to such an extent that all neurons begin to fire
maximally, making the network lose its peak, thus no longer
providing information about the current heading.

A number of formulations of the Hebbian rule have
been proposed in literature[61], [62]. Such rules incorporate
modifications to provide for LTD and synaptic saturation.
One such modification is to normalize the synaptic weights,
as shown in equation (4). Normalization is a competition
based method: if synaptic efficacy increases, it must be
at the expense of other synapses[52]. Other formulations
include gating of the synaptic changes by either presynaptic
or postsynaptic activity. While we did attempt to use gated
rules with saturation in our model, we were unable to find a
set of parameters that provided the required dynamics. Since
the recurrent synapses between the head direction cells and
the synapses between rotation cells and head direction cells
remain largely unchanged during the running of the system,
we decided to use the normalization rule and fix the synaptic
weights after initial calibration of the system. For association
with visual features, however, the formulation that is used to
modify synapses between the head direction and visual cells
will need to incorporate weakening of synapses via LTD so
that the system can disassociate with (forget) features that
are no longer present in the environment over a period of
time.

The inclusion of multiple visual features presents a chal-
lenge also. In order for the system to associate with more
than one feature, our implementation of visual cells should
be able to differentiate between features so that they can each
be encoded uniquely by our population of vision cells. We
are yet to decide on a method to obtain this since modelling
the biological visual system may be too complex for our
purposes.

V. SUMMARY AND CONCLUSION

An implementation of a model of the head direction cell
system on the ROS platform was detailed in this paper.
The implementation integrates angular velocity inputs using
neural mechanisms to track the orientation of the robot.
Certain extensions to the original model required to enable
integration of visual inputs were also discussed. Visual inputs
provide sensory information that is used to correct drift in the
path integrator mechanism. The anchoring of head direction
cells to visual landmarks makes it possible for the system
to also provide a feature based navigation method. While

a landmark navigation system will be limited to navigating
between locations that are visible to the agent, they can be
coupled with more complex map based methods to provide
a layered navigation system. Various challenges and their
tentative solutions were discussed as work to be done in the
future to follow up the path integrator system.

Biological navigation follows a layered approach. The
navigation technique employed depends on the task to be
completed by the organism. For example, it is inefficient
to use metric mapped navigation to approach a goal state
that is visible to an agent. In such cases, simple navigation
techniques such as piloting or landmark navigation would be
quicker and more efficient. With this implementation of the
path integrator dynamics of a head direction cell ensemble,
we move closer to developing a landmark based navigation
system as the simplest component of a layered bio-mimetic
system for the PR2 robot.
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