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Abstract—Echo state networks (ESN), a type of reservoir
computing (RC) architecture, are efficient and accurate artificial
neural systems for time series processing and learning. An ESN
consists of a core of recurrent neural networks, called a reservoir,
with a small number of tunable parameters to generate a high-
dimensional representation of an input, and a readout layer which
is easily trained using regression to produce a desired output from
the reservoir states. Certain computational tasks involve real-
time calculation of high-order time correlations, which requires
nonlinear transformation either in the reservoir or the readout
layer. Traditional ESN employs a reservoir with sigmoid or tanh
function neurons. In contrast, some types of biological neurons
obey response curves that can be described as a product unit
rather than a sum and threshold. Inspired by this class of neurons,
we introduce a RC architecture with a reservoir of product nodes
for time series computation. We find that the product RC shows
many properties of standard ESN such as short-term memory
and nonlinear capacity. On standard benchmarks for chaotic
prediction tasks, the product RC maintains the performance
of a standard nonlinear ESN while being more amenable to
mathematical analysis. Our study provides evidence that such
networks are powerful in highly nonlinear tasks owing to high-
order statistics generated by the recurrent product node reservoir.

I. INTRODUCTION

Understanding contextual information processing in the
brain is one of the goals of neuroscience [1]. Dominey et al. [2]
proposed a simple model to explain the interaction between the
prefrontal cortex, corticostriatal projections, and basal ganglia
in context-dependent motor control of eyes. In this model,
visual input drives stable activity in the prefrontal cortex,
which is projected onto basal ganglia using learned interactions
in the striatum. This model has also been used to explain
higher-level cognitive tasks such as grammar comprehension
in the brain [3].

More abstract versions of this model, Liquid State Ma-
chines [4] and Echo State Networks [4], [5], were later intro-
duced in the neural network community and were subsequently
unified under the name reservoir computing (RC) [6]. In
RC, a fixed high-dimensional recurrent network, called the
reservoir, is driven by an input signal. An adaptive readout
layer then combines the reservoir states to produce a desired
output. Figure 1 provides a conceptual illustration of RC. ESN
implements this idea with a discrete-time recurrent network
with linear or activation functions and a linear readout layer
being trained using regression. Many variations of ESN exist

and have been successfully applied to engineering tasks such
as time series prediction and system identification [7].

Owing to fixed recurrent connections in ESN, its train-
ing is much more efficient than ordinary recurrent neural
networks (RNN), making it feasible to use their power in
practical applications. ESN’s power in time series processing
has been attributed to the reservoir’s memory [8], [9] and high-
dimensional projection of the input, which acts like a temporal
discriminant kernel [10] that is present in the critical dynamical
regime, where input perturbations in the reservoir dynamics
neither spread nor die out [11]–[13].

A major research direction in RC is to study how the
choice of reservoir and readout layer architecture may improve
the performance in different tasks [7]. Recent insights into
the nature of computation in ESN [8], [9], [14] show that
the readout layer learns the temporal correlations between
the reservoir dynamics and the desired output. Traditional
tanh activation function in the reservoir creates nonlinear
correlations that are challenging to characterize mathematically
and may lead to unpredictable results [15].

Here, we propose that additive neurons with a thresholding
transfer function can be replaced by multiplicative neurons
and no additional nonlinearity. The use of product nodes
in neural networks was introduced in [16] in an effort to
learn the suitable high-order statistics for a given task. It has
been reported that most synaptic interactions are multiplicative
[17]. Examples of such multiplicative scaling in visual cortex
include gaze-dependent input modulation in parietal neurons
[18], modulation of neuronal response by attention in the
V4 area [17] and the MT area [19]. In addition, locust
visual collision avoidance mediated by LGMD neurons [20],
optomotor control in flies [21], [22], and barn owl’s auditory
localization in inferior colliculus (ICx) neurons can only be
explained with multiplicative interactions [23].

Another popular architecture which uses product nodes is
the ridge polynomial network [24]. In this architecture the
learning algorithm iteratively adds groups of product nodes
with integer weights to the network to compute polynomial
functions of the inputs. This process continues until a desired
error level is reached. The advantage of the product node with
variable exponent over the ones used in polynomial networks
is that instead of providing fixed integer power of inputs, the
network can learn the individual exponents that can produce
the required pattern [25].
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Fig. 1: Computation in an ESN. The reservoir is an excitable recurrent network with N readable output states represented by the
vector X(t). The input signal u(t) is fed into one or more points i in the reservoir with a corresponding weight ω i, denoted by
the weight column vector ω = [ω i].

The main contribution of this work is to demonstrate the
plausibility of product nodes for recurrent neural networks
in the context of reservoir computing. In Section II-A we
review the basic ESN architecture that we use as a performance
baseline to study product RC. In Section II-B, we describe
the details of product nodes and some practical considerations
for their use in a recurrent neural network. In Section II-C,
we present our proposed architecture for reservoir computing
using product nodes, specifically, the replacement of tanh-
nodes in the ESN reservoir with product nodes and adjusting
the initialization strategy accordingly. We show how to use the
exponential-of-log trick to simulate the dynamics of product
recurrent networks efficiently using ordinary matrix products.
We also prove the echo state property for the network to show
that the network dynamics is insensitive to initial conditions.
The experimental study on information processing properties
of product RCs is presented in Section III. We first study the
memory and also nonlinear memory capacity of product RCs,
then we evaluate how such networks perform in predicting
Mackey-Glass and Lorenz systems. Our results show that the
product RC achieves performance similar to ESN with tanh
functions.

II. MODEL

A. Echo State Network

An ESN consists of an input-driven recurrent neural net-
work, which acts as the reservoir, and a readout layer that reads
the reservoir states and produces the output. Mathematically,
the input driven reservoir is defined as follows. Let N be
the size of the reservoir. We represent the time-dependent
inputs as a column vector u(t), the reservoir state as a column
vector x(t), and the output as a column vector y(t). The input
connectivity is represented by the matrix ω and the reservoir
connectivity is represented by an N×N weight matrix Ω. For
simplicity, we assume that we have one input signal and one
output, but the notation can be extended to multiple inputs and
outputs. The time evolution of the reservoir is given by:

x(t +1) = f (Ωx(t)+ωu(t)). (1)

where f is the transfer function of the reservoir nodes that
is applied element-wise to its operand. An optional constant b
can be added to the operand to serve as the bias to the reservoir
nodes. The transfer function f is usually tanh or linear

functions. The output is generated by the multiplication of a
readout weight matrix Ψ of length N+1 and the reservoir state
vector x(t), extended by an optional constant 1, represented by
x′(t):

y(t) = Ψx′(t). (2)

The readout weights Ψ need to be trained using a teacher
input-output pair. A popular training technique is to use the
pseudo-inverse method [6]. To use this method, one would
drive the ESN with a teacher input and record the history
of the reservoir states into a matrix X, where the columns
correspond to the reservoir nodes and the rows are the states of
each reservoir node in time. The corresponding teacher output
will be denoted by the column vector ŷ. The readout can be
calculated as follows:

Ψ = 〈XX′〉−1〈XŶ′〉, (3)

where ′ indicates the transpose of a matrix. Figure 2 show the
architecture of ESN. We will compare these two architectures
with our proposed product node ESN architecture.

B. Feed-forward and Feedback Product Nodes

One of the goals of neural network research is to discover
how high-order interactions can be represented using simple
nodes inspired by neurons. Following the observation of multi-
plicative interactions in NDMA receptors at the level of a sin-
gle neuron [26], Durbin and Rumelhart [16] proposed product
nodes in which different stimuli are raised to a power given
by the respective synaptic weights and multiplied together.
Single-neuron multiplicative interactions of this type have also
been observed in owl ICx neurons [23] and locust LGMD
neurons [20]. Before giving a prescription for product RC, we
briefly review the properties of a single product node with
feed-forward and feedback connections. The original product
node was defined as follows [16]:

x = f (uω1
1 uω2

2 . . .uωN
N ) = f (ΠN

i=1uωi
i ),

where x is the output of the product node, f is the activation
function, ui represent N different input stimuli, and ωi the
corresponding weights on the inputs. We generalize this model
to include a feedback connection by which the node can use



multiplicative interaction with its input history to produce the
output. This can be represented as follows:

x(t) = f (x(t−1)Ωu(t−1)ω1
1 u(t−1)ω2

2 . . .u(t−1)ωN
N )

= f (x(t−1)ΩΠN
i=1u(t−1)ωi

i ),

where Ω represents the weight of the feedback connection.
Note that the multiplicative coupling imposes some additional
constraints on the admissible ranges for Ω, ω , u. Namely, a
zero value in x(t) and/or u(t) at any point in time forces a reset
of the entire history in the node, killing the value of its short-
term memory. Moreover, the memory of an entire network of
product nodes will be erased if a single node becomes zero.
To achieve short-term memory with multiplicative feedback
nodes, we must choose the exponents such that the old inputs
approach the value 1 and their effect diminishes over time. A
possible choice is u(t) ∈ (0,1], Ω ∈ (0,1], and ω ∈ (0,1]. It
is noteworthy that u(t) ∈ [−1,0) is an admissible input, but
will result in complex values that could be interpreted as a
mechanism for simultaneously encoding firing rate and phase
information in a biological neuron [27]. The complete analysis
of the effect of such a behavior is beyond the scope of this
work. Figure 3 illustrates the output values of a product node
uω for positive and negative input domains and different input
weights ω .

u(t)

Ω

reservoir state x(t)

ω Ψ

y(t)

(a) nonlinear reservoir

Fig. 2: Schematic of an ESN. A time-varying input signal
u(t) derives a dynamical core called a reservoir. The states
of the reservoir x(t) are combined linearly to produce the
output y(t). The reservoir consists of N nodes. The input and
the reservoir connections are given by the vector ω and the
matrix Ω respectively. The reservoir states and the constant are
connected to the readout layer using the weight matrix Ψ.

Another practical consideration is that as the feedback
weight Ω approaches 1, the output of the product unit will
approach 0 due to its long multiplicative history in the range
(−1,1). This is similar to the saturating effect of a tanh
function in a standard ESN. We found that for Ω > 0.8 the
dynamics of a feedback node is not suitable for storing its
input history.

C. ESN Architecture with Recurrent Product Network

We now consider the general case of a network with
multiple nodes. For simplicity we use product nodes with linear
activation function in the reservoir and a linear readout layer
trained with ordinary regular regression. For very small input
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Fig. 3: Example of the behavior of a product node with positive
and negative input u for different input weights ω ∈ [0,1]. The
complex values may be interpreted as simultaneously encoding
for firing rate and phase information.

weights, tanh- ESN behave very similar to linear ESN; an
appropriate combination of input weights scaling and reservoir
bias b can map the inputs onto the nonlinear regions of the
tanh function, which dramatically improves the performance
of the ESN for nonlinear tasks [28]. We will later show that
despite linear activation, this architecture achieves a similar
performance to ESN with tanh activations on standard bench-
mark tasks.

We use N coupled product nodes with linear activation
to build a recurrent product network as our reservoir. The
coupling is given by an N×N matrix Ω = [Ωi, j], where Ωi, j
is the weight from node j to i. Each node also receives a
connection from the input u(t). The input connectivity is given
by the vector ω = [ωi], where ωi is the weight from input
to the reservoir node i. Without loss of generality we restrict
ourselves to networks with one input and one output. The state
of the reservoir at each time is given by the vector x(t) = [xi],
where xi is the node i. We assume both inputs and reservoir
states are defined over compact sets. The time evolution of
each node i is given by:

xi(t) = ΠN
j=0x j(t−1)Ωi, j u(t−1)ωi . (4)

The following proposition gives us a way to simulate the
network dynamics using normal matrix product.

Proposition 1. Global dynamics of the recurrent product
network given by Equation 4 can be expressed as follows:

x(t) = exp(Ω logx(t−1)+ω logu(t−1)) , (5)

where the log and exp are applied element-wise.

Proof: Recall that the dynamics of reservoir nodes is given
by the following system:

x1(t) = ΠN
j=0x j(t−1)Ω1, j u(t−1)ω1

x2(t) = ΠN
j=0x j(t−1)Ω2, j u(t−1)ω2

...

xN(t) = ΠN
j=0x j(t−1)ΩN, j u(t−1)ωN .



Taking the logarithm of both sides of each equation we have:

logx1(t) =
N

∑
j=0

Ω1, j logx j(t−1)+ω1 logu(t−1)

logx2(t) =
N

∑
j=0

Ω2, j logx j(t−1)+ω2 logu(t−1)

...

logxN(t) =
N

∑
j=0

ΩN, j logx j(t−1)+ωN logu(t−1).

This can be rewritten in compact matrix form as:

logx(t) = Ω logx(t−1)+ω logu(t−1).

Finally, an element-wise exponentiation of both sides will give
us:

x(t) = eΩ logx(t−1)+ω logu(t−1)

Corollary 1. Given a recurrent product network with dynami-
cal equation described by Equation 4, the state of the network
at a given time can be explicitly written as a function of the
initial state of the network and its input history as follows:

x(t) = exp

(
Ωt logx(0)+

t−1

∑
i=0

Ωt−i−1ω logu(i)

)
(6)

Proof: This can be easily verified by expanding the
recursion in Equation 5:

x(1) = exp(Ω logx(0)+ω logu(0)) ,
x(2) = exp(Ω logx(1)+ω logu(1)) ,

= exp
(
Ω2 logx(0)+Ωω logu(0)+ω logu(1)

)
,

x(t) = exp

(
Ωt logx(0)+

t−1

∑
i=0

Ωt−i−1ω logu(i)

)

Computation in ESNs is enabled by an important property
which ensures that the reservoir state is asymptotically only
a function of its input history. This is called the echo-state
property (ESP). In [29] two conditions were stipulated for a
recurrent network given by a weight matrix Ω to hold the ESP:
(1) a necessary condition that the spectral radius of Ω should
not be greater than unity; and (2) a sufficient condition that
the largest singular value of Ω should be less than unity. Later,
the sufficient condition was deemed too conservative and was
updated [30] and the necessary condition was shown to be
statistically enough for a good reservoir [31]. Yildiz et al. [15]
presented a pathological example to demonstrate that for an
ESN with tanh functions neither of the conditions guarantees
the ESP. However, this only holds for nonlinear systems and
for a linear system the weight matrix spectral radius less than
unity is enough to guarantee the ESP. The following corollary
builds on Corollary 1 and gives us an equivalent of the ESP
for recurrent product networks.

Proposition 2. Given a recurrent product network described
by Equation 4, the assumed compactness conditions on the
inputs and the network state, and a recurrent weight matrix Ω
with spectral radius λ < 1, the asymptotic global dynamics of
the network is only a function of the input history u(t).

Proof: First, we note that the dynamics of logx(t) is linear.
In addition, the unity vector 1 is the nullspace of the system
Ω logx(t0) and that limt→∞ Ωt logx(t0) = 0. Using Corollary 1
we can write the state of the system at time t→∞ as follows:

lim
t→∞

x(t) = lim
t→∞

exp

(
Ωt logx(0)+

t−1

∑
i=0

Ωt−i−1ω logu(i)

)

= exp

(
t−1

∑
i=0

Ωt−i−1ω logu(i)

)
,

which is a function of only the input history.

We should point out that the derivation of ESP is usually
presented in terms of asymptotic difference between the states
of two identical ESNs driven by identical inputs that are
initialized in different states, i.e., limt→∞ ||x1(t)− x2(t)|| = 0,
where x1(t) and x2(t) refer to the long-term state of the ESN
initialized with different random values. It is easy to see that
this definition is equivalent to Proposition 2. We emphasize
that since the systems dynamics is linear in the logarithm of
the reservoir states and the unity vector 1 is the global attractor,
Proposition 2 constitutes a necessary and sufficient condition
for the ESP in product RCs with linear transfer function.

III. EXPERIMENTS

In this section, we will compare the standard ESN, with
linear and tanh activation functions, with the product RC. We
will compare the performance of networks on computational
capacity tasks and chaotic time-series prediction benchmarks.

A. Reservoir Construction and Evaluation

For our experiments, we use fully connected reservoirs with
N nodes. The number of reservoir nodes N is adjusted for each
task to get reasonably good results in a reasonable amount of
time. The reservoir weights Ω and input weights ω are drawn
from i.i.d. normal distribution with mean zero and standard
deviation 1, i.e., N (0,1). The reservoir is then rescaled to have
spectral radius λ , while the input weights are multiplied by a
coefficient ω . For the tanh and linear reservoirs, the reservoir
nodes are initialized with 0s, and for the product reservoirs
they are initialized with 1s.

The reservoirs are driven with task-dependent input ut for
2,000 time steps and the readout weights Ψ are calculated as
described in Section II-A using MATLAB’s pinv() function.
For evaluation, the reservoir state is reinitialized and the
reservoir is driven for another T = 2,000 time steps and the
output yt is generated. For brevity, throughout the experiments
section we adopt the subscript notation for the time index, e.g.
yt instead of y(t). By convention, the system performance for
computational capacity tasks is evaluated using the capacity
function MCτ , which is the coefficient of determination be-
tween the output yt and the desired output ŷt :

MCτ =
Cov2(yt , ŷt)

Var(yt)Var(ŷt)
, (7)
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Fig. 4: The linear memory capacity of the product RC and the standard ESN with linear and tanh activation functions for fixed
input coefficient ω = 0.2 and different λ . As expected the more nonlinearity in the system the faster the memory curves decrease,
i.e., tanh- ESN curves decrease faster than the linear ESN and the product RC faster than the tanh- ESN.

where ŷt = ŷt(ut−τ) is a function of delayed input ut−τ and τ is
the memory length for the task. Total capacities are calculated
by summing the capacity function over τ: MC = ∑τ MCτ . We
use 1 ≤ τ ≤ 50 for our empirical estimations. Note that for
negative inputs to the product RC result in complex-valued
outputs, capacities, and errors. Therefore, one must use the
modulus of MCτ and NMSE for the product RC.

For the chaotic prediction task, the performance is evalu-
ated by calculating the normalized mean-squared-error NMSE
as follows:

NMSE =

√
1
T ∑T

t=0(yt − ŷt)2

Var(ŷt)
, (8)

where yt is the network output and ŷt is the desired output.

B. Computational Capacity

Computational capacity tasks consist of linear memory and
nonlinear capacities, which measure how well an ESN can
reconstruct a function of its previous inputs. In these sets of
experiments reservoirs of size N = 20 nodes are driven with
a one-dimensional input drawn from uniform distributions on
(0,1]. We systematically choose the input weight coefficients
and reservoir spectral radius in the ranges 0.001 < ω < 1 and
0.01 < λ < 0.95. The intervals are chosen from preliminary
experiments to capture the regions of the parameter space
where we get the best results or variation in their trends for
the purpose of sensitivity analysis. All the results are averaged
over 50 runs. The desired output of memory capacity is defined
below.

1) Linear Memory Capacity: The linear memory capacity
is a standard measure of memory in recurrent neural networks.
The τ-delay memory function MCτ measures how long the
network can remember its inputs. The desired output for this
task is defined as:

ŷt = ut−τ . (9)

2) Nonlinear Computation Capacity: The nonlinear com-
putation capacity measures the ability of the system to recon-
struct a nonlinear function of its past inputs. Conventionally,
Legendre polynomials are used to calculate the nonlinear
computation capacity of the reservoir [9]; their advantage is

that Legendre polynomials of different orders are orthogonal
to each other, allowing one to measure the reservoir’s capacity
to compute functions of varying degrees of nonlinearity inde-
pendently from each other. The desired output of the Legendre
polynomial of order n with delay τ is given by:

ŷ(n,τ)t =
1
2n

n

∑
k=0

(
n
k

)2

(ut−τ −1)n−k(ut−τ +1)k. (10)

3) Results: Figure 4 shows the results of linear memory
capacity experiments for different architectures and reservoir
spectral radii. The input coefficient is fixed at ω = 0.2. The
x-axis shows the time delay as a ratio τ/N and the curves
are averaged over 50 experiments. In general the product
RCs show faster decrease in the MCτ , due to the product
nonlinearity. This is similar in nature to the effect that the
saturated tanh activation function has on memory capacity. We
then calculate the empirical total memory MC = ∑50

τ=0 MCτ for
different values of ω and λ .

n
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Fig. 5: (a) Nonlinear computation capacity of ESN with prod-
uct nodes, tanh- nodes, and linear nodes. With the exception of
n = 3, the product RC outperform the tanh- ESN in nonlinear
capacity. (b) shows the complete nonlinear capacity function
for n = 3. The product network exhibits long-term memory
whereas the tanh- ESN exhibits short-term memory.

Figure 5a summarizes the nonlinear computation capacity
for 2 ≤ n ≤ 8. Product RC clearly shows useful nonlinear
computation. However, a complete and fair comparison be-
tween the nonlinear capacity of product RC and of tanh ESN
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Fig. 6: Sensitivity analysis of the linear memory capacity and
the nonlinear computation capacities of order n = 3,5. The
product RC exhibit best memory capacity for high λ and low
ω , whereas for the tanh- ESN the optimal parameters depend
on the type of memory measured.

is beyond the scope of this work. First, t has already been
reported that the tanh- ESN are unable to perform nonlinear
memory tasks with even degrees [9], but adding bias to the
reservoir in these networks fixes this problem. In addition, our
preliminary experiment shows that multiplicative readout layer
in product RCs also significantly improves their performance.
To understand the difference between the nonlinear capacity
of the product network and the tanh- ESN for n = 3, we must
look at their capacity functions over τ . Figure 5b shows the
3rd order capacity function for the three types of networks
as a function of time. The capacity function of each network
is chosen for the optimal parameter set of that network. The
tanh- ESN can perfectly reconstruct the desired output for just
a few recent inputs (short-term memory), while the product
RC cannot reconstruct correct values perfectly, but it can do
it with larger τ , i.e., longer input histories. This behavior
is analogous to high-quality short-term memory in recurrent
networks operating in linear regime versus low-quality long-
term memory in nonlinear regime [28]. The memory and
nonlinear capacity results in this work do not consider the
statistical significance test and only show qualitative features
of product RCs and ESNs. For accurate estimation of the exact
values one need to perform the measurement as described in
[9]. Also for simplicity we have not applied any reservoir

bias to tanh ESNs, which is known to improve the nonlinear
capacity of tanh reservoirs.

Figure 6 shows the sensitivity analysis of memory and
nonlinear capacity of both product RC and tanh ESN to input
weight scaling and reservoir spectral radius. As expected, both
product and tanh reservoirs perform best with high spectral
radius and low input weight scaling. Next, we see how the
product RC and the standard ESN compare in solving signal
processing benchmarks.

C. Chaotic Time Series Prediction

1) Mackey-Glass System Prediction: The Mackey-Glass
system [32] is a delayed differential equation with chaotic
dynamics, commonly used as a benchmark for chaotic signal
prediction. This system is described by:

dxt

dt
= β

xt−δ
1+ xn

t−δ
− γxt , (11)

where β = 0.2,n = 10, and γ = 0.1 are positive constants and
δ = 17 is the feedback delay. The reservoir consists of N = 500
nodes, and we systematically vary the input weight coefficients
and the spectral radius in the range 0.1 < ω < 1 and 0.1 <
λ < 0.9. The task is to predict the next τ integration time
steps given xt . We scaled the time series between [0,1] before
feeding the network.

2) Lorenz System Prediction: The Lorenz system is another
standard benchmark task for chaotic prediction. The Lorenz
system [33] is defined as:

dxt

dt
= σ(yt − xt),

dyt

dt
= xt(ρ− z)− yt ,

dzt

dt
= xtyt −β zt ,

(12)

where β = 8/3, ρ = 28, and σ = 10. These values give rise to
chaotic dynamics, making the system a suitable benchmark for
multi-dimensional chaotic time-series prediction. The reservoir
consists of N = 500 nodes, and we systematically vary the
input weight coefficients and the spectral radius in the range
0.1 < ω < 1 and 0.1 < λ < 0.9. We feed all three variables to
our systems, after scaling each variable on the interval [0,1].
The task is to produce the next τ integration time steps for
all three variables. We evaluate the performance NMSEtot by
calculating NMSE for each output and adding them together.

3) Results: Figure 7 shows the performance of the product
and standard ESN in predicting the next time step of the
time series. Product RC achieves comparable accuracy level
as standard ESN with tanh activation (see Figures 7a and 7b).
Similarly, for the Lorenz system both product and tanh- ESNs
show a similar performance at their optimal parameters (see
Figures 7d and 7e). We have included the linear ESN for
comparison. In our experiments, the parameters ω = 0.1 and
λ = 0.8 are optimal for the product and the tanh- ESNs
for both tasks. The full sensitivity analysis reveals that the
product and the tanh- ESNs show task-dependent sensitivity
in different parameter ranges. For example, for the product RC
on the Mackey-Glass task, decreasing λ increases the error by
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Fig. 7: The performance of one step prediction of the Mackey-Glass and the Lorenz system. The best performance for product
RCs are almost identical to the standard ESN with tanh activation function. The standard linear ESN is included for comparison.

4 orders of magnitude, whereas the tanh- ESN’s error increases
by 5 orders of magnitude. On the other hand, the tanh- ESN is
robust to increasing λ , while the product RC loses its power
due to instability in the network dynamics. For the Lorenz
system, high ω and λ destabilizes the product RC dynamics,
which completely destroys the power of the system. However,
the performance of the tanh- ESN does not vary significantly
with changes in the parameter, because the Lorenz system does
not require any memory. The linear ESN does not show any
sensitivity to the parameter space.

We then use the optimal values of the parameters to test
and compare the performance of multi-step prediction of both
Mackey-Glass and Lorenz systems. The task is for the system
to produce the correct values for the systems τ step ahead.
Figure 8 shows the log10(NMSE) for different τ . The product
RCs show performance quality similar to the standard tanh-
ESNs. The standard ESN with linear activation is included for
comparison.

IV. CONCLUSION AND OUTLOOK

Nonlinearity of neural response is essential for real-time
computational tasks that involve strong time variations of the
input data. In this manuscript, we considered neural networks
with a basic nonlinear property that a neuron outputs a
weighted product of synaptic inputs. The presented modeling
is an abstract representation of some type of neurons, whose
response function is not fully captured by commonly used
synaptic sums followed by a tanh thresholding function. We
evaluated the performance of a neural network with such
product units in the computational paradigm of reservoir com-
puting. Product RCs were found to be comparably powerful
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Fig. 8: The performance of multi-step prediction of the
Mackey-Glass and the Lorenz systems. product RCs perform
almost identically to the standard ESN with tanh activation
function. The standard linear ESN is included for comparison.

for nonlinear computation. For the nonlinear capacity task
we have used the standard versions of product RC and tanh
ESNs for simplicity. In our preliminary experiments we have
observed that the use of bias in tanh ESNs and multiplicative
readout layer for product RCs can significantly improve their
performance. We defer a fuller analysis of these architectural
variations to future work. On standard tests, we found that
for Mackey-Glass and Lorenz systems prediction, a network
of product units performs as well as a network of tanh units.
For both types of nonlinear networks we found that the best
performance is achieved with relatively small input weights,
which does not take advantage of the full nonlinearity of the
reservoir nodes. For tanh- networks, this nonlinear advantage
will completely disappear for very small input weights. We will



present a detailed study of this subtle behavior in a forthcoming
paper [34]. Overall, our findings suggest that neural networks
with product neurons may have stronger capacity than tanh
neurons for certain real-time data processing tasks.
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