
 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

International Joint Conference on Neural Networks (IJCNN)
Killarney, 2015

DOI: https://doi.org/10.1109/IJCNN.2015.7280612

Copyright: © 2015 IEEE

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/

The Generalized Group Lasso

Carlos M. Alaı́z∗† and José R. Dorronsoro∗
∗Dpto. Ing. Informática & Instituto de Ingenierı́a del Conocimiento, Universidad Autónoma de Madrid, 28049 Madrid, Spain

†Dpto. Teorı́a de la Señal y Comunicaciones, Universidad Carlos III de Madrid, 28911 Leganés (Madrid), Spain
{carlos.alaiz,jose.dorronsoro}@uam.es

Abstract—In this paper the Generalized Lasso model of R.
Tibshirani is extended to consider multidimensional features (or
groups of features) à la Group Lasso, by substituting the `1 norm
of the regularizer by the `2,1 norm. The resultant model is called
Generalized Group Lasso (GenGL), and it contains as particular
cases the already known Group Lasso and Group Fused Lasso
(GFL), but also new models as the Graph-Guided Group Fused
Lasso, or the trend filtering for multidimensional features. We
show how to solve them efficiently combining FISTA iterations
with the Proximal Operator of the corresponding regularizer,
which we compute using a dual formulation. Moreover, GenGL
makes possible to introduce a new approach to Group Total
Variation, the regularizer of GFL, that results in a training much
faster than that of previous methods.

I. INTRODUCTION

Big data problems are characterized by either a large
number of patterns or a high dimensionality, or both, and
they have caused a renewed interest on simple linear models.
Indeed, when the dimensionality is very high, the expressivity
of a linear model could be enough to solve certain problems,
with the advantages of being very efficient to apply and easy
to interpret. Nevertheless, linear models often require some
kind of regularization to avoid over-fitting and also to get
some structure into their weight vector. The `1 norm has been
the standard choice for introducing such a structure, not only
to enforce pure sparsity (i.e. to select only certain features
automatically), but also because more general structures can
be identified and modelled by the `1 penalization of a linear
transformation of the weight vector. In fact, many resulting
models can be dealt in a unified way under the Generalized
Lasso (GenLA) recently proposed by R. Tibshirani [1].

On the other hand, in certain situations input features have a
natural group structure, i.e., the input is made up of dg groups
with dv features each, and thus the total input dimension is
dgdv . In such cases the structure should be imposed at group
level. For example, instead of obtaining a sparse vector of
weights, where some of the coefficients are identically zero, it
would be more convenient to have sparsity at the group level,
so all the variables corresponding to a certain group should
be either zero or non-zero. This is why models as the Group
Lasso arise, which substitute the `1 norm by the `2,1 norm (the
sum of the `2 norms of the groups). Another example is the
Group Fused Lasso [2], which generalizes the Fused Lasso and
that has in the Proximal Operator (POp) of the Group Total
Variation (GTV) regularizer an important particular case with
applications in image processing.

In this paper, and continuing with this analogy between the
`1 and the `2,1 regularizers, we propose the Generalized Group
Lasso model (GenGL) as an extension of the GenLA of [1]

in which a group penalty is applied to linear transformations
of the group-structured weight vector. As it shall be shown,
depending on the transformation matrix used, classical group
models are recovered, and also new models are obtained.
Moreover, we propose a method to solve the POp of the
GenGL regularizer through a dual formulation of the original
problem. In summary, the main contributions of this paper are:

• The definition of the GenGL model, which contains
as particular instances other state-of-the-art group linear
models but that allows to apply a group approach to
other regularized problems such as trend filtering or
graph-guided penalizations, as well as a relatively simple
computational solution for certain regularizers that are
sums of non-differentiable convex functions.

• A new treatment of GTV when the variable groups have a
multi-axis organization, as it is the case with images, for
which we introduce an appropriate transformation matrix
that simplifies the solution of the problem.

• An empirical confirmation of the computational advantage
of this approach with respect to the splitting of the
multidimensional regularizer into 1-dimensional ones and
their combination through Proximal Dykstra.

The remaining of the paper is structured as follows. Sec-
tion II contains a brief summary of the theory on Proximal
Methods that will be used to train the proposed linear models.
While not new, this section may have an interest of its own
given that we cover the different pieces that have to be
put together when solving many sparse convex optimization
problems. Section III reviews the GenLA and proposes the new
GenGL model. Some experiments are described in Section IV
to show the potential of this new model, and finally the paper
ends in Section V with a discussion and conclusions, as well
as pointers to further work.

II. PROXIMAL METHODS FOR STRUCTURED LINEAR
MODELS

A. Structured Linear Models

Learning regularized models can be characterized as solv-
ing an optimization problem of the form

min
w
{f(w)} = min

w
{fL(w) + λfR(w)} , (1)

where f is the complete objective function to be minimized,
which evaluates the quality of the model specified by the
parameters w. This objective can be split into fL, the loss
term that determines how well the model fits the data, and fR,
the regularization term that can be used to avoid over-fitting,
impose certain structure or introduce prior knowledge, among
others. The parameter λ controls the strength of the regularizer.

In the particular case of linear regression models, where
the output is estimated via a linear combination of the inputs
(for the sake of clarity we omit the bias term, which can
be introduced just through minor modifications of fL, as in
general the bias is not regularized) and a mean squared error
loss is used, Prob. (1) can be expressed in matrix form as:

min
w∈Rd

{
‖Xw − y‖22 + λfR(w)

}
,

where the following notation has been used: i) X ∈ Rp×d
is the data matrix, which contains the input patterns as rows;
ii) y ∈ Rp is the target vector, which contains the desired
output (target) for each pattern; iii) w ∈ Rd is the vector
of weights, which characterizes the linear model; iv) p is the
number of training patterns; and v) d is the dimension of the
patterns. Once the model is trained, the output for a new pattern
x is estimated using the optimum weights wo as ỹ = x · wo.

A classical choice for the regularizer fR(w) is the Tikhonov
regularization, which is just the squared `2 norm of the
weights, fR(w) = ‖w‖22. Although this term prevents over-
fitting, it does not impose any structure in the resultant
weights, thus not providing any additional information about
the problem. Another alternative approach is to use the `1
norm, fR(w) = ‖w‖1, which results in the Lasso model [3].
The advantage of this regularizer is that it imposes sparsity on
the solution, which means that some of the coefficients will
be identically zero, hence giving an implicit feature selection
(only those features with a non-zero coefficient are considered
in order to estimate the output). As described in Section III,
there are several models based on the `1 norm or the `2,1
one for group features that impose some desired structure on
the resultant weights. Nevertheless, the main problem of such
models is that the `1 penalization is non-differentiable, which
prevents the corresponding optimization problems from being
solved through standard gradient-based techniques. A possible
alternative, Proximal Methods, is briefly described next.

B. Proximal Methods

The models based on an `1 or `2,1 penalization lead to a
convex but non-differentiable optimization problem. Although
these problems cannot be solved using gradient-based ap-
proaches, they fit naturally under the framework of Proximal
Methods (PMs; see e.g. [4]), which are a set of techniques to
optimize convex but possibly non-smooth functions through
the splitting of the objective in several somehow “easier”
terms. These terms are then minimized independently via its
Proximal Operator (POp), defined below.

For instance, in Prob. (1) the function to be minimized is
fL(w) + fR(w), where w are assumed to be the parameters of
the model and the penalty factor λ is included in fR(w) for the
sake of notation. As shown next, the intuitive idea of the PMs
is to minimize this sum through the iterative minimization of
fL (using a gradient descent step, as this term is smooth) and
fR (using its POp, as this term will be in general non-smooth).

Let ∂h(w) be the subdifferential at w of a convex function
h, i.e., the set of all the subgradients of h at w [5]; as both
terms fL(w) and fR(w) are convex, wo will be a minimum of
fL(w)+fR(w) if and only if zero belongs to the subdifferential

of the sum [6]:

wo = arg min
w∈Rd

{fL(w) + fR(w)}

⇐⇒ 0 ∈ ∂(fL(wo) + fR(wo)) . (2)

Moreover, the right-hand side subdifferential can be separated
as ∂fL(wo)+∂fR(wo) by the Moreau–Rockafellar [7] theorem,
and since fL(w) is differentiable, the optimality condition can
be rewritten in the following equivalent expressions:

0 ∈ ∂fL(wo) + ∂fR(wo) = ∇fL(wo) + ∂fR(wo)

⇐⇒ −γ∇fL(wo) ∈ γλ∂fR(wo)

⇐⇒ wo − γ∇fL(wo) ∈ (I + γ∂fR)(wo) ,

which are satisfied for any γ > 0. Furthermore, for a general
convex function F , ∂F is a monotone operator [6] and, while
in principle (I + ∂F)

−1 would be just a set-valued function,
it is actually single-valued. Thus, at an optimal wo we have

wo = (I + γ∂fR)
−1

(wo − γ∇fL(wo)) . (3)

On the other hand, if F is convex and lower semicontinuous,
its Proximal Operator at w with step γ > 0 is defined as

zw = proxγ;F (w) = arg min
z∈Rd

{
1

2
‖z − w‖22 + γF (z)

}
.

(4)
Notice that the POp can also be characterized in terms of the
subdifferential using the optimality condition (2):

zw = proxγ;F (w) ⇐⇒ 0 ∈ zw − w + γ∂F (zw)

⇐⇒ zw ∈ (I + ∂F)
−1

(w)

⇐⇒ zw = (I + ∂F)
−1

(w) .

In other words, we have an equivalent definition of the POp,

proxγ;F (w) = (I + ∂F)
−1

(w) ,

that justifies the iterative algorithms described next. In any
case, we remark that the POp definition through Prob. (4) is
still crucial as it provides a general way to compute the POps
for non-trivial functions. Now, going back to (3), we have

wo = proxγ;fR
(wo − γ∇fL(wo)) ,

which immediately suggests an iterative algorithm of the form

wk+1 = proxγ;fR

(
wk − γ∇fL

(
wk
))

.

The wk converge because the POp of a convex function is
firmly non-expansive [5]. This is at the heart of the well known
proximal gradient method (PGM; [4]) and of its ISTA and
FISTA (Fast Iterative Shrinkage–Thresholding Algorithm) ex-
tensions [8]. In particular, FISTA iterates the pair of equations:

wk = prox 1
L ;fR

(
zk − 1

L
∇fL(zk)

)
,

zk+1 = wk +
tk − 1

tk+1
(wk − wk−1) ,

where tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
and L is a Lipschitz constant for ∇fL. The main advantage
of FISTA, that we will use in our experiments, is its conver-
gence rate, O

(
1/k2

)
, in contrast with the O(1/k) sublinear

convergence of ISTA and PGM [8].

The characterization of the POp as the solution of Prob. (4)
implies that if there is a non-trivial function fR in Prob. (1),
a new optimization problem has to be solved in each FISTA
iteration. This introduces a double loop, leading to a general
procedure of the form

FISTA loop:
| ...
| Proximal loop:
| | ...
| ...

and larger computational costs. Moreover, computing directly
the POp of fR may often not be possible and we have to use
tools such as the Proximal Dykstra (PD) which imply further
costs. We will consider such a situation in Section III-E.

III. A GROUP LASSO GENERALIZATION

A. Generalized Lasso

The Generalized Lasso model introduced by R. Tibshirani
(GenLA; [1]) builds a linear model solving the following
optimization problem:

min
w∈Rd

{
1

2
‖Xw − y‖22 + λ ‖Dw‖1

}
, (5)

where D is an appropriate transformation matrix. Notice that
when X is the identity matrix, the solution of Prob. (5) is
just the POp of the regularizer ‖Dw‖1 with step λ. Moreover,
and as detailed below, Prob. (5) can be straightforwardly
solved for a general matrix X through PMs (for example,
FISTA), once the cited POp can be computed. Depending
on the transformation matrix D used, other linear models are
recovered as particular cases, namely:

1) If D is the identify matrix I ∈ Rd×d, Prob. (5) is the
problem that defines the Lasso (LA) linear model.

2) If D is the differencing matrix

D = DTV1d =

(−1 1

.
−1 1

)
∈ R(d−1)×d , (6)

then Prob. (5) corresponds to the Fused Lasso (FL) model,
where the Total Variation (TV) regularization is used. This
model enforces the coefficients to be piece-wise constant,
as some of the differences, penalized by the `1 norm, will
be identically zero.

3) Cases 1 and 2 can be combined by mixing together both
transformation matrices as:

D =
(
DTV1d
I

)
∈ R(2d−1)×d . (7)

This transformation leads to the sparse Fused Lasso model
(sFL), which is defined using both the TV term and the
`1 regularizer. Different regularization parameters can be
applied to each one of the terms by multiplying one of
the two submatrices in (7) by a constant.

4) Case 2 can be extended to several dimensions, using trans-
formation matrices based on the graph connectivity of a
multidimensional grid. The structure of the transformation
matrix D = DTV2d corresponding to a 2-dimensional
TV regularizer is described in detail in Section III-E.
Obviously, an additional `1 term can be added to compose
a sparse multidimensional FL model by concatenating an

identity matrix to the multidimensional TV transformation
matrix, leading to a multidimensional sFL.

5) More generally, and following the same idea of Case 4,
a Graph-Guided Fused Lasso (GraphFL) model can be
defined [1] in which the variables are considered as ver-
tices of a graph, and the difference between two adjacent
variables is penalized according to the corresponding edge
weight. As before, this regularizer can be represented
using an appropriate transformation matrix: each edge
will be represented by a row with all the entries equal to
zero except the two elements corresponding to the vertices
that the edge is joining; these two entries will be equal
to plus and minus the weight of the edge. Therefore, the
dimension of the transformation matrix D becomes l×d,
where l is the number of edges. Again, adding an identity
matrix at the end of the transformation matrix leads to
a sparse Graph-Guided Fused Lasso (sGraphFL). Notice
that both the 1- and multi-dimensional FL and sFL models
are particular instances of the GraphFL and sGraphFL,
respectively.

6) Another set of interesting transformation matrices con-
sidered in [1] corresponds to the trend filtering case,
which are just multiples of the differencing matrix DTV1d

given in (6). While the standard differencing matrix DTV1d

imposes piece-wise constancy (enforcing the difference
between adjacent coefficients to be zero), D2

TV1d
imposes

piece-wise linearity (enforcing the difference between
differences of adjacent elements to be zero), D3

TV1d
im-

poses the signal to be piece-wise quadratic, and so on.
Therefore, the POp of the regularizer

∥∥Dn
TV1d

w
∥∥

1
can be

used to approximate signals using polynomials of degree
n that may span signal segments of varying lengths.

B. Solving the Generalized Lasso Problem

All the models described above are particular instances
of the so called GenLA, and they can be trained by solving
Prob. (5) for the different transformation matrices. As Prob. (5)
consists in minimizing the sum of a smooth term (the error
term) and a non-smooth one (given by the `1 norm of the
transformed vector), it can be solved using FISTA, provided
that the POp of the non-smooth term can be computed. This
POp is the solution of the following problem:

min
w∈Rd

{
1

2
‖w − y‖22 + λ ‖Dw‖1

}
. (8)

To solve Prob. (8) for a general matrix D ∈ Rd̄×d, a dual
formulation based on the Fenchel Conjugate of the terms
involved can be used:

min
u∈Rd̄

{
1

2

∥∥D>u− w∥∥2

2

}
s.t. ‖u‖∞ ≤ λ . (9)

Problem (9) can be solved through methods such as Pro-
jected Gradient or Spectral Projected Gradient (SPG) as it
is a quadratic optimization problem with box constraints.
Moreover, for the particular matrix of Case 2 above and
its variants of Case 6, the Projected Newton method is a
suitable approach for solving Prob. (9), since the Hessian of
the objective function can be computed in linear time thanks
to its particular structure [9]. Once Prob. (9) is solved with
minimizer uo, the solution wo of Prob. (8) is obtained through
the equality wo = y −D>uo.

An advantage of using a single general transformation
matrix is that we can work directly with regularizers that “mix”
the w penalties and whose POps cannot be separated. The
standard approach would then be to compute individually each
POp and then mix them using PD, which adds an extra loop.
For instance, if the proximal is the sum of two non-separable
functions, this may require a three nested loop structure:

FISTA loop:
| ...
| Proximal Dykstra loop:
| | ...
| | First Proximal loop:
| | | ...
| | Second Proximal loop:
| | | ...
| | ...
| ...

possibly quite expensive computationally. On the other hand,
the formulation of Prob. (5) is more flexible, allowing to work
with a suitable matrix D that combines two regularizers into a
single one whose POp can be computed through a single loop.
A PD mixing is no longer required and we can revert to the
two loop FISTA training of Section II-B.

C. Generalized Group Lasso

In some situations the features are grouped, i.e., the feature
vector x ∈ Rd is composed by dg groups, xn, of dv variables
each, with d = dgdv . More specifically, x is structured as:

x =
(
x1,1, . . . , x1,dv , . . . , xdg,1, . . . , xdg,dv

)>
.

In such a framework, the `2,1 norm (the `1 norm of the `2
norms of the groups) is more appropriate than the `1 norm,
as the former induces sparsity at group level, whereas the
latter does not consider any group structure. In this situation
models as the Group Lasso (GL) and the Group Fused Lasso
(GFL; [2]) arise as extensions of the LA and FL models.
Notice that the group structure in the patterns induces a similar
structure on the weights w and as a generalization of the
previous group models, we can extend Prob. (5) to a group
setting and solve the problem

min
w∈Rd

{
1

2
‖Xw − y‖22 + λ

∥∥D̄w∥∥
2,1

}
(10)

for a certain group transformation matrix D̄ that maps Rdgdv
into Rd̄gdv . Thus, D̄w has a similar group structure now in
Rd̄g×dv and we have

∥∥D̄w∥∥
2,1

=

d̄g∑
n=1

∥∥(D̄w)
n

∥∥
2

=

d̄g∑
n=1

√√√√ dv∑
v=1

(
D̄w

)2
n,v

.

We call its solution the Generalized Group Lasso model
(GenGL) and, indeed, all Cases 1 to 6 defined in Section III-A
can be extended to this situation, defining the matrix D̄ as
D̄ = D ⊗ I , where I ∈ Rdv×dv is the identity matrix,
D ⊗ I denotes Kronecker’s product and D can be any of the
transformation matrices introduced above. In fact:

1) The LA model of Case 1 leads to the GL model.
2) The FL models of Cases 2 to 4 result in the GFL

models of [2], where the TV regularizer is replaced by the

Group Total Variation (GTV) regularizer, and the sparsity-
inducing `1 norm term is substituted by an `2,1 norm
regularizer.

3) The GraphFL and sGraphFL models of Case 5 result in a
new Graph-Guided Group Fused Lasso (GraphGFL) and
its sparse variant, sGraphGFL.

4) The trend filtering models of Case 6 result in a new group
trend filtering.

D. Solving the Generalized Group Lasso

As it can be seen, Prob. (10) is quite close to Prob. (5) and
we can follow exactly the same approach as in Section III-B
using as before FISTA and computing at each iteration the
POp of the right-hand term, which requires to solve:

min
w∈Rd

{
1

2
‖w − y‖22 + λ

∥∥D̄w∥∥
2,1

}
. (11)

In this case, the dual version of Prob. (11) becomes:

min
u∈Rd̄

{
1

2

∥∥D̄>u− w∥∥2

2

}
s.t. ‖u‖2,∞ ≤ λ . (12)

The gradient of Prob. (12) can be easily computed as D̄D̄>u−
D̄w, and since the projection over the `2,∞ ball is just that of
each group over the corresponding `2 balls, this problem can
also be solved using SPG.

Notice that as long as data are group-structured along a
single axis we can also avoid here using PD on some problems
taking advantage of the possibility of combining two non-
separable regularizers under an appropriate single D̄ matrix.
However there are important problems that have a natural
2- or higher-dimensional group structure as, for instance,
those arising when GTV regularization is applied in image
processing. We consider this situation next.

E. Group Structured Total Variation

The GFL problem is a particular case of Prob. (10) where
the GTV penalty

∥∥D̄w∥∥
2,1

is used, with the transformation
matrix D̄ equal to the 1-dimensional group differencing matrix:

D̄GTV1d = DTV1d ⊗ I =

(−I I

.
−I I

)
∈ R(dg−1)dv×dgdv ,

where I is the dv-dimensional identity matrix. The groups of
variables in the GFL problem are assumed to have a 1-axial
group structure, but it is often of interest to consider groups
structured along two or more axes. For instance, a 2-axial
TV penalty along the horizontal and vertical image axes is
often used in gray level image processing [9] and it leads to
a 2-axis GTV penalty if RGB colour images are considered.
Specifically, for a 2-dimensional d1 × d2 signal (total number
of groups is thus dg = d1d2) and denoting the i-th row of w by
w[i,·] and its j-th column by w[·,j], the 2-axis GTV regularizer
is defined as:

GTV2d(w) =

d1∑
i=1

GTV1d
(
w[i,·]

)
+

d2∑
j=1

GTV1d
(
w[·,j]

)
, (13)

i.e., the 2-axis GTV regularizer is the sum of horizontal and
vertical 1-axis GTVs, and this can be easily extended to
more than two axes. In order to compute the POp of the

2- and higher-axial GTV regularizers, notice that those terms
corresponding to the same axis apply to different variables.
They are therefore separable and the POp of the sum can be
computed just by composing the individual POps. However,
when added together, the axial GTV regularizers in (13) are
no longer separable and, hence, would have to be combined,
in principle using PD. Of course, this imposes an extra loop
in the FISTA iterations. However, PD can be avoided working
with an enlarged version of the transformation matrix, which
we will denote by D̄GTV2d , and that is described next.

We will consider first the case of an enlarged 2-dimensional
TV differencing matrix DTV2d , which is designed to satisfy
TV2d(w) = ‖DTV2dw‖1, where

TV2d(w) =

d1∑
i=1

TV1d
(
w[i,·]

)
+

d2∑
j=1

TV1d
(
w[·,j]

)
.

Once such a matrix is defined, the group variant is simply
D̄GTV2d = DTV2d ⊗ I . We assume that the vector w ∈ Rd1d2 is
structured as:

w = (w1,1, . . . , w1,d2
, . . . , wd1,1, . . . , wd1,d2

)
>
. (14)

This means that the variable in the grid coordinates (i, j) is
in the id2 + j position of the vector. This structure represents
a 2-dimensional grid of scalar variables; the group variant of
this structure is obtained by substituting each variable wi,j by
the corresponding dv-dimensional group feature.

Going back to the construction of DTV2d , notice that the
number of connections in the grid will correspond to the
number of rows in DTV2d , whereas the number of columns
coincides with the total dimension of the problem. Each row
of the grid has d2 vertices, and thus d2 − 1 connections, and
there are d1 rows. On the other side, there are d2 columns
with d1 − 1 edges each. Therefore, the total number of edges
is 2d1d2 − (d1 + d2) = 2d − (d1 + d2), i.e., about twice the
dimension. This means that the matrix DTV2d has dimensions
2d − (d1 + d2) × d, which seems prohibitive. Nevertheless,
DTV2d is highly sparse, as each row contains only two entries
equal to 1 and −1. Thus, the total number of non-zero entries
is just 2(2d− (d1 + d2)), i.e., around 4d, similar to the d input
dimension. Now we describe how to build this matrix:

1) We start with the differencing matrix that penalizes
discrepancies into a single row. As each row has d2

elements, it is just the differencing matrix of a TV term
of dimension d2, namely Dr = DTV1d

(d2) ∈ R(d2−1)×d2 ,
where the superscript denotes the dimension.

2) We repeat this to penalize the difference into a single col-
umn of d1 elements, i.e., Dc = DTV1d

(d1) ∈ R(d1−1)×d1 .
3) In order to penalize the differences into all the rows, the

matrix Dr is repeated d1 times, i.e., as many times as
there are rows. Moreover, since the entries corresponding
to the same row are consecutive, it suffices to extend the
matrix as D′r = I(d1) ⊗Dr.

4) The same has to be done for the column differences. Since
two consecutive entries of the same column are separated
by d2 positions (because of the structure shown in (14)),
the matrix can be expanded as D′c = Dc ⊗ I(d2).

5) For mixing all the penalizations (over rows and columns)
into a single matrix, we have just to concatenate the
previous matrices, to get DTV2d = (D′>r , D′>c)

>.

f u n c t i o n D = D i fm a t r i xT Vd 1Fa s t (d)
aux = s p a r s e (d i a g (−ones (d−1 ,1) , 1)) ;
D = s p a r s e (−[speye (d−1) s p a r s e (d−1 ,1)]−aux (1 : end−1 , :)) ;

end
f u n c t i o n D = Difmat r ixGTVd2Fas t (d1 , d2 , nv)

Dr = Di fma t r i xT Vd1 Fas t (d2) ; % Step 1.
Dc = Di fma t r i xT Vd1 Fas t (d1) ; % Step 2.
Drp = kron (speye (d1) , Dr) ; % Step 3.
Dcp = kron (Dc , speye (d2)) ; % Step 4.
D = [Drp ; Dcp] ; % Step 5.
D = kron (D, speye (nv)) ; % Step 6.

end

Listing 1. Matlab implementation of the construction of D̄GTV2d (second
function), based on the construction of DTV1d (first function).

6) Finally, the group variant is D̄GTV2d = DTV2d ⊗ I .

Therefore, we have a group differencing matrix D̄GTV2d that
verifies GTV2d(w) =

∥∥D̄GTV2dw
∥∥

2,1
, so we can solve the gen-

eral Prob. (10) simply by combining a FISTA and a proximal
loop without having to take recourse to PD. Of particular
interest in image filtering is the case when X is just the identity
matrix. Solving Prob. (10) reduces then to compute the POp
of GTV2d, what we can do now with a single loop.

An implementation (with sparse matrices) of the above
algorithm is included in List. 1. As an example, the following
matrix is the difference matrix DTV2d on a 3× 3 grid:

DTV2d =

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

.

IV. EXPERIMENTS

In this section we will first illustrate the application of
GenGL to capture a known group structure and that of
GraphGFL to identify an underlying but unknown one. This
will be done over two synthetic problems and then we will
show the computational advantage of GenGL over GTV and
other methods when applied to image denoising.

A. Synthetic Example: Identifying Weight Structure

In this experiment we will compare the efficiency of
training a 1-dimensional sGFL model as the mixture of the
`2,1 and GTV regularizers through PD or using a GenGL set-
up with the matrix of Case 3 (in its group variant).

Following the framework of [2], we define a synthetic
problem whose underlying solution is structured. We begin by
fixing the weights, which are clustered in 4 consecutive blocks
of 25 groups each so that the weights of each block are equal in
their 3 components; these piece-wise constant weights are then
perturbed using Gaussian noise with a standard deviation of
0.1. We then generate the independent random input features of
the problem as 100 groups of 3 variables; all follow a standard
Gaussian. Finally, we multiply these features by the perturbed
weights to obtain the targets which are, in turn, also perturbed

with Gaussian noise of deviation 0.1. We will generate this
way 4 different samples with sizes p equal to 600, 300, 100
and 50 patterns. It is worth noting that since the number of free
parameters is d = 300, the problems are ill-posed in the latter
two cases. The linear models compared are RLS (Regularized
Least Squares based on Tikhonov regularization), LA, GL,
sFL, sGFL and GenGL (implementing sGFL). As a quality
measure, the distance between the weights provided by each
model and the true structured (unperturbed) weights is used,
both using the `1 and the `2 norms. We repeat the experiment
100 times, varying the random patterns using the same distribu-
tion but keeping in all cases the same fixed structured weights.
The regularization parameters are optimized with respect to the
`1 distance over an initial, independent sample, and then kept
fixed. The main goal of this experiment is to compare the time
required to train the sGFL model using the classical and the
GenGL approaches, and also to check if the different models
are able to recover the underlying structured weights.1

Figure 1 summarizes the results. The first picture compares
the time of sGFL and GenGL, clearly showing the latter to be
faster, as it avoids using the PD algorithm required to mix the
`2,1 and GTV regularizers. The last two pictures show the `1
and `2 distances for the 4 sizes and all the models; obviously,
GenGL obtains exactly the same solution (up to rounding
effects) than sGFL and thus both lines overlap, and these
models outperform all the others as further detailed in [2].

B. Synthetic Example: Identifying Structured Features

We will work now with an unstructured vector of random
weights generated using a standard Gaussian. The patterns,
however, will have random features organized in 8 groups gn of
3 variables. These input features will be distributed in 3 blocks,
{g1, g3, g4}, {g2, g6} and {g5, g7, g8}. Inside each block the
features will have an 80% correlation in the 3 components of
each group, but they will be independent from the features of
the other blocks. We will generate this way 1 000 patterns using
a multivariate Gaussian and, finally, obtain the corresponding
outputs by multiplying structured patterns and weights, and
then adding some Gaussian noise with deviation 0.02.

The goal here is to check whether GenGL can identify the
underlying blocks by assigning the same weights to all of their
components when we solve a GraphGFL problem over a fully
connected graph. We stress that the real relationship between
the features is not known when building the model, which
simply connects every pair of features, without any previous
knowledge. The transformation matrix D̄ will thus penalize the
difference between the weights that connect any two groups of
features. More precisely, we have D̄ = D⊗ I , with I ∈ R3×3

the identity matrix, and D ∈ R28×8 the differencing matrix
between every pair of groups; it thus must have 28 rows, i.e.,
all the possible pairings of 8 elements.

The results are summarized in Fig. 2, which includes the
regularization path of the weights obtained by the GraphGFL
model. We depict the optimal weights for 50 different values
of the regularization parameter λ between 100 and 101.5 in
logarithmic scale. The 8 colours represent the different groups

1This second objective is included for completeness, since such a compari-
son was already done in [2], where sGFL, which ties with GenGL, statistically
outperformed the other models in the proposed task.

100.5

101

Ti
m

e
(s

)

Results for Structured Weights

RLS
LA
GL
sFL
sGFL
GenGL

101

102

103

` 1
D

is
ta

nc
e

0 200 400 600

100

101

102

Number of Patterns

` 2
D

is
ta

nc
e

Fig. 1. Results for the structured weights synthetic example.

of features, and the 3 pictures correspond to each one of the
3 different group components of each feature. Moreover, the
change points in which the groups “align”, i.e., the weights
take the same value for the 3 group components, are marked
with an asterisk; they are also summarized at the bottom of
Fig. 2, showing the successive blocks found. As expected,
when λ is small the model prioritizes the training error, so
the coefficients are all different and do not show any structure.
Nevertheless, when λ increases the structure becomes stronger:
the coefficients start to collapse and different blocks appear
when their values align. In particular, for λ values between
100.73 and 101.01 the coefficients reveal the true underlying
feature blocks. Finally, larger λ values force the differences
between each pair to be identically zero and all the groups
collapse in a single one.

C. Image Denoising

In this last example we will compare the efficiency of com-
puting the POp of a 2-dimensional GTV regularizer combining
the 1-dimensional GTV regularizer using PD, and using the
POp of the GenGL regularizer of Case 4, in an image denoising

−0.5

0

0.5

C
om

po
ne

nt
1

Regularization Path for Structured Features

g1
g2
g3
g4
g5
g6
g7
g8

−0.5

0

0.5

1

C
om

po
ne

nt
2

100 101

−2

−1

0

λ

C
om

po
ne

nt
3

Change points:

10
0.00

: {{g1}{g2}{g3}{g4}{g5}{g6}{g7}{g8}} ;

10
0.24

: {{g1}{g2, g6}{g3}{g4}{g5}{g7}{g8}} ;

10
0.61

: {{g1}{g2, g6}{g3}{g4}{g5, g7, g8}} ;

10
0.67

: {{g1, g3}{g2, g6}{g4}{g5, g7, g8}} ;

10
0.73

: {{g1, g3, g4}{g2, g6}{g5, g7, g8}} ;

10
1.01

: {{g1, g2, g3, g4, g5, g6, g7, g8}} .

Fig. 2. Results for the structured features synthetic example. The three
pictures show the regularization path for each component; the last expressions
summarize the change points, and the clusters achieved at each of them.

problem. Although in terms of quality both approaches should
be identical (as they are solving the same problem), in terms
of efficiency the GTV approach needs to use PD to mix the
POps of the GTV regularizers along rows and columns, each
of which requires to solve a constrained problem using SPG.
On the contrary, GenGL solves a unique constrained problem,
although with many more variables, but as shown below, it
outperforms the GTV approach for all image sizes considered.

In particular, the experiment considers denoising 5 images
perturbed with different noises: i) Peppers, with additive Gaus-
sian noise; ii) House, with speckle (multiplicative uniform)
noise; iii) Lena, with Poisson noise; iv) Mandrill, with salt

and pepper noise; and v) Squares, with both additive Gaussian
and Poisson noises. We follow the framework of [2] using the
POp of the 2-dimensional GTV regularizer that was shown
to outperform a classical approach using a TV regularizer
over each colour-channel independently. The regularization
parameter λ for each image is selected over an initial noisy
sample, and then the results are averaged over 25 perturbations
with the same noise distribution. This is repeated for 4 sizes
of the image, that corresponds to reductions to the 5%, 10%,
20% and 50% of the original size. We use the Improved Signal
to Noise Ratio (ISNR; [10]) as the denoising quality measure;
the higher its value, the cleaner the final image is.

Figure 3 shows a comparative of the execution time and
the ISNR as a function of the number of variables (the number
of pixels times the 3 colour channels). The different colours
denote different images (and noises), whereas the type of the
line represents the denoising method. As expected, in terms
of the ISNR both GTV and GenGL obtain the same result
(with small perturbations corresponding to the convergence
of the algorithms), and both of them outperform clearly the
classical TV denoising (a detailed comparison between TV
and GTV denoising, including examples of the filtered images,
can be found in [2]). On the other hand, when looking at
execution times, GenGL is much faster than GTV. It is worth
noting that both are implemented in Matlab, and the code
is comparable as they use the same SPG implementation for
solving the inner constrained problem; hence the advantage of
GenGL comes from avoiding the PD algorithm. The time of
TV is omitted as it was implemented in C. The training times
required by GTV and GenGL are further compared in Fig. 4,
which contains convergence plots for both methods. Execution
times (averaged over 25 repetitions) are in the x-axis and in the
y-axis normalized objective function values, i.e. the criterion
value at the current solution minus that at the optimum, given
as a percentage of the optimum criterion value. The oscillations
of the GenGL approach come from the SPG algorithm used;
the plot for GTV shows criterion values after each Dykstra
iteration, which is why they appear to be smoother. In any
case GenGL is about two orders of magnitude faster.

V. DISCUSSION AND CONCLUSIONS

In this paper, the Generalized Group Lasso (GenGL) frame-
work for linear models is proposed as an extension to the
case of multidimensional (group) features of the Generalized
Lasso of [1]. In particular, the `1 norm is replaced by the `2,1
norm. GenGL includes as particular cases the Group Lasso
(GL) and Group Fused Lasso (GFL) and it also allows to
define new models for multidimensional trend filtering or the
Graph-Guided Group Fused Lasso. An additional advantage
of this formulation is that the Proximal Operator (POp) of the
regularizer of all the different models can be computed solving
just one optimization problem, whereas in earlier approaches
for the sparse GFL model (which includes a Group Total
Variation term and a GL term), or for a multidimensional GFL
model, two or more individual POps had to be computed and
then combined using Proximal Dykstra in order to estimate
the POp of the sum of all the regularizers. Consequently, the
GenGL approach can be much faster in some problems.

On the other hand, second order methods for the GFL have
been derived in [11]. It is also extremely interesting to try

10−1

100

101

102

103

Ti
m

e
(s

)
Colour Image Denoising

Pepp
Hous
Lena
Mand
Squa

TV
GTV
GenGL

104 105
0

5

10

15

Size

IS
N

R

Fig. 3. Time and ISNR as a function of the size; the results are given for
the different datasets (colours) and denoising methods (lines and markers).

10−4 10−3 10−2 10−1 100 101

10−6

10−3

100

Time (s)

N
or

m
al

iz
ed

O
bj

ec
tiv

e
(%

)

Convergence for Pepp (Size 8 112)

GTV
GenGL

Fig. 4. Convergence of the normalized objective as a function of time, for
the image Pepp with the second size.

to apply this Newton approach to the GenGL model, as the
difference between the optimization problems of both models
only resides in the transformation matrix, which will also be
sparse in the GenGL model for most of the cases of interest.
We point out that it is shown in [1] that in some cases the
FISTA loop can be removed for GenLA through a variable
change that reduces the general Prob. (5) just to the POp of the
regularizer [1]. This can be applied to GenGL, although such
a procedure will require working with non-sparse matrices.
Hence, the gain of having a single loop may be negated
by having to work with a full matrix of a large dimension.
Nevertheless, this approach should also be analysed in detail.

As further work, this framework could be applied to real-

world problems. An interesting case is the analysis and fore-
casting exploitation of Numerical Weather Prediction patterns
that are given over a grid with several weather variables
per grid point, having thus a natural 2-axis group structure.
Another area of application is the trend filtering of multi-
dimensional signals or of colour images, assuming instead
of constancy between adjacent pixels, linear or higher order
polynomial relations. Finally, all these models can reveal some
inherent pattern structure in a given problem, which could then
be exploited by building another model not on the original
patterns but over the identified structure. This hierarchical
framework is another possible extension of this work.

ACKNOWLEDGMENT

With partial support from Spain’s grants TIN2013-42351-
P and S2013/ICE-2845 CASI-CAM-CM, and of the UAM–
ADIC Chair for Data Science and Machine Learning. The
authors gratefully acknowledge the use of the facilities of
Centro de Computación Cientı́fica (CCC) at UAM.

REFERENCES

[1] R. J. Tibshirani, The solution path of the generalized
lasso. Stanford University, 2011.

[2] C. M. Alaı́z, A. Barbero, and J. R. Dorronsoro, “Enforc-
ing group structure through the group fused lasso,” in
Artificial Neural Networks, ser. Springer Series in Bio-
/Neuroinformatics, P. Koprinkova-Hristova, V. Mlade-
nov, and N. K. Kasabov, Eds. Heidelberg, Germany:
Springer-Verlag GmbH, October 2014, vol. 4, pp. 349–
371.

[3] R. Tibshirani, “Regression shrinkage and selection via
the Lasso,” J. Roy. Statist. Soc. Ser. B, vol. 58, no. 1, pp.
267–288, 1996.

[4] P. Combettes and J. Pesquet, “Proximal splitting methods
in signal processing.” Springer, 2011, pp. 185–212.

[5] P. L. Combettes and V. R. Wajs, “Signal recovery by
proximal forward-backward splitting,” Multiscale Mod-
eling & Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.

[6] H. Bauschke and P. Combettes, Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. Springer,
2011.

[7] R. T. Rockafellar, Convex Analysis (Princeton Landmarks
in Mathematics and Physics). Princeton University
Press, 1996.

[8] A. Beck and M. Teboulle, “A fast iterative shrinkage–
thresholding algorithm for linear inverse problems,”
SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp.
183–202, 2009.

[9] A. Barbero and S. Sra, “Fast newton–type methods for
total variation regularization,” in Proceedings of the 28th
International Conference on Machine Learning (ICML–
11), New York, NY, USA, June 2011, pp. 313–320.

[10] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T.
Figueiredo, “Fast image recovery using variable splitting
and constrained optimization,” Image Processing, IEEE
Transactions on, vol. 19, no. 9, pp. 2345–2356, Septem-
ber 2010.

[11] M. Wytock, S. Sra, and J. Z. Kolter, “Fast newton
methods for the group fused lasso,” in Proceedings of the
30th Conference on Uncertainty in Artificial Intelligence,
2014.

	plantilla_actualizada_ps_CONGRESO1.pdf
	generalized_alaiz_ IJCNN_2015

