
Online Fault Detection Based on Typicality and 

Eccentricity Data Analytics 

Bruno Sielly lales Costa*, Clauber Gomes Bezerrat, Luiz Affonso Guedes+ and Plamen Parvanov Angelov§ 

*Campus Natal - Zona Norte 

Federal Institute of Rio Grande do Norte - IFRN 

Natal, Brazil 

Email: bruno.costa@ifrn.edu.br 
tCampus EaD 

Federal Institute of Rio Grande do Norte - IFRN 

Natal, Brazil 

Email: c1auber.bezerra@ifrn.edu.br 
+Department of Computer Engineering and Automation 

Federal University of Rio Grande do Norte - UFRN 

Email: affonso@dca.ufrn.br 
§Lancaster University, Data Science Group, School of Computing and Communications, 

Lancaster LAI 4WA, United Kingdom 

Chair of Excellence, Carlos III University, Madrid, Spain 

Email: p.angelov@lancaster.ac.uk 

Abstract-Fault detection is a task of major importance in 
industry nowadays, since that it can considerably reduce the risk 
of accidents involving human lives, in addition to production and, 
consequently, financial losses. Therefore, fault detection systems 
have been largely studied in the past few years, resulting in many 
different methods and approaches to solve such problem. This 
paper presents a detailed study on fault detection on industrial 
processes based on the recently introduced eccentricity and 
typicality data analytics (TEDA) approach. TEDA is a recursive 
and non-parametric method, firstly proposed to the general 
problem of anomaly detection on data streams. It is based on 
the measures of data density and proximity from each read data 
point to the analyzed data set. TEDA is an online autonomous 
learning algorithm that does not require a priori knowledge 
about the process, is completely free of user- and problem-defined 
parameters, requires very low computational effort and, thus, 
is very suitable for real-time applications. The results further 
presented were generated by the application of TEDA to a pilot 
plant for industrial process. 

I. INTRODUCTION 

With the growing demand for more productive processes, 
complexity and size of industrial plants are increasing consid­
erably, making its maintenance more and more difficult. Indus­
trial equipment are subject to natural degradation signs over 
time, such as exhaustion, dirt, corrosion, cleavage and damage 
caused by operators. The appearance of any of these signs 
make the plant more susceptible to faults during operation. 

A fault can be defined as an unallowed deviation of at 
least one of the features or parameters of a system from an 
acceptable/usual/standard condition [1]. In general, a fault is 
an unexpected alteration on the behavior of a system that can 
lead it to a critical situation. 

In controlled dynamic systems, if no preventive action is 
taken, the appearance of faults become inevitable, which may 
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lead the process to deviate from its normal state of operation, 
since that the system is not able to efficiently handle the fault. 
If the fault is not promptly corrected by a proper action, the 
system can reach an emergency situation, often resulting in a 
series of problems, such as unscheduled stoppages, production 
losses, reduction of equipment lifespan and accidents with 
consequences to human life and the environment. For example, 
the accident occurred in P-36 platform of PETROBRAS at the 
year of 2001 resulted in the loss of 11 human lives, in addition 
to environmental pollution and financial losses of about five 
billion dollars [2]. 

Very often, the process of fault detection in industrial 
environments is still manual and dependent on the expertise 
of the operator, which makes the process imprecise and 
considerably slow. Moreover, due to the great complexity of 
the monitored systems, the work of operators is even more 
difficult. According to Venkatasubramanian et. al. [3], statistics 
show that about 70% of the industrial accidentes are caused 
by human errors. 

However, the increasing demand for productivity and safety 
resulted in great academic effort in the past few years on 
fault detection area of study. Very often, different techniques 
are combined in fault detection and diagnosis algorithms. 
Among these techniques, one can mention statistical [4], [5], 
observer-based [6], [7], analytical redundancy-based [8], [9], 
fuzzy model-based [10], [11], neural network-based [12], [13], 
immune system-based methods [14], [15] and so on. 

However, many of these techniques need a priori knowl­
edge about the behavior of the process, requiring the use of 
mathematical models and/or user-defined parameters, limiting 
the applicability of such approaches to real industrial pro­
cesses. Moreover, in a fault detection application, the data is 
frequently acquired from several different process measured 



variables, at each time instant k, and need to be processed in 
real-time. Therefore, one should expect that a fault detection 
system be able to handle large amounts of data, providing 
quick and reliable response with low computational effort [3]. 

Very recently, a new anomaly/outlier detection that meet 
most of the mentioned requirements was introduced by [16]. 
Typicality and Eccentricity Data Analytics (TEDA) works with 
the concepts of typicality and eccentricity of data samples, 
based on their distance to the whole data set. Moreover, TEDA 
is recursively calculated, which makes it very suitable for real­
time applications. In this work, TEDA is used for the first time 
in a fault detection application using real industrial data. 

The remainder of this paper is organized as follows: 
Section II reviews the general concepts of TEDA. In Section 
III, DAMADICS fault detection benchmark is presented. In 
Section IV, the obtained results are presented and discussed. 
Finally, Section V presents the conclusions and future work. 

II. TEDA 

Our current approach is based on recently introduced 
anomaly detection technique called Typicality and Eccentricity 
Data Analitics (TEDA). The TEDA framework builds upon the 
well-known Recursive Density Estimation (RDE) algorithm 
family [17], however, with major differences in its formulation. 
It was first published in [16] and, since then, has been applied 
to different classification problems [18], [19]. 

TEDA algorithm aims to generalize and avoid any restric­
tive assumptions inherited from traditional statistical methods 
and probability theory, such as independence of individual 
data samples from each other, inability to work with very 
large data sets and prior assumptions of data distribution (e.g. 
Gaussian) [16]. Traditional statistical approaches are often very 
suitable for random processes, however might violate or ignore 
the dependence of data in real processes, such as climate, 
physical, social, economic and so on. 

Fault detection, i.e. the task of distinguish a faulty state 
from a normal state of operation, is a common and recurrent 
anomaly detection application in industry. The data from a real 
industrial process presents, in the vast majority of times, many 
characteristics that makes the use of traditional statistical ap­
proaches not to be suitable for industrial applications, although 
have been often used for many years [20], [21]. 

TEDA, thus, emerges as an alternative statistical framework 
that can work efficiently with any data other than pure random 
processes in which each observation is completely independent 
from the others [16]. TEDA is based on several new quantities 
that are based on the proximity analysis in the n-dimensional 
feature space. The term typicality used in TEDA is somewhat 
similar to the recently introduced term with the same name 
in [22] to describe "the extent to which objects are 'good 
examples' of a concept". 

Let us have a data space X E �n, which consists of n­
dimensional data samples/observations/measurements. For this 
space, we can define a distance d(x, y), where Euclidean, 
Mahalanobis or any other measures can be used. Then, 
let us consider the data samples as an ordered sequence 
{Xl, X2, ... , Xk, . . .  }, Xi E Rn, i E N, where the index k 
represents the time instant of the observation. 

For the whole data set/stream, we can define sum distance 
pi to some particular point X EX, for each element up to the 
kth one: k 

Jrk(x) = Ld(x,Xi) i=l 
(1) 

The eccentricity � of the data sample X at the time instant 
k can be defined as [23] 

= 2 2::7=1 d(x, Xi) 
2::7=12::7=1 d(Xi,Xj) 

(2) 

k ? 2, 

As a complement to the eccentricity, the typicality T of the 
data sample X at the time instant k is also defined as [24]: 

The eccentricity and typicality are both bounded [23]: 

k 
O:s; �k(x) :s; 1, L�k(Xi) = 2, 

i=1 k 
o :s; Tk(X) :s; 1, LTk(Xi) = k - 2, 

i=l 
k :s; 2, 

k 
L Jrk(Xi) > 0 
i=l 

(3) 

Both values of typicality and eccentricity can be, as RDE, 
calculated recursively. It can be shown, that equation 2 can be 
derived as an exact as [19] 

(4) 

The values of mean fJ� and variance (J� can be calculated 
recursively by [19] 

k (k - 1)fJ�-1 Xk 0 
fJx = k 

+ k' k? 1, fJx = 0 (5) 

(k 1) k-1 T - fJxTx + xk Xk k > 1 0 
0 (6) k k '  - , fJxTx = 

[ k]2 k [ k]T (Jx = fJxTx - fJx fJx (7) 

Likewise, the typicality can be calculated by [19] 

Then, the normalized eccentricity can be calculated as [19] 

m2+1 
<� (9) 



The recursive calculation and update of the values of 
eccentricity and typicality result in a very efficient algorithm 
with very low computational effort. TEDA does not require 
that previously read data samples be stored in memory, only 
the values of J.L and cr are held, and still, there is no data 
loss relative to eccentricity update, since it is calculated as 
an exact, not approximate or learned, as the offline version 
presented in equation 2. The recursive nature of TEDA enables 
its application to a wide range of real-time processes, where 
the computational resources are limited and fast response is 
mandatory. 

TEDA is an autonomous learning procedure and calcula­
tions of eccentricity and typicality are completely data-driven. 
Therefore, user- or problem-specific parameters or thresholds 
are not required. However, fault detection approaches may 
be frequently seen as one-class classifiers. Thus, the task of 
defining the boolean membership to a certain group of data 
(e.g. normal or faulty) requires the definition of a threshold 
which, usually, does not need to be static. 

A widely used principle for anomaly detection is using 
the so called "ncr" thresholds [25]. However, the use of the 
ncr requires the a priori strict assumption of a Gaussian 
distribution that TEDA tries to avoid. On the other hand, for 
any distribution, but, assuming a representatively large amount 
of independent data samples, one can use so called Chebyshev 
inequality [26] which states that no more than 1/n2 of the data 
samples/points are more than ncr away from the mean (where 
cr denotes the standard deviation). The authors in [25] show 
that the condition that provides exactly the same result (but 
without making any assumptions on the amount of data, their 
independence and so on) as the Chebyshev inequality can be 
given as: 

(10) 

III. CASE OF STUDY 

The validation of the proposed approach based on TEDA 
was performed on the very well-known fault detection bench­
mark DAMADICS. It is one of the most used benchmarks for 
fault detection and diagnosis applications and is advantageous 
in the sense of enabling to perform the experiments using real 
industrial data and serving as a fair basis of comparison to 
other techniques. 

DAMADICS is the acronym for Development and Applica­
tions of Methods for Actuator Diagnosis in Industrial Control 
Systems, first introduced in [27]. It is an openly available 
benchmark system, based on the industrial operation of the 
sugar factory Cukrownia Lublin SA, Poland. The benchmark 
considers many details of the physical and electro-mechanical 
properties of a real industrial actuator valve. Figures l(a) and 
l(b) illustrates the actuator model used in DAMADICS. 

With DAMADICS, it is possible to simulate 19 abnormal 
events, along with the normal operation, from three actuators. 
A faulty state is composed by the type of the fault followed by 
the failure mode, which can be abrupt or incipient. Moreover, 
the benchmark also provides a set of online data files, each one 
containing the data from 24-hour use of the plant, including 

(a) (b) 

Fig. 1. Actuator model of DAMADICS benchmark [28]: (a) extemal view 
e (b) internal schema. 

artificial insertion of faults in specific hours. In this paper we 
are working with the data from all 19 possible faults. 

IV. EXPERIMENTS AND RESULTS 

The experiment consisted of applying TEDA online algo­
rithm to the data set provided by DAMADICS benchmark. 
The referred data set was acquired during several days of 
continuous operation of the plant. It is organized in several 
files, each one corresponding to the plant operation of a 
full working day and provides data of 32 different process 
variables. The sampling rate is 1 data point/second, therefore, 
each file contains 86400 samples of each one of the 32 
variables per day. 

DAMADICS provides data corresponding to 25 full work­
ing days, however, only 4 of them present faulty behaviors. 
A total of 19 artificial faults were manually added to the 
process in all of its three different actuators. The faults can 
be classified in 4 different groups, named f16, f17, f18 and 
f19, and described in Table I. 

TABLE I. DESCRIPTION OF THE ARTIFICIALLY GENERATED FAULTS. 

Fault code I Description 

fl6 Positioner supply pressure drop 

fl7 Unexpected pressure drop across the valve 

fl8 Partly opened bypass valve 

f19 Flow rate sensor fault 

Since the faults are located in different parts of the plant, 
different variables need to be selected as input to the algorithm. 
The feature selection or feature extraction procedure is an 
important stage of the task, since the set of selected features 
represents the overall idea of density variation. It is defined 
from the input/output variable space and possible prepro­
cessing operations. It can be classified as either quantitative, 
such as principal component analysis (PCA) [29], partial least 
squares (PLS) [30], linear discriminant analysis (LDA) [31], or 
qualitative, for example expert systems [32] or trend modeling 
methods [33]. For more information on the use of feature 
extraction methods, the reader is referred to [34], [35], and 
[36]. 

However, in this work, we chose to use the same variables 
as defined in DAMADICS descriptive manual [28]. For each 
fault stream, the behavior of 2 input variables is analyzed. 



Likewise, the interval to be analyzed is also determined based 
on DAMADICS manual. Each fault stream consists of a period 
of time where the signals start in a normal state of operation, 
followed by a faulty state and, again, normal operation. The 
only exception is the fault stream #13, which never leaves the 
faulty state once it begins. 

TEDA was, then, applied to the set of 19 fault streams, and 
the normalized eccentricity, ( is calculated at each time instant 
k. Therewith, each sample within the analyzed interval was 
classified as 'normal' or 'faulty'. The threshold (, with n = 3 
(provides the same result as 3eT, however without making any 
assumption about the data distribution), thus (k = 5/k, was 
used for the classification. 

The analysis of the obtained results considers three dif­
ferent measures: true positive rate (TPR), false positive rate 
(FPR) and total hit rate (THR) [37]. TPR is defined by 

TPR= � 100 (11) 

where n j is the number of correctly detected faulty samples 
and Nj is the total of faulty samples. 

FPR, on the other hand, is defined as 

FPR = �n 100 n (12) 

where nn is the number of normal samples incorrectly classi­
fied as faulty samples and Nn is the total of normal samples 
within the designated interval. 

Finally, THR is defined as 

THR= � 100 (13) 

where nt is the number of correctly classified samples, both 
normal and faulty, and Nt is the total of samples of the data 
stream. 

With the application of TEDA to each of the 19 fault 
streams provided by DAMADICS, the values of TPR, FPR 
and THR were calculated. The obtained results are shown in 
Table II. 

One can observe that the application of TEDA resulted in a 
73,59% total TPR, considering all 19 fault streams. Regarding 
the fault positive samples, the average of FPR is 15,30%, 
resulting in 84,70% of correctly classified normal samples. In 
total, considering the whole data set of all 19 fault streams, 
the average of THR is 77,28%. 

Analyzing the results shown in Table II, one can observe 
that the higher percent rate of TEDA occurred on fault item 
#7, where all faulty samples were correctly classified and, 
moreover, a very low FPR of 3.16% was achieved. Then, a 
THR of 98.90% was obtained. Similar results were obtained 
for many of the fault streams. Figure 2, for example, shows 
the obtained results for #l. 

Figure 2(a) illustrates the behavior of the 2 input variables 
analyzed by TEDA, where the actual beginning and end of the 
fault are indicated by dotted red bars. It is easy to observe the 
abrupt changes from time instant k = 58800 to k = 59800. 

TABLE II. FAULT DETECTION RESULTS OBTAINED USING TEDA. 

I Item I Actuator I TPR I FPR I THR I 
I 92.01% 6.70% 92.65% 

-----z- 83.33% 2.90% 93.31 % 

� 36.63% 4.50% 75.75% 

� Actuator I 0.00% 0.00% 47.26% 
-

5 72.28% 10.43% 88.41% 

� 73.27% 4.75% 90.82% 

� 100% 3.16% 98.80% 

8 93.33% 10.47% 90.10% 

� 91.30% 19.66% 81.59% 

----w-
Actuator 2 

91.67% 0.00% 97.03% 

----u- 89.74% 0.00% 96.04% 
-

12 93.02% 0.00% 97.03% 

� 0.09% 0.00% 6.75% 

14 80.76% 8.28% 88.71% 
-

15 68.63% 0.00% 92.04% 

� 83.52% 34.55% 73.63% 

----u- Actuator 3 83.93% 48.28% 60.70% 

� 93.65% 59.20% 54.09% 

� 71.02% 77.78% 43.64% 

Mean 73,59% 15.30% 77,28% 

Such changes are immediately followed by the value of the 
normalized eccentricity, illustrated in Figure 2(b), exceeding, 
then, the value of threshold 5/k. 
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X104 

(a) 
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I zeta I 

�, 
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0 5.85 5." 5.95 6.05 
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Fig. 2. results obtained for fault stream #1: (a) input variables and (b) 
normalized eccentricity with threshold S/k. 

Regarding the false positive, 6 of 19 faults resulted in 
FPR values of 0.00%. Among them, fault stream #12 need 
to be mentioned, where the obtained value of TPR is 93.02%. 
Figure 3 shows the generated charts for such fault. By ana­
lyzing Figure 3(a) we observe that the behavior of the 2 input 
variables are changed at the beginning the the fault. The values 
of eccentricity and threshold are shown in Figure 3(b). 

It is important to highlight that, the value of eccentricity 
increases significantly if the input data changes, particularly 
when such change is abrupt. Following the same construct 
of fault streams # 1 and # 1 0, Figures 4 and 5 illustrate the 
behavior of fault streams #2 and #15, respectively, including 
the calculated values of eccentricity and threshold. 
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Fig. 3. results obtained for fault stream #12: (a) input variables and (b) 
normalized eccentricity with threshold S/k. 
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Fig. 4. results obtained for fault stream #2: (a) input variables and (b) 
normalized eccentricity with threshold S/k. 

In the case of incipient faults, i.e. faults that gradually 
and slowly change the values of the observed variables, the 
results might not be so significant. However, detecting slowly 
developing faults is, indeed, usually more complicated than 
detecting abrupt faults. Tradeoffs between early detection and 
false positive avoidance are more difficult to establish and, 
often times, slow drift faults go completely undetected because 
the fault detection systems assume that they are ordinary 
system changes and some monitoring schemes may adapt to 
the changes [38]. In the case of DAMADICS, fault stream #4 
was not detected as a fault since its development is very slow, 
as can be seen in Figure 6. 

V. CONCLUSION 

In this paper, a new approach to fault detection, based 
on the recently introduced typicality and eccentricity data 
analytics method, was proposed. The general concepts of 
TEDA for anomaly detection were successfully applied, for 

(a) 

(b) 

Fig. S. results obtained for fault stream #IS: (a) input variables and (b) 
normalized eccentricity with threshold S/k. 
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Fig. 6. results obtained for fault stream #4: (a) input variables and (b) 
normalized eccentricity with threshold S/k. 

the first time, to a very well-known real data fault detection 
benchmark. TEDA does not require pre-defined models, user­
or problem-defined parameters or thresholds or, moreover, pre­
viously known data distributions, as other standard techniques 
often do. 

The obtained results were shown to be significant, both 
in hit rate and execution time. The results also showed that, 
the approach is suitable for industrial real-time applications, 
and TEDA algorithm is capable to cope with the experiment 
constraints and industrial environment particularities. 

In our future work, special attention will be placed on the 
identification/classification of the types of faults by the use of 
evolving classification algorithms based on TEDA framework. 
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