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Abstract—The bag of visual words is a well established repre-
sentation in diverse computer vision problems. Taking inspiration
from the fields of text mining and retrieval, this representation
has proved to be very effective in a large number of domains.
In most cases, a standard term-frequency weighting scheme
is considered for representing images and videos in computer
vision. This is somewhat surprising, as there are many alternative
ways of generating bag of words representations within the text
processing community. This paper explores the use of alternative
weighting schemes for landmark tasks in computer vision: image
categorization and gesture recognition. We study the suitability of
using well-known supervised and unsupervised weighting schemes
for such tasks. More importantly, we devise a genetic program
that learns new ways of representing images and videos under
the bag of visual words representation. The proposed method
learns to combine term-weighting primitives trying to maximize
the classification performance. Experimental results are reported
in standard image and video data sets showing the effectiveness
of the proposed evolutionary algorithm.

I. INTRODUCTION

The bag of visual words representation is a state-of-the-art
methodology for effectively describing the content of images
and videos in computer vision tasks [1]. Inherited from the text
processing domain, this representation captures information
about the occurrence of patterns from a previously learned
codebook. Usually, an image is represented by an histogram
that accounts for the occurrence of elements of the codebook
(i.e., the visual words), see e.g., Section 11.3 in [2]. This way
of representing images has proved to be successful in a large
number of applications and domains [1], [3], [4], [5], [6],
[7], [8], [9]. Although this representation is very popular, it
is somewhat surprising that in most studies a term-frequency
weighting scheme is considered for representing images (i.e.,
the representation simply accounts for the frequency of occur-
rence of visual words). Since the information retrieval and text
mining communities have a long tradition with representing
documents with bags of words [10], [11], it is worth asking
ourselves, whether alternative weighting schemes proposed in
the previous communities could be beneficial for computer
vision tasks as well. This paper focuses in this problem.

Specifically, we explore in this paper the suitability of com-
mon unsupervised and supervised term-weighting schemes,
that have been proposed for information retrieval and text

categorization, for representing images and videos under the
bag of visual words. More importantly, we devise an evolu-
tionary algorithm that learns new weighting schemes for repre-
sentations based on visual words. The evolutionary algorithm
searches the space of possible weighting schemes that can be
generated by combining a set of primitives, this is with the
aim of maximizing the classification/recognition performance.
A working hypothesis of our work is that weighting schemes
alternatives to the traditional term-frequency one may lead
to better performance. We perform experiments in landmark
problems in computer vision, namely: image categorization
(different subsets of the Caltech-101 data set [12]), gesture
recognition (the newly introduced Montalbano data set [13]),
places-scene recognition (the well known 15-scenes [5]), and
adult image classfication [14]. Results confirm our hypothesis
and motivate further research in this direction.

The remainder of this paper is organized as follows. Next
section describes the bag of visual words representation. Sec-
tion III elaborates on alternative schemes from the information
retrieval and text categorization fields. Section IV introduces
the evolutionary technique to learn weighting schemes. Sec-
tion V presents our experimental study. Finally, Section VI
outlines conclusions and future work directions.

II. THE BAG OF VISUAL WORDS REPRESENTATION

In text mining and information retrieval, the bag of words
representation is a way to map documents into a vector space,
with the aim that such space captures information about the
semantics and content of documents. The idea is to represent
a document by a vector of length equal to the number of
terms (e.g., words) in the vocabulary associated to the corpus
under analysis. Each element of this vector indicates the
relevance/importance of the corresponding term for describing
the content of the document. Although the bag of words makes
strong assumptions (e.g., that word order is not important), it
is still one of the most used representations nowadays.

Formally, the ith document is represented by a vector
di = 〈xi,1, . . . , xi,|V |〉, where xi,j is a scalar that indicates
the relevance of term tj for describing the content of the ith

document; V is the vocabulary, i.e., set of different words
in the corpus. The way in which xi,j is estimated is given
by the so called term-weighting scheme. There are many



ways of defining xi,j in the text mining and information
retrieval literature. Usually, xi,j carries information about both:
term-document relevance (TDR) and term-relevance (TR). The
former, explicitly measures the relevance of a term for a doc-
ument, i.e., it captures local information. The most common
TDR is the term-frequency (TF) weight, which indicates the
number of times a term occurs in a document. On the other
hand, TR aims to capture relevance of terms for the task
at hand, i.e. global information. The most common TR is
the inverse-document-frequency weight (IDF), which penalizes
terms occurring frequently along the corpus. Usually, xi,j

combines a TDR and a TR weight; perhaps the most common
combination is the TF × IDF weighting scheme [15], [1].

The success of the bag of words representation in the
natural language processing domain has inspired researchers
in computer vision as well, and currently the bag of visual
words is among the most used representations for images and
videos [2], [9], [1], [5], [6], [4], [7], [3], [8], [16]. In analogy,
under this representation an image is represented by a vector
indicating the relevance of visual words for representing the
content of the image. Where a visual word is a prototypical
visual pattern that summarizes the information of other visual
descriptors extracted from training images. More specifically,
the visual words vocabulary is typically learnt by clustering
visual descriptors extracted from training images. The cen-
ters of the resultant clusters are considered as visual words.
Commonly, visual descriptors (e.g., SIFT) are extracted from
points or regions of interest, see [2], [3] for comprehensive
descriptions of the bag of visual words representation.

The success of this representation in computer vision
depends on a number of factors, including the interest-point-
detection phase, the choice of visual descriptor, the clustering
step, and the choice of learning algorithm for the target
modeling task (e.g., classification) [3]. A factor that has not
been deeply studied is the role that the term-weighting scheme
plays. Commonly, term-frequency or Boolean term-weighting
schemes are considered in computer vision tasks. Despite the
fact these schemes have reported acceptable performance in
many tasks (including tasks from natural language processing),
it is worth asking ourselves whether alternative schemes can
result in better performance. To the best of our knowledge, the
only work that aims at exploring this issue is the work by Tir-
illy et al. [9]. The authors compare the performance of different
term-weighting schemes for image retrieval. They considered
the most common schemes from information retrieval and
provide a comprehensive comparative study. In our work we
focus on classification/recognition tasks and consider weight-
ing schemes specifically designed for classification tasks. In
addition, we propose a genetic program to learn weighting
schemes by combining a set of primitives. One should note
that there are efforts for improving the bag of visual words
in several directions, most notably, great advances have been
obtained for incorporating spatial information [6], [4], [5],
[17], [18]. The term-weighting schemes developed in this work
can also be applied with the previous extensions.

Term-weighting learning with evolutionary algorithms has
been studied within information retrieval and text categoriza-
tion domains [19], [20], [21]. In [19] the authors learn infor-
mation retrieval weighting schemes with genetic programming,
they aim to combine a few primitives trying to maximize aver-

age precision. In [20], [21] authors use genetic programming
for learning weighting schemes for text classification tasks.
This work focuses on learning weighting schemes for computer
vision tasks.

III. ALTERNATIVE WEIGHTING SCHEMES

As explained above, the most used weighting scheme for
information retrieval and text mining tasks is the so called
TF × IDF [15], [11]. Although good results have been
reported in many applications with it, alternative weighting
schemes have been proposed aiming to capture additional
or problem-specific information with the goal of improving
retrieval or classification performance [22], [23], [24], [15].
For instance, for text classification tasks, supervised term-
weighting schemes have been proposed [22], [23]. These
alternatives aim at incorporating discriminative information
into the representation by defining TR weights that account for
the discriminative power of terms. For instance, by replacing
the IDF term (in the TF ×IDF scheme) by a discriminative
term IG (the information gain of the term), resulting in a
TF×IG scheme. Common and alternative weighting schemes
are described in Table I.

To the best of our knowledge, alternative weighting
schemes from Table I have not been evaluated in the context
of most computer vision tasks (see Section II). Therefore,
a contribution of this paper is to assess the suitability of
such schemes for landmark computer vision problems. Next
we describe our proposed approach for automatically learning
term weighting schemes.

IV. LEARNING WEIGHTING SCHEMES FOR VISUAL WORDS

So far we have described standard and alternative weight-
ing schemes used in text mining and information retrieval
(see Table I), in Section V we evaluate the performance of
such schemes in computer vision problems. Although these
are among the most popular schemes, one should note that
they have been manually proposed by researchers based on
their own expertise, biases, and needs; where it has been
the norm to use the same weighting scheme for every data
set under analysis. In fact, in computer vision tasks, the
weighting scheme is rarely considered a factor that can affect
the performance of models based on the bag of visual words
formulation. In this paper, we propose a novel approach for
automatically generating weighting schemes for computer vi-
sion tasks. Our proposed method uses genetic programming to
combine a set of TDR/TR primitives with the aim of obtaining
a weighting scheme that outperforms traditional ones. Our
approach removes biases of designers and does not rely on user
expertise. Instead, weighting schemes are sought such that they
maximize the performance in the task under analysis. Hence,
our automatic technique allows us to learn tailored schemes
for every data set / task being approached.

Figure 1 presents a general diagram of the proposed
approach. A set of primitives (step 1 in Figure 1) is extracted
from training images. These primitives are obtained by count-
ing visual word occurrence statistics. Next, they are feed into
a genetic program that learns how to combine such primitives
to give rise to term-weighting scheme (step 2). The output of
the genetic program is a way to represent images that has



TABLE I. COMMON TERM WEIGHTING SCHEMES USED IN TEXT MINING AND INFORMATION RETRIEVAL. IN EVERY SCHEME, xi,j INDICATES HOW
RELEVANT TERM tj IS FOR DESCRIBING THE CONTENT OF THE ith DOCUMENT, UNDER THE CORRESPONDING WEIGHTING SCHEME. N IS THE NUMBER OF
DOCUMENTS IN TRAINING DATA SET, #(di, tj) INDICATES THE FREQUENCY OF TERM tj IN THE ith DOCUMENT, df(tj) IS THE NUMBER OF DOCUMENTS IN

WHICH TERM tj OCCURS, IG(tj) IS THE INFORMATION GAIN OF TERM tj , CHI(tj) IS THE χ2 STATISTIC FOR TERM tj , AND TP , TN ARE THE TRUE
POSITIVE AND TRUE NEGATIVE RATES FOR TERM tj (I.E., THE NUMBER OF POSITIVE, RESP. NEGATIVE, DOCUMENTS THAT CONTAIN TERM tj ).

Acronym Name Formula Description Ref.
B Boolean xi,j = 1{#(ti,dj)>0} Indicates the prescense/abscense of terms [10]
TF Term-Frequency xi,j = #(ti, dj) Accounts for the frequency of occurrence of terms [10]
TF-IDF TF - Inverse Docu-

ment Frequency
xi,j = #(ti, dj)× log( N

df(tj)
) An TF scheme that penalizes the frequency of terms

across the collection
[10]

TF-IG TF - Information
Gain

xi,j = #(ti, dj)× IG(tj) TF scheme that weights term occurrence by its
information gain across the corpus

[22]

TF-CHI TF - Chi-square xi,j = #(ti, dj)× CHI(tj) TF scheme that weights term occurrence by its χ2

statistic
[22]

TF-RF TF - Relevance Fre-
quency

xi,j = #(ti, dj)× log(2+ TP
max(1,TN)

) TF scheme that weights term occurrence by its RF
relevance

[23]

Fig. 1. General diagram of the proposed approach. ** Information from the
classes in the test set is not used.

been learnt automatically (step 3). Next, both training and
test images are represented according to the learned scheme
(step 4) and, finally, a predictive model is learned and their
performance evaluated. The rest of this section describes our
proposed method.

A. Genetic programming

Our solution to learn term-weighting schemes is based
on genetic programming (GP) [25]. GP is an optimization
algorithm that was inspired by biological evolutionary systems.
Solutions to the problem at hand are seen as individuals that
interact among them and with the environment (the search
space) in such a way that the survival of the population is
sought. The general flow of a typical genetic program is
shown in the left plot of Figure 2: an initial population of
solutions/individuals is created (randomly or by a pre-defined
criterion), after that, individuals are selected, recombined,
mutated and then placed back into the solutions pool, this
process is repeated a number of times and the algorithm returns
the best individual found.

A distinctive feature of GP, when compared to other
evolutionary algorithms, is in that complex data structures

are used to represent solutions (individuals), for example,
trees or graphs. Thus, GP can be used for solving complex
learning/modeling problems.

B. GP for term-weighting-scheme learning

Our approach to generate weighting schemes uses genetic
programming to learn to combine a set of primitives that have
been used for building weighting schemes in the past (see
Figure 1). The genetic program searches for the combination
of primitives that maximizes the classification performance
of the task under analysis (e.g., image classification). A
tree representation is adopted in which leafs correspond to
primitives and non-terminal nodes correspond to operators by
which primitives are combined; the evaluation of a tree leads
to a term-weighting scheme, see Figure 2, right.

Fig. 2. Left: a generic evolutionary algorithm. Right: adopted representation
for individuals. In the latter, dashed nodes represent operators (taken from the
function set) and solid-line nodes indicate terminals; below the tree we show
the term-weighting scheme derived from it.

1) Representation: As previously mentioned, weighting
schemes are mainly composed of two type of factors: TDR
an TR weights, which determine the importance of terms into
documents and the relevance of terms themselves, respectively.
Accordingly, the genetic program uses as terminals TDR
and TR primitive (together with useful constants and other
weighting schemes), which are combined by a predefined set of
operators. An individual (i.e., solution) in the genetic program
is thus a tree formed by these terminals and operators, where



the evaluation of the tree leads to a term-weighting scheme.
The right plot in Figure 2 depicts a typical individual and the
resultant weighting scheme.

The set of terminals considered in this work is shown
in Table II, as operators (non-terminals) we considered the
following function set: F = {+,−, ∗, /, log2 x,

√
x, x2}. Each

terminal in Table II is a matrix of size N × |V |, where N is
the number of training documents and V the vocabulary (i.e.,
the codebook of visual words). TDRs are themselves matrices
of that dimensions, but TRs are row vectors of length |V | (i.e.,
they indicate the relevance of each term). To make all matrices
comparable (and henceforth suitable for combination under the
function set F), TRs are converted into matrices by repeating
the row vector N times. Therefore, all of the operators in
the function set act on a scalar basis, that is, they are applied
element-by-element. It is worth mentioning that for supervised
TR factors, we use information extracted from training images
only; i.e., no supervised information is used from the test set.

TABLE II. TERMINAL SET.

Variable Meaning
W1 N , Constant matrix, number of training documents.
W2 ‖V ‖, Constant matrix, number of terms.
W3 CHI , Matrix containing in each row the vector of χ2 weights for the terms.
W4 IG, Matrix containing in each row the vector of information gain weights for the terms.
W5 TF − IDF , Matrix with the TF-IDF term weighting scheme.
W6 TF , Matrix containing the TF term-weighting scheme.
W7 FGT , Matrix containing in each row the global term-frequency for all terms.
W8 TP , Matrix containing in each row the vector of true positives for all terms.
W9 FP , Matrix containing in each row the vector of false positives.
W10 TN , Matrix containing in each row the vector of true negatives.
W11 FN , Matrix containing in each row the vector of false negatives.
W12 Accuracy, Matrix where each row contains the accuracy obtained when using the term as classifier.
W13 Accuracy Balance, Matrix containing the AC Balance each (term, class).
W14 BNS, An array that contains the value for each BNS per (term, class).
W15 DFreq, Document frequency matrix containing the value for each (term, class).
W16 FMeasure, F-Measure matrix containing the value for each (term, class).
W17 OddsRatio, An array containing the OddsRatio term-weighting.
W18 Power, Matrix containing the Power value for each (term, class).
W19 ProbabilityRatio, Matrix containing the ProbabilityRatio each (term, class).
W20 Max Term, Matrix containing the vector with the highest repetition for each term.
W21 RF , Matrix containing the RF vector.
W22 TF × RF , Matrix containing TF × RF .

The initial population is generated with the ramped half-
half strategy, which means that half of the population is
created with the full method (i.e., all trees have the same
deep, maxdepth) and the other half is created with the grow
method (i.e., trees have deep of at most maxdepth), see [25]
for details.

2) Fitness function: Since the goal of the genetic program
is to obtain a weighting scheme that maximizes classification
performance, the goodness / fitness of each solution should
be tied to the classification performance of a model using the
representation induced by the weighting scheme. Specifically,
given a solution to the problem, we first evaluate the tree
to generate a weighting scheme using the training set, as in
Figure 2, right. Once training documents are represented by
the corresponding weighting scheme, we perform a k−fold
cross-validation procedure, using a given classifier, to assess
the effectiveness of the solution. In k−fold cross validation,
the training set is split into k disjoint subsets, and k rounds of
training and testing are performed; in each round k−1 subsets
are used as training set and 1 subset is used for testing, the
process is repeated k times using a different subset for testing
each time. The average classification performance is directly
used as fitness function.

In particular, we evaluate the performance of classification
models with the f1 measure. Let TP , FP and FN to denote
the true positives, false positives and false negative rates for
a particular class, precision (Prec) is defined as TP

TP+FP and
recall (Rec) as TP

TP+FN . f1-measure is simply the harmonic
average between precision and recall: f1 = 2×Prec×Rec

Prec+Rec . The
average across classes is reported (also called, macro-average
f1), this way of estimating the f1-measure is known to be
particularly useful when tackling unbalanced data sets.

Because under the fitness function k−models have to be
trained and tested for the evaluation of a single solution,
we need to look for an efficient classification model. We
considered support vector machines (SVM) as they can deal
naturally with the sparseness and high dimensionality of data.
However, training and testing an SVM can be a time consum-
ing process. Therefore, we opted for efficient implementations
of SVMs that have been proposed recently [26], [27]. Those
methods are trained online and under the scheme of learning
with a budget. We use the predictions of an SVM as the
fitness function for learning term-weighting schemes (TWS).
Among the methods available in [27] we used the low-rank
linearized SVM (LLSMV) [26]. LLSVM is a linearized version
of non-linear SVMs, which can be trained efficiently with the
so called block minimization framework [28]. We selected
LLSVM instead of alterative methods, because this method
has outperformed several other efficient implementations of
SVMs, see e.g., [27], [26]. Thus we use this approximated
SVM during the fitness function, however, once a weighting
scheme has been learnt we use a deterministic SVM to classify
the test set. This is to make results comparable and discard the
randomness inherent to the approximate solutions.

3) Genetic operators: The proposed genetic program fol-
lows a standard procedure as depicted in Figure 2, left.
We use the implementation from [29], which considers stan-
dard crossover and mutation operators. Specifically, subtree
crossover is considered where, given two parent trees, an
intermediate node is randomly selected within each tree. Then,
the subtrees below the selected nodes are interchanged between
the parents, giving rise to two offspring. The mutation operator
is quite standard as well, it consists of identifying a node within
the parent tree and replacing the node with another randomly
selected (terminals replaced by terminals and non-terminals
replaced by operators in F).

4) Final remarks: After the evolutionary process finishes,
the genetic program returns a term-weighting scheme. Next,
training and test images are represented according to this
scheme. A classifier is learnt using the training representation
and its performance evaluated in the test representation. For
this evaluation we consider a deterministic SVM (from the
CLOP toolbox [30]), hence, results are comparable to each
other. The next section reports experimental results on sev-
eral computer vision tasks obtained with learned weighting
schemes.

V. EXPERIMENTS AND RESULTS

This section reports results of an experimental study that
aims at evaluating both: the suitability of alternative term-
weighting schemes for in computer vision tasks and the
performance of learned schemes in the same problems.



A. Experimental protocol

For experimentation we considered four standard data sets
associated to landmark computer vision tasks. The considered
data sets are described in Table III. All of these data sets
are associated to classification/recognition tasks, hence the
same evaluation protocol (with minor variations described
below for each data set) was adopted. For each data set
we generated training and test partitions1. The training set
is used to obtain the visual vocabulary and to maximize the
f1 measure for the genetic program. Unless otherwise stated,
we used the VLFEAT toolbox for processing images [31],
using PHOW2 (Pyramid Histogram Of Visual Words) features
as visual descriptors [4]. Next, training and test images are
represented with the different term-weighting schemes. Then,
a classification model is learned using training data and the
performance of the model is evaluated in test data.

TABLE III. DATA SETS CONSIDERED FOR EXPERIMENTATION.
COLUMN 6 SHOWS THE NUMBER OF images | terms CONSIDERED

DURING THE SEARCH PROCESS.

Image Categorization
Data set Classes |V| # Train # Test im.|terms

Caltech-tiny 5 12000 75 75 15|12000
Caltech-102 (15) 101 12000 1530 1530 165|3000
Caltech-102 (30) 101 12000 3060 3060 330|3000

Gesture recognition
Data set Classes |V| # Train # Test im.|terms

Montalbano 20 1000 6850 3579 2055|600
Scene recognition

Data set Classes |V| # Train # Test im.|terms
15 Scenes 101 12000 1475 3010 1475|2000

Pornographic image filtering
Data set Classes |V| # Train # Test im.|terms

Adult 101 12000 6808 1702 6808|2000

Regarding our genetic program for term-weighting learn-
ing, the average and standard deviation performance over 5
runs of the genetic program is reported. The method was
run in all cases for 50 generations with a population of 500
individuals, default values were used for the remainder of GP
parameters.

Because the optimization process may be too time consum-
ing, we learned the weighting schemes by using subsets of the
original training sets:

• Only samples belonging to a subset of classes were
used. In some cases, the vocabulary was also reduced,
see Table III column 6.

• The selection of classes was done randomly; while the
vocabulary reduction used a frequency criterion (the
most frequent terms were retained).

Despite this reductions, at the end of the search process,
all of the data and classes are considered for training the
final classifier and evaluation. We emphasize that during the
search process we use an approximate SVM for computing
the fitness function. When evaluating the performance of
weighting schemes in test set we used a deterministic linear

1Matlab files with the predefined partitions are available under request.
2PHOW is an extension to the raw bag of visual words formulation that

aims at incorporating spatial information by means of a pyramidal structure,
see [4] for details.

SVM. Specific details and considerations for each data set are
reported below.

Finally, for comparing the statistical-significance of differ-
ences we used a Wilcoxon signed-rank test (as recommended
in [32]).

1) Caltech-101: Caltech-101 [12] is a mandatory bench-
mark for image classification, it contains objects that belong
to 101 different categories, the inclusion of a background
category makes it a 102-classes data set. Sample images from
this data set are provided in Figure 3.

Fig. 3. Sample images from the Caltech-101 data set.

We performed experiments with three subsets: tiny, 101-
15 and 101-30. Tiny considers 5 out 102 classes with 15
images per-class for training and 15 for testing; data set 101-
15 considers the 102 classes with 15 training and 15 testing
images (per-class); finally, data set 101-30 considers the 102
classes with 30 images for training and 30 for testing. Using 3
subsets of Caltech-101 allows us to evaluate the performance
of our method for problems of comparable, but different,
complexity. In fact, we use these subsets of Caltech-101 to
assess the generality capabilities of the proposed approach,
see below.

2) Adult image filtering: A data set for adult image filtering
was considered. The data was made available by [7], and it has
been previously used in several publications, see [7], [14]. The
data set contains images belonging to five categories, where
there is one category for inoffensive images and four categories
of increasing level of adultness: lightly dressed, partly nude,
nude and pornographic, see Figure 4.

Fig. 4. Sample images from the data set of adult image filtering. The
categories are (from left to right): inoffensive images, lightly dressed persons,
partly nude persons, nude persons, and pornographic images (not shown).

The goal in this task is to associate images with its correct
category in such a way that the administrator of a filtering
system can decide the level of restriction in the type of
images users can have access to (e.g., photos of lightly dressed
persons may be allowed in most sites, even in schools, but
nude-persons and pornography may be objectionable in most
sites). About 80% of images were used as training set and the
remainder as test set, as in [7].

3) Scene recognition: We consider a benchmark data
set for scene recognition [5]. The data set comprises 15
indoor/outdoor categories, where images contain complex
scenes. Figure 5 shows sample images from this data set,
clearly this is a very challenging task. For this data set we
used the same partitioning proposed in [5]: 100 per category
for training and the rest for testing.



Fig. 5. Sample images from the 15-Scenes data set. Categories are from left to
right and from up to bottom: bedrom, suburb, industrial, kitchen, living-room,
coast, forest, highway, inside-city, mountain, open-country, street, tall-building,
office, store.

4) Montalbano: The bag of visual words has been used
to represent videos as well, see e.g., [1], [16], [18]. For this
reason we decided to include a video data set too. Specifically,
we considered the Montalbano data set for gesture recognition
as provided in [13]. The task consist of recognizing gestures
from 20 categories (Italian cultural gestures), see Figure 6.
The available data is depth and RGB video together with
skeleton information. For our experiments we used the features
proposed in [33], which combine depth, RGB video and
skeleton information by means of convolutional nets and other
deep learning mechanisms. The deep-learning features were
clustered and the vocabulary was built. One should note that
we approach the gesture recognition problem, that is, given
a segmented gesture, to tell the class of the gesture being
performed.

Fig. 6. Sample images from the Montalbano data set. Images from each of
the gesture categories are shown [13].

5) Results: This section presents results of traditional,
alternative and learned weighting schemes in the data sets
described above. As previously mentioned, the most common
approach for image representation under the bag of visual

words is the TF scheme, hence, we consider it our baseline.

Table IV shows the results in test-sets in terms of f1
measure. It can be seen from this table that, in average, the
Boolean weighting scheme outperforms both, traditional and
alternative, term-weighting schemes. This is an interesting
result, because, most of the times a (normalized) TF weighting
scheme is considered in computer vision tasks.

Regarding supervised term weighting schemes, only TF −
RF outperformed the usual TF scheme, but its performance
was lower than the Boolean scheme. This is a somewhat
disappointing result, because, intuitively, the incorporation of
discriminative information should yield better performance.
Anyway, we are reporting an experimental assessment of these
schemes in a number of tasks, and showing the adequacy of
the Boolean scheme.

On the other hand, it is clear from Table IV that the pro-
posed approach for learning visual-word weighting schemes
outperforms all the other variants in all of the considered
data sets (see column 8). The improvement is consistent and
by a considerable margin in most cases. Besides, one should
note that the standard deviation across runs is relatively low,
evidencing the stability and robustness of the method.

To better appreciate the improvements offered by our
method, in Figure 7 we show the range of improvement of our
method over the best traditional/alternative weighting scheme
per-data set in terms of absolute and relative differences. That
is, we plot the difference in performance between our method
(column 8) and the best result among columns 2-7 for each
particular data set. This means that our method is not compared
with the best scheme in average, but with the best overall for
each data set.

Fig. 7. Absolute (blue-first bar) and relative (red-right bar) improvement
for the different data sets, taking as reference the best traditional/alternative
weighting scheme for each data set.

From Figure 7 it can be seen that our method offers
considerable improvements for all but for the Montalbano data
set. The difficulty of this task may require running the genetic
programm using the whole number of classes/samples (for this
data set we used only a third of the total of instances, see
column 6 in Table III). This could be due to the fact that we are
modeling videos. On the other hand, the largest improvement
was observed for the Adult image data set, this could be due
to the fact that specific term-weighting schemes are required
for this type of tasks.



TABLE IV. CLASSIFICATION PERFORMANCE OBTAINED WITH TRADITIONAL, ALTERNATIVE AND LEARNED WEIGHTING SCHEMES. THE ? SYMBOL
INDICATES A STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN OUR APPROACH AND THE METHOD FROM THE CORRESPONDING COLUMNS.

Traditional Alternative Learned
Data set / TWS TF (baseline)? Bol.? TF-IDF? TF-RF? [23] TF-CHI? [22] TF-IG? [22] GP (ours)

Tiny 85.65 84.01 76.72 85.65 78.85 80.49 90.75+−1.56
101-15 52.26 58.43 48.08 52.30 52.00 51.43 61.05+−1.12
101-30 56.61 59.28 49.95 56.68 54.63 52.03 63.04+−1.02
Adult 52.53 58.35 55.39 52.53 46.39 47.23 62.68+−2.08

15 scenes 59.12 61.26 56.51 59.12 55.02 55.07 63.43+−0.16
Montalbano 88.55 86.46 88.49 88.55 88.5 88.58 88.79+−0.12

Average 65.78+−16.73 67.96+−13.44 62.52+−16.03 66.61+−16.44 62.57+−16.93 62.47+−17.46 71.62+−14.09

We now evaluate the generality of the weighting schemes.
Figure 8 shows boxplots reporting the average performance
obtained by the different term-weighting schemes when ap-
plied to all of the data sets. That is, each of the considered
methods (columns 2-8 in Table IV) was evaluated in all of the
data sets (including data sets for which the weighting scheme
was not learned).

Fig. 8. Performance obtained with the different methods when used to classify
all of the considered data sets.

Several findings can be drawn from Figure 8. First, it is
clear the traditional and alternative weighting schemes do not
generalize well (boxplots 1-6, from left to right). The Boolean
weighting scheme being the one with better generalization
capabilities. Secondly, regarding the performance of learned
weighting schemes (boxplots 7 to 11), the schemes learned
for Tiny, 101-15 and 15-Scenes data sets tend to generalize
better, this can be due to the fact that this are generic image-
classification tasks. On the other hand, the scheme learned
for Montalbano and Adult data sets did not generalize well,
this result confirms the fact that for this specialized tasks
(gesture recognition and pornographic image filtering), the
genetic program learned very specific term weighting schemes
that do not work well for the rest of tasks. Hence proving the
importance of adopting ad-hoc weighting schemes for different
tasks.

Figure 9 shows the frequency of use of each of the
terminals from Table II in the solutions returned by the genetic
program for all of the data sets (i.e., a bar in Figure 9
corresponds to a row in Table II). It can be seen that three
most used terminals are W6, W22 and W5, which correspond
to TF , TF − RF and TF − IDF weighting schemes. This
is interesting because, even when these were the most chosen
terminals by solutions returned with the genetic program, such
terminals were significantly outperformed by our proposal:
compare columns 2,4 and 5 to column 8 in Table IV.

Only 6 out of the 22 terminals did not appeared in solutions
returned by the genetic program, all of these are terminals
(W9,10,12,14,15,20) correspond to TR weights, mainly used for
feature selection in text classification [34]. Although they have

Fig. 9. Frequency of appearance of terminals into the solutions found by the
genetic program.

proved to be very effective in [34] (terminal W14 was the best
criterion for feature selection in that study), they were not
very helpful for building term-weighting schemes for computer
vision tasks.

Summarizing experimental results, we have show evidence
that the proposed genetic program outperforms significantly
existing term-weighting schemes in a number of computer
vision tasks. We also showed that the Boolean weighting
scheme is a better option than the standard TF. Finally, we
showed that while some of the learned schemes generalize
well, it is better to use an ad-hoc weighting scheme, learned
for each particular data set.

VI. CONCLUSIONS

We have presented a study on the use of traditional and
alternative term-weighting schemes for computer vision tasks
using the bag of visual words formulation. Our study assess
the performance of weighting schemes that have not been used
for the approached tasks. More importantly, we propose an
evolutionary algorithm for learning term-weighting schemes.
To the best of our knowledge, our work is the first that assesses
alternative weighting schemes, and it is the first in proposing
to learn weighting schemes. After an extensive experimental
study, comprising 6 data sets of common computer vision task
we can conclude the following:

• Among traditional and alternative weighting schemes,
the Boolean one obtained the highest performance.
Besides this method showed better generalization ca-
pabilities.

• Weighting schemes learned with our proposed ap-
proach outperformed consistently all other weighting
schemes in all of the data sets.



• For different tasks, learning a term-weighting scheme
with the proposed approach is much better than ap-
plying other schemes (either traditional/alternative or
learned for another data set).

• Computer vision tasks that are not too generic (e.g.,
gesture recognition or adult image filtering) require
of tailored weighting schemes, accordingly, schemes
learned for this data sets do not generalize well in
other data sets.

• Among all of the considered terminals, three weight-
ing schemes were used most often by solutions re-
turned by the genetic program (TF, TF-IDF and TF-
RF), however, the way in which the genetic program
combined such primitives resulted in much better
performance.

Future work includes extending/modifying our method to
improve its performance in video-based tasks, like gesture
recognition or video retrieval. Also we would like to evaluate
the performance of our method when using the entire data
for optimization, and using other evolutionary algorithms to
evolve weighting schemes.
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