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Abstract—Neuroscience study shows mammalian brain only
use millisecond scale time window to process complicated real-life
recognition scenarios. However, such speed cannot be achieved by
traditional rate-based spiking neural network (SNN). Compared
with spiking rate, the specific spiking timing (also called spiking
pattern) may convey much more information. In this paper, by
using modified rank order coding scheme, the generated absolute
analog features have been encoded into the first spike wave
with specific spatiotemporal structural information. An intuitive
yet powerful feed-forward spiking neural network framework
has been proposed, along with its own unsupervised spike-
timing-dependent plasticity (STDP) learning rule with dynamic
post-synaptic potential threshold. Compared with other state-of-
art spiking algorithms, the proposed method uses biologically
plausible STDP learning method to learn the selectivity while
the dynamic post-synaptic potential threshold guarantees no
training sample will be ignored during the learning procedure.
Furthermore, unlike the complicated frameworks used in those
state-of-art spiking algorithms, the proposed intuitive spiking
neural network is not time-consuming and quite capable of
on-line learning. A satisfactory experimental result has been
achieved on classic MNIST handwritten character database.

I. INTRODUCTION

Neuroscientists report human brain can only use a few tens
of milliseconds to recognize the object in a very complicated
real-life scenarios [1]. It is still an open question that how
our brain can processes such huge amount of information
in such short time window. With the development of the
neuroscience, more and more attentions have been focused
on the spiking neural network as it may be the fundamental
processing mechanism of the mammalian brain.

Spiking neural network (SNN),the third generation of neural
network [2] model, incorporates the temporal information into
the processing procedure. Compared with the spiking rate,
the exact spiking timings of spike trains, also called spiking
pattern, convey the significant spatiotemporal information,
which distinguish itself from other input spike trains. Unlike
the rate-based SNN [3], [4], [S], [6], it is still possible for
timing-based SNN to distinguish different classes even in short
time window. Furthermore, Spike-timing-dependent plasticity
(STDP) [7], [8], [9], [10], [11], a biological process that
adjusts the efficacy of synaptic connections based on the
relative timing of post-synaptic spike and its input pre-synaptic
spike, has often been used to learn the selectivity of the input
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image. One can use single neuron equipped with STDP to
extract the repeating spiking pattern even its spike density is
same as distractors [12]. STDP is an unsupervised learning
rule, that means no prior information or teaching signal are
needed for the learning procedure. It will adaptively change
the synaptic efficacy and try to extract the most notable spiking
pattern.

In order to survive in the ever-changing cruelty environment,
visual pattern recognition is a basic living skill for human
beings and animals. Interestingly, in most cases, they can
successfully recognize the pattern within very short period
after learning. Traditionally, classic image processing methods
have been used to deal with this task. Even it may be the
fundamental mechanism of our brain, the researches using bio-
inspired spiking neural network are still quite immature.

In paper [13], the authors proposed a novel spiking neural
network with supervised learning rule and temporal coding
scheme to generate the spike pattern. Such SNN system and
its supervised learning rule achieved relatively high correct
classification rate when cross-validate the MNIST database.
However, such supervised learning rule used in their paper
needs prior information or teaching signals before really
training the database and such prior information can be hard
to obtain in some cases. Inspired by the paper [14], paper [15]
uses the spiking neural network to simulate almost the same
HMAX structure proposed in paper [14], and then uses radial
basis function (RBF) to classify different classes. Specifically,
the authors use STDP learning method to train a S1-C1-S2
pathway so that the intermediate S2 features can be obtained.
Even the STDP learning procedure has been simplified and
the authors assume the whole spike wave locates in a very
short time window (thus uses an infinite time window), such
method is still too complicated and time-consuming for most
visual pattern recognition applications.

In this paper, a novel spike timing-based feed-forward
spiking neural network has been proposed, along with its
own unsupervised STDP learning rule and dynamic post-
synaptic potential threshold. Compared with other state-of-
art spiking algorithms, the proposed method uses biologically
plausible STDP learning method to learn the selectivity while
the dynamic post-synaptic potential threshold guarantees no
training sample will be ignored during the learning procedure.



Furthermore, unlike the complicated frameworks used in those
state-of-art spiking algorithms, the proposed intuitive spiking
neural network is not time-consuming and quite capable of
on-line learning. The layout of this paper can be summa-
rized as follows: Section 2 introduces the framework of the
proposed feed-forward spiking neural network, along with
its neuron model and STDP learning rule. Section 3 depicts
the experimental results, along with the analysis about the
results. Finally, Section 4 summarizes this paper, discussing
the advantages and limitations of the proposed method.

II. FRAMEWORK OF THE PROPOSED FEED-FORWARD
SPIKING NEURAL NETWORK

The whole framework of the proposed feed-forward spiking
neural network will be explained in this section. In real world,
the visual pattern recognition scenario often contains vast data
dimensions and exists significant variability in terms of inter-
class and intra-class. Thus, the first step in almost all visual
pattern recognition tasks is to reduce data dimensionality,
which means more generalized features need to be generated
firstly. The final generated features should contain the most
distinguishable and unchangeable characteristics of the origi-
nal input image [16], [17]. Until now, the input data are still
analog values, which need to be transferred to spike trains for
further learning. Thus, a suitable spiking neural coding scheme
will be used to encode the analog values to spiking trains.

The proposed feed-forward spiking neural network can
be summarized as following layers: feature extracting layer,
spiking encoding layer and output layer. Fig.l shows the
framework of the proposed spike timing-based feed-forward
spiking neural network. The whole procedure can be sum-
marized as follows: Firstly, feature extracting layer computes
C1 features with different scales and directions from input
image. Then, Rank Order Coding transfers those C1 features
into spike trains within the spiking encoding layer. Each input
image has its own corresponding spike pattern after those two
layers. Lastly, in the output layer, STDP learning rule and
winner-take-all strategy have been used to train the synaptic
efficacy matrix with specific selectivity to the input image.
Notably, there is only one neuron (corresponding to specific
class) within each output map in this paper. Below is the
details of those three layers used in the proposed spiking neural
network.

A. Feature Extracting Layer

It has been shown that visual processing is hierarchical,
aiming to build an invariance to position and scale first and
then to viewpoint and other transformations [18]. HMAX
model [14], [19] uses a hierarchical system that closely follows
the organization of visual cortex and thus built an increasingly
complex and invariant feature representation by alternating
between a template matching and a maximum pooling op-
eration. Inspired by this computational model, Gabor filters
with vary scales and orientations have been used to mimic
the simple cells in the primary visual cortex and a further
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Fig. 1: The framework of the proposed timing-based feed-
forward spiking neural network.

Fig. 2: Gabor filter kernels with different scales and orienta-
tions.

maximum pooling operation has been applied to generate the
local invariance features.

Gabor response (F(” y) can provide a good model of
cortical simple cell receptlve fields (Fig.2 shows Gabor filter
kernels with different scales and orientations), which can be
described as follows:
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where x and y describes abscissa and ordinate of the input
image, respectively. x( and y, represents abscissa and ordinate
after rotating 6, respectively. 7 represents aspect ratio, 6
depicts the orientation, o is the effective width and A the
wavelength. In this paper, we choose the same parameters
settings as the HMAX model that is using a range of sizes
from 7 x 7 pixels to 37 x 37 form the pyramid of scales, and
four orientations (0°,45°,90°, 135°) have been used. Notably,
the outputs have been normalized to a predefined range [—1, 1]
so that input images with the same contrast will generate same
features.

The local invariance features pool over retinotopically orga-
nized afferent features from the previous layer with the same



orientation and from the same scale band, which simulate the
complex cells existed within the primary visual cortex. There-
fore, such local invariance features are tolerant to certain local
transformations. Furthermore, the maximum pooling operation
used to generate such local invariance features will greatly
reduce the data dimensionality of the input image. Basically,
the response 7“2’ 0 ) of a complex C1 unit corresponds to the
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In visual cortex, cortical complex cells tend to have larger
receptive fields compared with simple cells. In this paper,
only the first two smallest scales have been used to generate
the local invariance features. The whole procedure can be
summarized as follows: Firstly, the Gabor filters with adja-
cent scales and four different orientations have been used to
mimic the simple cells within the primary visual cortex. The
parameter settings for the Gabor filters are almost same as
HMAX model. Secondly, for each orientation of the Gabor
filter output with the smallest scale, a local sliding window
with the size of 8 x 8 has been applied to generate the local
invariance feature (Notably, there are overlaps between two
adjacent sliding windows and the overlapping size is 4 x4). For
the second smallest scale, the sliding windows size is 10 x 10
and the overlapping size is 5 X 5.

In a word, the feature extracting layer used in this paper
mimic the cortical simple cells with Gabor filter units and
complex cells by maximum pooling operations. Template
matching operation generates orientation edge packages with
certain selectivity, while maximum pooling operation achieves
dimensionality reduction and invariance to local transforma-
tion.

B. Spiking Encoding Layer

Both spiking rate and spiking timing can be used to rep-
resent the structural information of the input image. Tradi-
tionally, researchers use spiking rate as the representation
of the structural information within the input visual stimuli.
However, recent neuroscience studies show that mammalian
brain only use millisecond scale time window to process the
complicated real-life visual recognition tasks, which means
there is not enough time for rate-based SNN to generate
meaningful spiking rates. Moreover, if the spiking rate of the
background neural noise is same as the input visual stimuli,
it is almost impossible for rate-based SNN to evolve the
selectivity [12].

Luckily, with the developments of neuroscience, researchers
found the specific spiking timing of each fired neuron itself
conveys much more important structural information than the
spiking rate. By gathering the spiking timings of the fired
neurons together, we can obtain the spiking pattern with
significant spatiotemporal structural information. Even the
spiking rate remains the same, it is still possible to generate
countless spiking patterns and each of them corresponds to
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Fig. 3: Rank order coding scheme diagram.

a different input visual stimuli. Therefore, compared with
rate-based SNN, timing-based SNN is more powerful and
biologically plausible.

1) spiking encoding scheme: Rank order coding scheme
[20], [21], [22], a time-to-first-spike coding scheme (one
kind of temporal coding scheme), has been used to generate
spike trains from the features extracted in the previous layer.
Fig.3 shows the rank order coding scheme diagram. It can
be seen that this kind of scheme only generate one spike
after the corresponding unit receiving the input. The delay
of the spiking timing is a monotonically decreasing function
of the input analog value. Thus, the maximum analog input
value corresponds to the minimum spiking timing delay.
Pixels with less Input analog values will not generate spikes
at all since their spiking timings have already exceeded a
predefined time-window for spiking encoding layer (50 ms
for this paper). Through such coding scheme, only those units
with more significant C1 features will be generating spikes.
Notably, only one spike will be generated for each unit in
rank order coding scheme. Such coding scheme is intuitive
yet powerful. Given the reference timestamp (the beginning
time of the encoding procedure), it transforms each analog
value into corresponding relative spike time associated with
the reference timestamp. Either the onset of external stimuli or
the background oscillation can be considered as the reference
timestamp. Although sometimes it is hard to find these kinds of
reference timestamps during the real world learning procedure,
it is intuitive to use the onset of C1 features as the reference
timestamp in the proposed spiking neural network. Another
drawback of the classical rank order coding scheme is that its
distinguishability (or selectivity) remains at a relatively low
level if using the traditional relative coding method [21].

In this paper, we linearly modified the original rank order
coding scheme so that absolute spiking timing instead of
relative spiking timing [21] has been generated. For one
specific feature response (depicted as r) within C1 layer, the
corresponding spiking timing (s) can be computed as follows:

s=px*(max(r)—r) 4)

where max (r) is the maximum value of all related C1 features
in the receptive filed and p is a positive constant within the
range from O to 1 (p takes 0.25 in this paper).

2) neural model: Leaky integrate-and-fire neuron model
acts as a coincidence detector and the causality between local
spikes has been emphasized. When the post-synaptic neuron
receives a spike from its pre-synaptic neuron, the responding



post-synaptic potential (PSP) will be generated. One can use
certain time course to depict this dynamic PSP change. In
leaky integrate-and-fire model, the post-synaptic potential will
gradually decrease if no spikes received since last received
spike. Therefore, in order to generate a post-synaptic spike,
this post-synaptic neuron needs to receive lots of spikes within
a relative small time window so that its PSP can reach
the predefined threshold. The dynamic procedure of leaky
integrate-and-fire model can be summarized as follows: when
a post-synaptic neuron receives pre-synaptic spikes, it will
generate dynamic synaptic current and this dynamic current
will thus produce dynamic synaptic voltage. A post-synaptic
spike will fired if the dynamic synaptic voltage reaches the
predefined post- synaptic potential threshold. The dynamic
post-synaptic current can be expressed as follows:

Ii (t) = Z W4 Z « (t — t§f)) (5)
J f

where tgrf ) represents the time of the f-th spike of the j-
th pre-synaptic neuron; w;; is the strength of the synaptic
efficacy between neuron ¢ and neuron j. «(t) is the time course
function, which can be expressed as follows:

1 t
t) = a— ~Zle 6
a(t) aTexp( 7') (t) (6)
where O is the Heaviside step function with © (¢) = 1 for
t > 0and O (t) =0 else. 7 is the time constant. For a given
time-varying input current I (t), the dynamic voltage V (t) can
be computed as follows:

t—1t
V(t)—VT.eXp<— O>+
Tm
R [tte s (7N
— exp (—) I(t—s)ds
Tm 0 Tm
where the initial condition V (tg) = V, and 7, is the

membrane time constant. R represents the resistance. This
equation describes the dynamics of the membrane potential
between successive spiking events. When the membrane po-
tential reaches the threshold, it will fire a spike, followed by
the absolute refractory period (resets to V,.) and then start to
evolve afterwards.

In this paper, a dynamic post-synaptic potential threshold
has been proposed in the training period. For each input image,
we do not set post-synaptic potential threshold for the first run
and collect the generated dynamic voltage due to the input
spike pattern. And then the maximum value of the dynamic
voltage needs to be found after collecting all dynamic voltage
within the predefined time window. Finally, the associated
post-synaptic potential threshold has been set to a percentage
of this maximum value. By doing this, each input image can
be ensured to be trained during the learning procedure. Such
scenarios with only a little part of training samples have been
actually used (especially those training samples with relatively
large intra-class variance) will be avoided. Each input spike
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Fig. 4: Input image and its spike pattern generated from the
first two layers.

pattern will contribute its part to the final learning efficacy
matrix with certain selectivity.

Vine = k x max(V (t)) 8)

where Vi, is the post-synaptic potential threshold and V (t)
represents dynamic voltage. max (V (t)) is the maximum
value of dynamic voltage within the predefined spiking time
window and k£ (0.8 in this paper) depicts a positive constant
within the range [0, 1].

Through spiking encoding layer, the local invariance fea-
tures will be transformed into spike trains. Fig.4 shows one
input image and its spike pattern after processing with the first
two layers. Such spike trains can be considered as a spike
pattern. Therefore, each input image will generate its own
unique spike pattern through the first two layers. Such spike
pattern contains specific spatiotemporal structural information
about its input image and thus the selectivity to this specific
input image has been emerged. Ideally, at least from the
learning method’s perspective, one can expect that those spike
patterns generated from the same class would somehow looks
similar to each other, while spike patterns from vary classes
would be significantly different.

C. Output Layer

The whole visual pattern recognition framework contains
two important parts: spike pattern generating and spike pattern
learning. According to modified rank order coding scheme,
the former one generates spike pattern based on the local
invariance features. While the latter one uses unsupervised
STDP learning rule to learn the generated spike pattern and
thus obtained the final synaptic efficacy matrix with certain
selectivity. Notably, the next input image should feed into the
feed-forward spiking neural network only until the current
input image has been successfully trained or tested. After
successfully learning the current input image, the intermediate
variables generated during the training procedure will be reset
to default values, except for the learning efficacy matrix.

1) Structure of the output layer: This layer includes several
neurons and the total number of neurons is the same as
the total classes. The neurons within spiking encoding layer



and output layer are fully connected so that each output
neuron receive synaptic connections from all the neurons
within spiking encoding layer. The output layer is the only
learning layer in the proposed feed-forward spiking neural
network. From above two layers, the spike pattern associated
with the input image will be generated and such spike pattern
conveys certain selectivity to its input image. Specifically, the
spatiotemporal information embedded within the spike pattern
plays an important role in defining such selectivity. The learn-
ing method within output layer should fully investigate such
spatiotemporal information and thus use the learning results to
distinguish the testing samples. Spike-timing-dependent plas-
ticity (STDP) learning rule has been employed to the output
layer and it will dynamically changes the synaptic efficacy
according to the learning window. Eventually, the synaptic
efficacy matrix will be stabilized and thus the selectivity will
be emerged after the learning procedure. The output layer
uses winner-take-all strategy so that the first fired neuron will
strongly depress the rest neurons within the output layer from
firing spikes and thus the input image will be considered as
the class associated with the fired neuron. So there are lateral
depression connections appears in the last layer.

2) STDP Learning Rule: Hebb’s postulate [23] may be the
most important theory in neuroscience trying to explain the
adaptation of neurons in the brain during the learning process.
It can summarized as ’Cells that fire together, wire together”.
This kind of statement emphasize the causality between pre
and post-synaptic neurons. Hebb emphasized that cell A needs
to take part in firing cell B, and such causality can only occur
if cell A fires just before, not at the same time as, cell B.

Spike-timing-dependent plasticity (STDP) [7], [8], [9], [10],
[11] has been proved to be a quiet effective learning rule
by neuroscientists, which adjusts the efficacy of synaptic
connections based on the relative timing of post-synaptic spike
and its input pre-synaptic spike. Like Hebb’s postulate, it also
emphasizes the causality between pre and post-synaptic neu-
rons. Actually, it can be considered as a temporally asymmetric
form of Hebb’s rule. In neuroscience, long-term potentiation
(LTP) is a persistent strengthening of synapses based on
recent patterns of activity, while long-term depression (LTD)
is an activity-dependent long-lasting reduction in the efficacy
of neural synapses. When a pre-synaptic spike fires slightly
earlier than the post-synaptic spike, the associated synap-
tic efficacy will be potentiated (LTP). While the associated
synaptic efficacy will be depressed (LTD) if the pre-synaptic
synaptic spike fires later than the post-synaptic spike. The
STDP function W (t) can be expressed as follows (¢ is the
time difference between pre and post-synaptic spikes):

W (t) = A, exp (t) for t>0 9

T+

W (t) = —A_exp <:) for t<0 (10)

where A, and A_ represent amplitude of LTP part and LTD
part of the learning window, respectively. 7, and 7_ are time
constant for LTP and LTD, respectively. For biological reasons,
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Fig. 5: STDP learning window.

Fig. 6: Random examples of MNIST database.

it is desirable to keep the synaptic efficacy in a predefined
range. Thus, a soft bound strategy [24], [25] has been used
to ensure the synaptic efficacy remains in the desired range
W™ < w; < w™. Fig.5 shows one example of STDP
learning window.

III. EXPERIMENTAL RESULTS AND ANALYSIS

MNIST handwritten digital characters database [26] is a
well known benchmark in pattern recognition field. It contains
60000 training samples and 10000 testing samples (all sample
size is 28 X 28). It includes 10 classes that is digital handwritten
digits from O to 9. Fig.6 shows some examples of MNIST
database. It can be seen that the database has large intra-class
variance, which could be a real challenge for the proposed
method. For instance, the digit 1 and 7 in Fig.6 have different
external shape (the fifth digit in the second row and the
sixth digit in the last row have significant different external
shape compared with other samples in their class). Sometimes,
even human being cannot easily recognize some digits of the
database. For example, the fifth digit in the last row could be
seen as 4 or 6 and each one can have their own opinion.
Therefore, by testing the performance using this MNIST
handwritten digital characters database, one can conclude the
advantages and limitations of the proposed SNN and its own
unsupervised learning method.

A. Parameter Setting

Before elaborating the experimental results, the experimen-
tal parameter settings using in the SNN is needed to state first.
All parameters are chosen from biologically plausible range
and have been optimized to achieve its optimum state. The
time resolution of this experiment is 0.1ms. In this paper, for
the S1 and Cl1 features of the feature extracting layer, we used
the same parameter setting as the HMAX model. The only
difference is that only first 2 scales are used in the experiment.



For spiking encoding layer, we use a linear equation and the
specific absolutely C1 feature values to generate the spikes.
For the leaky integrate-and-fire model used in output layer, the
« function described in equation (6) has been used to mimic
the time course of the dynamic synaptic current and the time
constant 7 used in the equation is set to 2.5ms. Equation (7)
was used to compute the dynamic synaptic voltage, where the
initial condition V. is 0, the membrane time constant is 10
ms and the resistance R is 0.1 m{). The absolute refractory
period is set to 1 ms. For STDP learning of the output layer,
the time constant 7, and 7_ are set to 0.0168 and 0.0337,
respectively. For soft bound strategy, the maximum weight and
the minimum weight are set to 1 and 0, respectively.

B. Experiments and Discussions

Ideally, we expect that there are little intra-variance or even
no intra-variance existed in the extracted features. However,
such critical need cannot easily be satisfied. In the following
subsections, we will discuss how STDP learning can handle
the senarios with no intra-variance and large intra-variance,
respectively.

1) STDP Learning with no Intra-class Variance: Fig.7
shows dynamic learning procedure of generating selectivity
after using unsupervised STDP learning method. Fig.7 (a)
shows the beginning of the learning procedure. It can be seen
that the dynamic synaptic current fluctuates over the whole
time window and the synaptic voltage reaches its threshold
at about 21ms. The synaptic efficacy weights are relatively
random at this stage. After presenting the same input image
(same input image in Fig.4) to the SNN system about 300
times, the selectivity finally emerged, just as the Fig.7 (b)
shows. At this stage, the synaptic current only fluctuates over
the first half time window and the synaptic voltage fires the
spike at about 13ms. Whats more, the synaptic efficacy matrix
has a special status with most weights take 0 and the rest take
1 [12]. Therefore, the selectivity to this specific input image
emerges. However, such learning results can be generated only
if the intra-class variance of the input images remains at a
reasonable level.

2) STDP Learning with Relatively Large Intra-class Vari-
ance: In Fig.7, an ideal experimental condition that the input
image with no intra-class variance has been tested with the
proposed timing-based feed-forward spiking neural network
and obtained an ideal STDP learning efficacy matrix. However,
in real world, such ideal condition is hardly achieved as vast
intra-class variance existed among the samples. In this paper,
we proved that certain selectivity to the input can be learned
using unsupervised STDP learning rule even If the intra-class
variance level of the input remains at a relatively high level,
as shown in fig.8 (a),(b),(e),(f).

In Fig.8, two groups with two input images have been
used to learn the selectivity using unsupervised STDP learning
rule. In fact, input images (a) and (e) are the same. The
group one uses (a) and (b) as its input images, (c) and
(d) represent dynamic efficacy matrix of 20-th and 200-th
iterations, respectively. (e) and (f) have been fed into group
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Fig. 7: Generating selectivity by using unsupervised STDP
learning. The resolution for learning efficacy matrix (x axis)
is set to 0.001 so that the maximum value equals to 1.

two, and thus obtained its 20-th and 200-th dynamic efficacy
matrix, shown as (g) and (h). Here, one iteration means
sequentially fed the two input images into the feed-forward
spiking neural network one by one. From Fig.§, one can easily
concluded that training samples with more intra-class variance
will somehow hard to learn the selectivity. In other words, the
dynamic efficacy matrix can be very hard to concentrate on
the extreme values of 0 and 1 if having high level of intra-
class variance within the training samples. Compared to the
same input image (a), input image (f) is much more different
than the input image (b), thus the dynamic efficacy matrix of
group two had more weights lingering between the extreme
values of 0 and 1.

Fig.9 shows the dynamic learning procedure using the
proposed SNN and its STDP learning rule for one class. It
is worth to note that one iteration in this experiment means
sequentially feed 50 different training samples within certain
class one by one. From Fig.9, it can be seen that the dynamic
status only have a very limited changes. However, even the
intra-class variance in the experiment remains at a relatively
high level, the training samples are not totally independent
(totally random samples), and thus such seemingly random
learning efficacy matrix may contains certain selectivity to
the input. Therefore, one question still need to answer that
is how many iterations does the experiment need to achieve
the optimum performance.

3) Experiments on MNIST Database: In order to answer
the above question, by using the proposed unsupervised STDP
learning rule, we randomly choose 50 different training sam-
ples for each class and 100 different testing samples to test the
correct classification rate. In the following experiment, each
test follows the same procedure mentioned above. To be fair,
each iteration within each test uses the same randomly chosen
training samples and testing samples.

Table.I shows the corresponding correct classification rate
performance when using the experimental conditions men-
tioned above. Average correct classification rate also has been



(a) (b)

Leaming Efficacy Matrix Leaming Efficacy Matrix

2 3 %

Neuron No.
Neuron No.

i

0 200 400 600 800 1000 0 200 400 600 800 1000

© ®
Leaming Efﬁcaoy Matrix

Leaming Efficacy Matrix

Neuron No.
Neuron No.

gt *®

olsuis L . . . . . . "
100 200 300 400 500 600 700 800 900 0 200 400 600 800 1000

Fig. 8: (a) and (b) are input images of group one, (c) and
(d) are dynamic efficacy matrix of 20-th and 200-th iterations,
respectively; (e) and (f) are input images of group two, (g) and
(h) are dynamic efficacy matrix of 20-th and 200-th iterations,
respectively. The resolution for learning efficacy matrix (x
axis) is set to 0.001 so that the maximum value equals to
1.

added in the table. It can be seen that all correct classification
rates using one iteration, besides random testl and test3 , are
larger than others using different iterations. Even though the
correct classification rates in these random tests are not so
smooth, one can still easily estimate the performance range
that is from 0.7 to 0.9. Besides, only using STDP learning with
one iteration means the processing time will dramatically de-
crease compared with others using more iterations. Therefore,
from the above observation and analysis, one can conclude that
only one iteration can be ensured to get the optimum correct
classification performance. The final expected correct classi-
fication rate can be obtained by averaging the classification
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The resolution for learning efficacy matrix (x axis) is set to
0.001 so that the maximum value equals to 1.

TABLE I: Correct classification rate using differ-
ent iterations for 10 random tests.

Random test lterations
1 2 3 4 5

1 0.81 0.85 0.81 0.76 0.71
2 0.83 0.78 0.75 0.72 0.74
3 0.81 0.87 0.88 0.87 0.87
4 0.8 0.81 0.81 0.78 0.76
5 0.84 0.8 0.8 0.78 0.77
6 0.8 0.78 0.74 0.73 0.72
7 0.81 0.8 0.78 0.77 0.75
8 0.84 0.81 0.78 0.8 0.79
9 0.81 0.79 0.74 0.74 0.73
10 0.84 0.79 0.78 0.79 0.79

Average 0.819 0.808 0.787 0.774 0.763

® Note: 0.81 in this table means 81% correct classification
rate.

performance of those 10 randomly tests. Therefore, with only
one iteration, 82% correct classification rate can be obtained if
using the proposed SNN and its unsupervised STDP learning
rule. Since the random training samples contain relatively
large intra-class variances, increasing the iteration times may
have somehow decreased the data correlation between samples
within the same class. This could be one possible explanation
for such behavior observed in our experiments. Table.Il shows



TABLE II: Experimental running time(s).

Period The Whole running time  Running time per step
Training 23.32 0.047
Testing 5.63 0.056

® Note: The whole training procedure includes 500 steps for the
total 10 classes (50 steps for each class) and the whole testing
procedure includes 100 steps.

TABLE III: Performance comparison of three methods(%).

Method Correct rate Wrong rate Unknown rate

The proposed method 82+ 2 18 +2 0
Tempotron rule [13] 78.5+1.85 18.35 £ 1.85 3.15+ 1.64
SVM [13] 79.33 +£2.03 18.15+1.69 2.53+2.04

the experimental running time of the whole procedure and each
training step for training and testing period, respectively. It can
be seen that the proposed method is not time-consuming and
quite capable of on-line learning.

In paper [13], the authors used a supervised temporal
learning rule (named Tempotron Rule) to train the MNIST
database (almost same experimental conditions as this paper)
and achieved 79% correct classification rate in the end. Unlike
this state-of-art learning method, the proposed algorithm uses
unsupervised STDP learning rule with dynamic post-synaptic
potential threshold during the learning procedure. Dynamic
post-synaptic potential threshold guarantees that each training
sample will be properly learned. Table.IIl shows the final clas-
sification performance comparison of three different methods.
The parameters used in Tempotron rule and classical SVM
method can be found in paper [13]. It can be seen that the
unknown rate of the proposed method is 0, which means
each testing sample would be recognized as one possible
class. Compared with Tempotron Rule, the proposed method
achieves better correct rate at around 82%, while still remains
slightly less wrong rate.

IV. CONCLUSION

In this paper, equipped with LIF neuron model, a spike
timing-based feed-forward spike neural network and its own
unsupervised STDP learning rule with dynamic voltage thresh-
old have been proposed. Satisfactory experimental results
have been achieved on classic MNIST hand written digit
database. It has been shown that the proposed SNN and its
STDP learning rule can still learn certain selectivity about the
input even it has large intra-class variance. Such advantage is
extremely useful for the real time visual pattern recognition
tasks. Compared with traditional visual pattern recognition
algorithms, the proposed algorithm is a bio-inspired method
with great potential. Even the coding scheme of brain is still
largely unknown, the proposed method could be added to the
further understanding of the dynamic processing procedure
existed in brains V1 and V4 areas.
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