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Abstract—We present a spike-based unsupervised 
regenerative learning scheme to train Spiking Deep Networks 
(SpikeCNN) for object recognition problems using biologically 
realistic leaky integrate-and-fire neurons. The training 
methodology is based on the Auto-Encoder learning model 
wherein the hierarchical network is trained layer wise using the 
encoder-decoder principle. Regenerative learning uses spike-
timing information and inherent latencies to update the weights 
and learn representative levels for each convolutional layer in an 
unsupervised manner. The features learnt from the final layer in 
the hierarchy are then fed to an output layer. The output layer is 
trained with supervision by showing a fraction of the labeled 
training dataset and performs the overall classification of the 
input. Our proposed methodology yields 0.92%/29.84% 
classification error on MNIST/CIFAR10 datasets which is 
comparable with state-of-the-art results. The proposed 
methodology also introduces sparsity in the hierarchical feature 
representations on account of event-based coding resulting in 
computationally efficient learning. 

Keywords— Spiking Neural Networks; Deep Learning; Auto-
Encoder; Leaky Integrate-and-Fire (LIF) Neuron; Unsupervised 
Hierarchical Learning; Regenerative learning; Object Recognition. 

I.  INTRODUCTION  
 “Can machines think?”, the question brought up by Turing 

in his paper, [1], has led to the development of the field of 
brain-inspired machine learning wherein researchers have put 
substantial effort in building smarter, more aware devices and 
technology  that have the potential of having human-like 
understanding. In fact, large scale deep neural network 
architectures, such as Convolutional Neural Nets (CNNs), have 
demonstrated unprecedented performance (in terms of 
classification and recognition accuracy) in a wide range of 
computer vision and related applications. Such deep networks 
inspired by the cortical visual processing systems have seen 
increasing success in recent years due to the availability of 
more powerful computing hardware (GPU accelerators) and 
massive datasets for training. Regardless of their success, the 
substantial computational cost of training and testing such 
large-scale networks has limited their implementation to clouds 
and servers. In order to build devices with cognitive abilities, 
there is a need for specialized hardware with new 
computational theories. Spiking Neural Networks (SNNs) are a 
prime candidate for enabling such on-chip intelligence.  

Driven by brain-like asynchronous event based 
computations, SNNs focus their computational effort on 
currently active parts of the network, effectively saving power 
on the remaining part, thereby achieving orders of magnitude 

lesser power consumption in comparison to their Artificial 
Neural Network (ANN) counterparts [2, 3]. In 2014, IBM 
research demonstrated a large-scale (>1Million neurons & 256 
Million synapses) digital CMOS neurosynaptic chip, 
TrueNorth [4], which implements a network of integrate-and-
fire spiking neurons. However, TrueNorth does not incorporate 
any information pertaining to the learning mechanisms, which 
is at present a major constraint for realizing SNNs for real-
world practical applications like visual and speech recognition 
among others.  Thus, there is a need to develop efficient 
learning algorithms that might take the advantage of the 
specific features of SNNs (event-driven, low power, on-chip 
learning) while keeping the properties (general-purpose, 
scalable to larger problems with higher accuracy) of 
conventional ANN models.  

Recent efforts on training of deep spiking networks do not 
use spike-based learning rules, but instead start from a 
conventional ANN fully trained using labeled training data, 
followed by a conversion of the same into a model consisting 
of simple spiking neurons [5-7]. However, in order to extend 
the applicability of learning methods, the use of unlabeled data 
for machine learning is imperative. In the non-spiking domain, 
unsupervised learning of hierarchical regenerative models such 
as Auto-Encoders [8] have been successfully used to learn 
high-level features. The learnt features are then used as inputs 
to a supervised classification task [9] or to initialize a CNN 
[10] to avoid local minima. In this paper we develop upon 
Auto-Encoders where we build a spiking deep CNN by training 
each layer in the hierarchy in a purely unsupervised manner 
using the regenerative model and the temporal spike 
information to update the weights.  

SNNs are equipped with unsupervised weight-modification 
rules like Spike Timing Dependent Plasticity (STDP) that learn 
the structure of input examples without using labels [11]. 
However, the network structure that has been successful in 
achieving competitive classification accuracy for pattern 
recognition problems is a single-layer SNN, which does not 
scale well to realistic sized high dimensional images in terms 
of computational complexity [12]. Moreover, STDP does not 
support learning hierarchical models that simultaneously 
represent multiple levels like edges or object parts in a visual 
context that is fundamental to a deep learning model. We 
propose regenerative learning using spike-timing information 
to implement layer-wise weight modification that learn 
representative levels for each convolutional layer. The features 
from the final layer of the deep convolutional spiking network 
(SpikeCNN) are then used for classification tasks.  



II. PRELIMINARIES 

A. Convolutional Neural Networks 
CNNs have proven to be very successful frameworks for 

image classification tasks [13-15]. Fig. 1 shows the basic CNN 
structure. They are mainly composed of three main blocks: 
convolutional layer, spatial sampling/pooling layer and a fully 
connected layer. The weights of a CNN are convolution 
kernels. A convolution layer convolves a portion of the 
previous layer with a set of weight kernels to obtain an array of 
output maps. The output maps are given by 

𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝛴𝛴𝑙𝑙𝑊𝑊𝑘𝑘 ∗ 𝑥𝑥𝑙𝑙)                                                                       (1) 

where f is the neuron’s activation function, 𝑥𝑥𝑘𝑘 denotes the 
activation value of the neurons in the output maps k 
(k=1,2…n), 𝑥𝑥𝑙𝑙  denotes the activation of the neurons in a 
previous layer’s map l, 𝑊𝑊𝑘𝑘  are the set of weight kernels and * 
denotes a 2D- valid convolution operation. The weight kernels 
are replicated and moved portion-wise over the whole input 
map. This sharing of weights significantly reduces the number 
of parameters to be learnt during the training process and thus 
enables the CNN to be scalable to high-dimensional images. 
The CNNs are trained in a supervised fashion (showing the 
training labels) by using standard backpropagation to train the 
convolutional weight kernels along with the fully connected 
weights for the final output layer as described in [16]. 

B. Unsupervised learning with Auto-Encoders 
Unsupervised learning methods are generally used to 

extract useful features from unlabeled data, to detect 
oversimplified input representations and remove input 
redundancies and finally to obtain only robust and 
discriminative representations of the data. In fact, deep neural 
network architectures have been built by stacking layers trained 
in an unsupervised way. This is done to avoid local minima and 
to increase the network performance [17-19].  

Auto-Encoder (AE) methods are one of the most widely 
used unsupervised feature extractor models for ANNs (non-

spiking). AE models are based on the encoder-decoder 
principle [9]. The input is first transformed into a lower 
dimensional space (encoder), and then expanded to reproduce 
the original input (decoder) as shown in Fig. 2. This captures 
the non-linear dependencies in the input. Each layer is trained 
on the above principle by feeding the activation from one layer 
to the next. The basic mathematical formalisms for an AE 
based training of an ANN are as follows [20]:  

ℎ = 𝑓𝑓𝜃𝜃 = 𝜎𝜎(𝑊𝑊𝑥𝑥)                                                                            (2) 

𝑦𝑦 = 𝑓𝑓𝜃𝜃′ = 𝜎𝜎(𝑊𝑊′𝑥𝑥)                                                                        (3) 

𝑊𝑊′ = 𝑊𝑊𝑇𝑇                                                                                         (4) 

For a given input x, the AE first obtains the hidden 
representation, h using the neuron activation function denoted 
as σ. This activation value, h, is then reverse mapped to 
reconstruct the input. The weights used in the reverse mapping 
is generally the transposed form of the weights connecting the 
input and the hidden layer. Thus, the method uses the same 
weights for encoding the input and decoding the hidden values, 
thereby reducing the number of parameters to be learned in the 
training process. The parameters are then optimized to 
minimize the error for each training pattern xi and its 
reconstruction yi. Note, the training labels are nowhere used in 
the weight update process. Hence, the method is completely 
unsupervised. Inspired by the reconstructive model of training, 
we use the auto-encoder model to update the weights for each 
convolutional layer by tracking the spike information at the 
input and modifying the weights such that the original input 
spike pattern is reproduced. This enables the network to learn 
hierarchical representative features of the input data. 

III. DEEP SPIKING CONVOLUTIONAL NETWORK: LEARNING AND 
IMPLEMENTATION 

A. Spiking neuron model 
Unlike conventional ANNs where a vector is given at the 

input layer once and the corresponding output is produced after 
processing through several layers of the network, SNNs require 
the input to be encoded as a stream of events. At a particular 
instant, each event is propagated through the layers of the 
network while the neurons accumulate the events over time 
causing the output neuron to fire or spike.  Thus, the spike 
information is used to communicate between the layers of the 
network. The spiking neuron model used in this work is the 
Leaky Integrate-and-Fire (LIF) model [31]. The membrane 
potential 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) of a post synaptic neuron is given by 

𝜏𝜏𝑅𝑅𝑅𝑅
𝑑𝑑𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑑𝑑𝑡𝑡
= −𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) + 𝐽𝐽(𝑡𝑡)                                            (5)  

where J(t) is the input current and 𝜏𝜏𝑅𝑅𝑅𝑅  is the membrane time 
constant. The neuron fires when the membrane potential 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  crosses a certain user-defined threshold 𝑣𝑣𝑡𝑡ℎ.  Once a 
spike is generated, the membrane potential of the neuron is set 
to the reset potential, 𝑣𝑣𝑟𝑟𝑚𝑚𝑟𝑟, for a refractory period of 𝜏𝜏𝑟𝑟𝑚𝑚𝑟𝑟 . Once 
the refractory period is complete, the neuron follows the 
response shown in  equation (5). In our simulations, we 
discretize the above continuous time equation into 1 ms time 
steps.  

The total synaptic input current received by a neuron is      
Fig. 2. Auto-Encoder network with input and reconstructed pattern   
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Fig. 1. Standard architecture of a Deep Learning Convolutional Network 
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𝐽𝐽(𝑡𝑡) = 𝛴𝛴𝑖𝑖 �𝛴𝛴𝑟𝑟𝜖𝜖𝑆𝑆𝑖𝑖𝑤𝑤𝑖𝑖𝛿𝛿(𝑡𝑡 − 𝑠𝑠)�                                                  (6)  

where 𝑤𝑤𝑖𝑖  is the synaptic efficacy of the ith synapse, 𝛿𝛿 is the 
delta function that contains the time of arrival of spikes at the 
ith synapse denoted by Si = {ti

0, ti1…}.  

B. Error Backpropagation in SNNs 
Weight update in Convolutional Deep Learning Networks 

follow the convolutional backpropagation algorithm which is 
an extension of the standard stochastic gradient descent rule for 
feedforward ANNs in the convolutional context [21].  As 
discussed earlier, in this work, we use the regenerative learning 
method inspired from AEs to train the hierarchical 
convolutional layer features of a deep spiking convolutional 
network (SpikeCNN). Similar to ANNs, in the regenerative 
learning for deep SNNs, the backpropagation algorithm with 
gradient descent is employed to update the weights to enable 
unsupervised layer wise training.  

B.1.  Learning theory  

The learning problem for spiking neurons is illustrated in 
Fig. 3. There are n input synapses to the spiking neuron, each 
receiving an independent spike train, and the aim is to 
determine the n-dimensional synaptic weight vector w = [w1 w2 
. . . wn]T for the neuron such that it produces the desired spike 
train 𝑆𝑆𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡). Let the desired spike train be given by 

𝑆𝑆𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) = 𝛴𝛴𝑖𝑖𝛿𝛿�𝑡𝑡 − 𝑡𝑡𝑑𝑑𝑚𝑚𝑟𝑟𝑖𝑖 �                                                               (7) 

where 𝛿𝛿 is the Dirac delta function and 𝑡𝑡𝑑𝑑𝑚𝑚𝑟𝑟1 , 𝑡𝑡𝑑𝑑𝑚𝑚𝑟𝑟2  … 𝑡𝑡𝑑𝑑𝑚𝑚𝑟𝑟𝑘𝑘  
are the desired spike arrival instants. We now require a learning 
rule to identify the changes in synaptic weights of the neuron 
so as to achieve the desired input to output transformation 
under the constraint that the weight updates be spike induced.  

B.2.  Cost Function 
The weight update in ANNs follows the backpropagation 

algorithm aimed at minimizing a cost function. Similarly, in 
SNNs we need to define a cost function that would drive the 
learning process. Let V(t) be the membrane potential of the 
neuron, with synaptic weight vector w, when the given set of 
input spike trains is fed to it. Correspondingly, let the neuron 
issue spikes at time instants 𝑡𝑡𝑜𝑜𝑜𝑜𝑟𝑟1 , 𝑡𝑡𝑜𝑜𝑜𝑜𝑟𝑟2 …𝑡𝑡𝑜𝑜𝑜𝑜𝑟𝑟𝑘𝑘′ . Hence, in 
accordance with (7) the observed spike train can be denoted as 

𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟(𝑡𝑡) = 𝛴𝛴𝑖𝑖𝛿𝛿�𝑡𝑡 − 𝑡𝑡𝑜𝑜𝑜𝑜𝑟𝑟𝑖𝑖 �                                                              (8) 

Now the error function can be defined as  

𝑒𝑒(𝑡𝑡) = 𝑆𝑆𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟(𝑡𝑡)                                                             (9) 

However, the desired spike train is not known in an 
unsupervised learning process. In non-spiking AE models, 
encoder-decoder method [9] is used to calculate the error that is 
back propagated through the layers without showing any 
training labels. Hence, the AE based training is completely 
unsupervised. Similarly, in the regenerative layer-wise training 
of SpikeCNN, we add another output layer in addition to the 
input and the convolutional layer which will be interpreted as a 
pseudo-visible layer that should ideally imitate the input layer 
patterns as shown in Fig. 4. This will enable us to update 
weights for the intermediate layers without showing any 
training labels. In a non-spiking model, the weight update rule 
is driven by the activation values of the output neurons. In the 
spiking context, the activation values of an output neuron can 
be interpreted as its membrane potential. If an input neuron 
spikes at a given time instant, the corresponding neuron in the 
output layer should also spike as per the regenerative approach. 
This can only be achieved if the membrane potential of the 
output neuron crosses the threshold.  

Depending upon the input spike pattern, the error is defined 
as follows: 

• If an input neuron spikes at a given time instant, the 
error is calculated as the difference in the threshold 
value (𝑣𝑣𝑡𝑡ℎ) and  the membrane potential (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) of the 
corresponding output neuron in the pseudo-visible 
layer. 

• If the input neuron does not spike, the error is evaluated 
as the difference in the reset value (𝑣𝑣𝑟𝑟𝑚𝑚𝑟𝑟) and the 
membrane potential (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) of the corresponding 
output neuron in the pseudo-visible layer. 

Thus, the error function can now be indicated as 

𝑒𝑒(𝑡𝑡) = 𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑉𝑉𝑜𝑜𝑜𝑜𝑟𝑟(𝑡𝑡)                                                           (10) 

where 𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟 is 𝑣𝑣𝑡𝑡ℎ or 𝑣𝑣𝑟𝑟𝑚𝑚𝑟𝑟 depending upon the spike event at 
the input neuron. The cost function corresponding to the 
synaptic weight vector w can now be defined as 

𝐶𝐶(𝑤𝑤) = 1
2 ∫ (𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑉𝑉(𝑡𝑡))2𝑑𝑑𝑡𝑡                                     (11)𝑇𝑇

0   

where T denotes the duration of the training epoch. The 
desired weight vector 𝑤𝑤𝑑𝑑𝑚𝑚𝑟𝑟 is  

𝑤𝑤𝑑𝑑𝑚𝑚𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑤𝑤𝐶𝐶(𝑤𝑤)                                                       (12)  

 
Fig. 3. The learning problem identifies the optimal weight vector so as to 
achieve the desired spike train from the given input spike pattern. 
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Fig. 4. Layer-wise training of a convolutional layer using Regenerative 
Learning. If a neuron X in the input layer spikes at a given time instant, 
the regenerative learning model updates the weights in such a way that 
the neuron X in the pseudo-visible layer also spikes. This is achieved by 
propagating the error calculated at the pseudo-visible layer using gradient 
descent.  
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The learning process thus takes into account the spike 
information and the inherent latencies. The learning rule 
follows the gradient descent optimization where the weights 
are adjusted depending upon the gradient of cost w.r.t the 
weights. Note that the synapses can be excitatory (leading to 
increase in membrane potential) or inhibitory (leading to 
decrease in membrane potential) depending upon the sign of 
the corresponding synaptic weight as determined by the 
algorithm. 

B.3.  Approximate gradient descent 
The cost function C(w) as given in (11) depends on V(t) 

which has several discontinuities in the weight space. Hence, as 
a simplification, we will try to minimize the contribution to the 
cost function at each time instant independently rather than 
attempting to minimize the total cost over an entire epoch.  

The contribution to the cost-function at time t is obtained 
by restricting the limits of integral in (11) to an infinitesimally 
small interval about time t. Thus, 

𝐶𝐶(𝑤𝑤, 𝑡𝑡) =
1
2
�𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑉𝑉(𝑡𝑡)�2                                                 (13) 

Hence, its gradient with respect to w is 

∇𝑤𝑤𝐶𝐶(𝑤𝑤, 𝑡𝑡) = −�𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑉𝑉(𝑡𝑡)�∇𝑤𝑤𝑉𝑉(𝑡𝑡)                               (14) 

Now, the synaptic weight update corresponding to the 
activity observed at time t is given as 

∆𝑤𝑤(𝑡𝑡) = −𝜂𝜂∇w𝐶𝐶(𝑤𝑤, 𝑡𝑡) = −𝜂𝜂�𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑉𝑉(𝑡𝑡)�∇w𝑉𝑉(𝑡𝑡)    (15) 

where η is the user-defined learning rate. Now, the 
discontinuities in V(t) due to the LIF neuron model will render 
∇𝑤𝑤𝑉𝑉(𝑡𝑡) undefined for some particular values of w. In [22], the 
authors have implemented a weight update rule and have used 
certain approximations to overcome these non-linear 
dependencies. In this work, we invoke similar approximations 
that would allow us to replace ∇𝑤𝑤𝑉𝑉(𝑡𝑡) with appropriate 
quantities. 

In non-spiking context, the weight update for a synapse 
connecting neuron i and j [23] (with exponential activation 
function) is computed as 

∆𝑤𝑤𝑖𝑖𝑖𝑖 = −𝜂𝜂 𝜕𝜕𝜕𝜕/𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖;𝑤𝑤ℎ𝑒𝑒𝑎𝑎𝑒𝑒 𝜕𝜕𝜕𝜕/𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑜𝑜𝑖𝑖                   (16) 

𝛿𝛿𝑖𝑖 = 𝜕𝜕 𝑜𝑜𝑖𝑖                         𝑎𝑎𝑓𝑓 𝑗𝑗 𝑎𝑎𝑠𝑠 𝑎𝑎𝑛𝑛 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑒𝑒𝑜𝑜𝑎𝑎𝑜𝑜𝑛𝑛             
     = �𝛴𝛴𝑙𝑙𝛿𝛿𝑙𝑙𝑤𝑤𝑖𝑖𝑙𝑙� 𝑜𝑜𝑖𝑖         𝑎𝑎𝑓𝑓 𝑗𝑗 𝑎𝑎𝑠𝑠 𝑎𝑎 ℎ𝑎𝑎𝑑𝑑𝑑𝑑𝑒𝑒𝑛𝑛 𝑛𝑛𝑒𝑒𝑜𝑜𝑎𝑎𝑜𝑜𝑛𝑛               (17) 

Here, o denotes the activation value of neuron. Comparing 
(15) and (16), ∇w𝐶𝐶(𝑡𝑡) is equivalent to 𝜕𝜕𝜕𝜕/𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖 . Interpreting 
the activation value of the neuron as the membrane potential in 
the spiking context, we can now replace 𝑜𝑜𝑖𝑖 in the above 
equations with the membrane potential of a neuron (V(t)) at a 
given time instant. Thus, the weight update equations for SNN 
with approximate gradient descent can be written as 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) = −𝜂𝜂 𝛿𝛿𝑖𝑖(𝑡𝑡)𝑉𝑉𝑖𝑖(𝑡𝑡)                                                           (18) 

𝛿𝛿𝑖𝑖(𝑡𝑡) = (𝑉𝑉𝑑𝑑𝑚𝑚𝑟𝑟𝑖𝑖(𝑡𝑡) − 𝑉𝑉𝑖𝑖(𝑡𝑡)) 𝑉𝑉𝑖𝑖(𝑡𝑡)  𝑎𝑎𝑓𝑓 𝑗𝑗 𝑎𝑎𝑠𝑠 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑒𝑒𝑜𝑜𝑎𝑎𝑜𝑜𝑛𝑛  
          = �𝛴𝛴𝑙𝑙𝛿𝛿𝑙𝑙(𝑡𝑡)𝑤𝑤𝑖𝑖𝑙𝑙�𝑉𝑉𝑖𝑖(𝑡𝑡)         𝑎𝑎𝑓𝑓 𝑗𝑗 𝑎𝑎𝑠𝑠 ℎ𝑎𝑎𝑑𝑑𝑑𝑑𝑒𝑒𝑛𝑛 𝑛𝑛𝑒𝑒𝑜𝑜𝑎𝑎𝑜𝑜𝑛𝑛       (19) 

In summary, the approximate gradient descent assumes the 
LIF neuron model to be an equivalent standard activation 
model in non-spiking context. The gradient calculation is then 
carried out by using the membrane potential of a neuron at a 
given time instant as the activation value. The inherent error-
resiliency of these neural networks allows us to use such 
approximate models. 

C. Regenerative Learning for Spike-based Convolutional 
Auto-Encoder 
Convolutional Auto-Encoders (CAEs) differ from 

conventional AEs as their weights are shared among all 
locations in the input preserving spatial locality. The CAE 
architecture with weight sharing is shown in Fig. 4. The 
reconstruction represented by the pseudo-visible layer is due to 
a linear combination of basic image patches based on the 
activations in the convolutional layer. 

For a mono-channel input x, the convolutional layer 
representation of the kth feature map is given by 

ℎ𝑘𝑘 = 𝜎𝜎(𝑥𝑥 ∗ 𝑤𝑤𝑘𝑘)                                                                           (20) 

Here, ℎ𝑘𝑘 denotes the membrane potential of the neuron 
(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡))in the convolutional layer, σ denotes LIF model 
discussed earlier to calculate 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) at a given time instant t, 
x contains the spike information from the input layer neurons 
and * denotes the convolution operation. When ℎ𝑘𝑘  crosses 𝑣𝑣𝑡𝑡ℎ, 
the spikes generated at the neurons of the convolutional layers 
serve as input for the pseudo-visible layer. The reconstruction 
is obtained using 

𝑦𝑦 = 𝜎𝜎(𝛴𝛴𝑘𝑘𝜀𝜀(ℎ𝑘𝑘) ∗  𝑤𝑤�𝑘𝑘)                                                                (21)  

where 𝑤𝑤�𝑘𝑘 denotes the transpose (or flip in both dimensions) 
operation,  ε(hk) denotes the spike information corresponding to 
the convolutional layer and y gives 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) of the neurons in 
the pseudo-visible layer. The convolution of a m x m matrix 
with a n x n matrix may result in an (m-n+1) x (m-n+1) matrix 
(valid convolution) or (m+n-1) x (m+n-1) (full convolution). In 
our simulations, we perform a valid convolution from input to 
the convolutional layer and a full convolution from 
convolutional to pseudo-visible layer in order to get a map of 
the same size as the input layer. All spike-based models and 
calculations for implementing convolutional network remain 
the same as described in earlier sub-section (III-B). Earlier in 
(6), the input synaptic current was given by the weighed 
summation of spike inputs. In this case, the only difference is 
that the synaptic current is obtained by convolving the spike 
information of an image patch with the weight kernel.  

Please note that the hk and y are calculated at every time 
instant of a given epoch and the error is calculated from the 
difference in the 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) of the neurons in the input and 
pseudo-visible layer. It is clear that the regenerative learning 
would activate the neurons in the pseudo-visible layer such that 
they imitate the input layer spike pattern. Thus, the cost 
function to minimize is the mean squared error (MSE) given by 

𝐶𝐶(𝑤𝑤) =  1
2𝑛𝑛
∑ �𝑣𝑣𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡) − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)�2𝑛𝑛
𝑖𝑖=1                                  (22)  

where n is the total number of neurons in the input /pseudo-
visible layer. As mentioned earlier, we minimize the error at 
each time instant rather than over the entire epoch duration. 



Now the approximate gradient descent model discussed in sub-
section B.3 is used to calculate the weight updates. The 
gradient of the cost function now involves convolution 
operations and is given by 
𝜕𝜕𝑅𝑅(𝑤𝑤)
𝜕𝜕𝜕𝜕

= 𝑥𝑥 ∗  𝛿𝛿ℎ𝑘𝑘 +  𝜀𝜀(ℎ� 𝑘𝑘) ∗  𝛿𝛿𝑦𝑦                                            (23) 
𝛿𝛿ℎ𝑘𝑘 and 𝛿𝛿𝑦𝑦 are the gradients for the convolutional and 

pseudo-visible layer neurons which are evaluated using the 
approximate model.  𝛿𝛿ℎ𝑘𝑘 is calculated using (19) for hidden 
neuron and 𝛿𝛿𝑦𝑦 using (19) for output neuron. Several such 
convolutional AEs can be assembled together to construct a 
deep CNN hierarchy. Each convolutional layer in the hierarchy 
is trained separately with the regenerative method described 
above. 

D. Average Pooling 
For CNNs, a pooling layer [24, 25] is often introduced after 

the convolutional layers to obtain translational invariance. The 
average pooling or subsampling layers combine the responses 
from multiple neurons in the convolutional layer into one. The 
representation of the averaging layer is identical to (1), except 
that the kernels consist of uniform weights fixed to 1/size(wk), 
where size(wk) is the size of the sampling window. After 
training the convolutional layer with the regenerative method, 
the membrane potentials (hk ) of the neurons across all feature 
maps are obtained corresponding to a training input for a given 
instant of an epoch. The membrane potentials (hk) within the 
sampling window are averaged to obtain the output membrane 
potential of the neuron (pk) in the pooling layer for the given 
time instant. When pk crosses 𝑣𝑣𝑡𝑡ℎ, the spikes generated at the 
neurons of the pooling layer serve as input for training the next 
convolutional layer. It is clear that the averaging operation 
down-samples the convolutional layer representation while 
conserving the spike information and inherent latencies from 
the previous layer.  

The regenerative auto-encoder based learning, thus, trains 
several convolutional layers in layer-wise fashion which can be 
assembled together to form a deep hierarchy [27: SAE]. Each 
layer receives its input from the previous layer as described 
above. The assembled convolutional layers can be used to 
initialize a CNN with the same topology prior to a fully 
connected stage. 

E. Supervised training with labels for classification  
The Fully Connected layer (FC) at the end of the CNN 

combines the inputs from the feature maps in the previous layer 
to perform classification of the overall inputs at the output 
layer. The training of the fully connected layer cannot follow 
the encoder-decoder principle (regenerative learning) as the 
aim here is to classify rather than to obtain abstract 
representations of the input. At this stage, the spike information 
from all end layer maps are concatenated into a vector which 
serves as input from the FC layer to the output layer.  

The training labels are used to fix the spike pattern of the 
output layer neurons that will drive the error backpropagation 
to calculate the weight updates. The weight update rules follow 
the same equations as described in the approximate gradient 
descent method in sub-section B.3. For a given label, a Poisson 
spike pattern of a particular frequency is generated that serves 
as the desired spike train for the corresponding output neuron 
for all training inputs with that label. The remaining output 
neurons have no spike events. The errors are calculated as per 
the spike events at the output layer neurons. This method 
ensures that the weights connected to the desired output neuron 
are potentiated while inhibiting the activity of the remaining 
connections. In our simulations, we fix the frequency of the 
desired spike train for a training label at 30 Hz. After training is 
done, an input is presented as a stream of events at the input 
layer of the SpikeCNN. At the end of the time duration, the 
spike responses from the output layer neurons are monitored. 
The output neuron with the highest response is the class 
predicted by the network for the given input.  

IV. EXPERIMENTAL RESULTS 
We evaluate our proposed learning on two datasets: 

MNIST [16] and CIFAR10 [26]. MNIST is a standard dataset 
of handwritten digits that contains 60,000 training and 10,000 
test patterns of 28 x 28 pixel sized greyscale images of the 
digits 0-9. CIFAR10 is a more challenging dataset that consists 
of 60,000 colored images belonging to 10 classes. Each image 
has 32x32 pixels. We used the first 50,000 images for training 
and last 10,000 images for testing. Regenerative learning is 
used to train spike-based convolutional AEs which are then 
used to initialize a SpikeCNN with the same topology. The 

                      
Fig. 5 Reconstructed patterns observed after training the first convolutional layer of MNIST_2C with regenerative learning for different vth and Irate values 
{Original pixel image (Column 1), Spike input image (Column 2), Reconstructed image (Column 3)} (a) MNIST_2C initialized with 𝑣𝑣𝑡𝑡ℎ= 1.0, Irate =100 Hz (b) 
MNIST_2C with parameters (P2) 𝑣𝑣𝑡𝑡ℎ= 1.2, Irate =100 Hz (c) MNIST_2C with parameters (P1) 𝑣𝑣𝑡𝑡ℎ= 0.8, Irate =75 Hz 

(a) (b) (c)



final fully connected layer of the SpikeCNN is then trained 
with a fraction of training labels from the entire dataset to 
perform classification. The input is presented as Poisson 
distributed spike train with firing rates proportional to the 
intensity of pixels [5]. In the experiments, the epoch duration 
or the time for which an input image is shown to the network is 
250ms. During layer-wise training, each input is presented 
multiple times (depending upon the depth of SpikeCNN) and 
the weights are updated each time to minimize the 
reconstruction error. Since each layer receives its input from 
the previous trained layer, this process helps in maintaining an 
adequate firing rate for each layer. This ensures spike 
propagation as we go deeper into the network. The membrane 
potentials of all neurons in the convolutional and pseudo-
visible layers are all set to 𝑣𝑣𝑟𝑟𝑚𝑚𝑟𝑟 before presenting a new training 
pattern.  

A. Network Architecture and Parameters 
We implemented a SpikeCNN for MNIST (MNIST_2C) 

with 2 convolutional layers: 28x28-12c5-2a-64c5-2a-10o. The 
input layer is 28x28. Both convolutional layers use 5x5 kernel 
size with 12 and 64 maps, respectively. A 2x2 average pooling 
window is used after each convolutional layer. The final 
features from the second averaging layer are then fully 
connected to a 10-neuron output layer. SpikeCNN for 
CIFAR10 (CIFAR_3C) consists of 3 convolutional layers: 
32x32x3-32c5-2a-32c5-2a-64c4-10o. In this case, the input 
layer has 3 maps corresponding to the 3 color channels RGB. 
The first and second convolutional layer have 5x5 sized kernels 
with 32 maps while the third layer has 4x4 kernel with 64 
maps. The features from the third layer are directly fed to the 
output layer without any average pooling. Please note that we 
do not use any data augmentation or normalization techniques 
like dropout [27] in the SpikeCNN implementation. 

The network parameters like input rates (Irate) and threshold 
values (𝑣𝑣𝑡𝑡ℎ) for the networks were set by trial and error by 
cross-validating a few times to get the lowest reconstruction 
error from the input image layer. Fig. 5 shows the 
reconstructed image patterns formed at the pseudo-visible layer 

after training the first convolution layer of MNIST_2C with 
regenerative learning for different values of 𝑣𝑣𝑡𝑡ℎ and Irate. 
Visually, we can inspect that Fig. 5(b) with parameters 𝑣𝑣𝑡𝑡ℎ= 
1.2, Irate =100 Hz (P2) and Fig. 5(c) with 𝑣𝑣𝑡𝑡ℎ= 0.8, Irate =75 Hz 
(P1) give more convincing reconstruction than Fig. 5(a) 𝑣𝑣𝑡𝑡ℎ= 
1.0, Irate =100 Hz. We use the parameters P2, P1 corresponding 
to Fig. 5 (b), (c) to initialize MNIST_2C and evaluate the 
classification accuracy in both cases. Similarly, Fig. 6 shows 
the reconstructed image patterns from the first convolutional 
layer of CIFAR_3C for the three color channels separately. The 
parameters used are 𝑣𝑣𝑡𝑡ℎ= 1.2, Irate =100Hz to initialize 
CIFAR_3C and obtain the classification accuracy. The figures 
show the accumulated spike count over 250ms of simulated 
time. Please note that though the deeper layers in 
MNIST_2C/CIFAR_3C have significantly larger number of 
maps than that of initial layers in both the configurations, the 
training time still remains same due to the down-sampling of 
input size with average pooling. 

B. Reconstruction error across network layers 
For quantitative evaluation, we plot the reconstruction 

errors obtained at each layer of the network (MNIST_2C, 
CIFAR_3C) as shown in Fig. 7 for the network parameters 
discussed above. In order to ensure propagation of spike 
information across layers, we present the input data 3/5 times 
while training every convolutional layer of 
MNIST_2C/CIFAR_3C respectively. The reconstruction error 
plotted in Fig. 7 is the aggregate loss over the multiple 
presentation of the training data. We use the squared Euclidean 
distance of the difference in the spike events as a measure of 
loss. It is clearly seen that error observed for MNIST_2C with 
parameters P1 is higher than that of P2 which supports the 
visual reconstruction patterns shown in Fig 5(b), (c). A 
noteworthy observation here is that the reconstruction error in 
both networks decreases as we move towards deeper layers. In 
[28], the authors have shown that in the context of deep ANNs, 
blurring an image enables better reconstruction as the network 
then learns more general representations. Learning the finer 
details may lead to overfitting increasing the reconstruction 
error. As we apply convolution and average pooling in the 

            

    
Fig. 6 Reconstructed pattern observed after training the first layer of CIFAR_3C initialized with P2. CIFAR_3C has 3 maps at the input layer 
corresponding to the 3 color channels (Red, Green, Blue). The figures show the reconstruction of the input pattern at the pseudo-visible layer 
corresponding to the 3 separate channels.  

Reconstruction for 
Red channel

Reconstruction for 
Green channel          

Reconstruction for 
Blue channel

Column1 of each figure is the original pixel image, Column 2 is corresponding 
spike input image, Column 3 is the reconstructed spike pattern

1              2            3 1           2          3 1              2           3



initial stage, certain information from the original image is lost 
in this process. Thus, we can interpret that the deeper layers 
work on slightly blurred details of the original image causing 
lower reconstruction error.  

C. Classification Accuracy 
After training the convolutional layers by optimizing the 

reconstruction error for the entire training dataset, the features 
from the final layer are then fed to the output layer.  The 
weights at the output are trained in a supervised manner by 
showing training labels as discussed in Section III (E). 
However, in the supervised case, we use only a subset of the 
training data to train the final layer. During testing, an input 
test pattern is presented two times to the trained SpikeCNN. 
The spikes at the output neurons are aggregated over two 
simulations and the neuron with the highest response is the 
predicted class for the given test input. Since the pixel intensity 
values are converted to Poisson spike trains, the accuracy can 
differ for different spike timings. Thus, the accuracies are 
averaged over five iterations of presentation of the entire 
testing dataset. Fig. 8 shows the classification error for 
MNIST_2C initialized with parameters P1, P2 and CIFAR_3C 
with P2 as the size of the labelled training subset is varied. For 

MNIST_2C with P2, the lowest error achieved by showing all 
the 60000 training labels at the final layer is 0.92% (99.08% 
classification accuracy). It is clearly seen that the error 
decreases significantly as the size of the training set is 
increased from 500 to 20000.  However, for subsets > 20000, 
the error almost remains the same. For MNIST_2C with P1/ 
CIFAR_3C with P2, the minimum error obtained showing 
20000 labels at the final layer is 1.81%/29.84%. In [29]/[30], 
the authors have implemented a spiking deep network by 
converting a deep static CNN to SNN and have achieved 
22.57%/0.86% error on CIFAR-10/MNIST dataset. The fact 
that our network performs favorably incorporating the inherent 
latencies of a spiking neuron model in the learning process 
suggests that the regenerative learning scheme can be used to 
train deep spiking networks to obtain state-of-the-art results.  

D. Sparsity with Regenerative Learning 
The spike-based regenerative learning scheme, on account 

of event-based coding, introduces sparsity over the 
convolutional layer feature representations. Since the learning 
is based on spiking activity of the neurons, the output at the 
pseudo-visible layer is reconstructed using only the maximally 
active neurons in the feature maps of the convolutional layers. 
As a result, the reconstruction error at each time instant of the 
training epoch is back-propagated through these active 
neurons. Basically, the sparse event based computation acts as 
a regularizer that prevents learning of over-complete 
representations of the input.  In other words, the sparsity in 
features decreases the number of filters or weight kernels 
required to reconstruct the input thereby forcing the filters to be 
more general. Fig. 9 shows the feature maps learnt for 
MNIST_2C (with P2) with accumulated spike counts over 250 
ms for a particular input pattern. It is evident that the feature 
maps in both convolutional layers have sparse active units. 
Only a smaller section of the SpikeCNN is active in a training 
epoch. Thus, we can effectively save power on the remaining 
idle or inactive portions of the network. Sparsity in learning has 
a key role in reducing the overall power consumption by 
decreasing the spike rate in SNN architectures which is one of 
the main reasons to use SNN over ANN. Fig. 9 also shows the 
weight kernels learnt at the first layer from the input. Visually, 
we can interpret that the weights are more diverse and global.  

 

  
Fig. 8 Classification error as the size of the labelled dataset for the 
supervised training of output layer is varied 
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Fig. 9 (a) MNIST training input to MNIST_2C initialized with P2: Original 
pixel image (left), Spike input image (right) (b) The weight kernels learnt 
at the input layer (c) 12 feature maps showing the sparse representations of 
maximally active spiking neurons in the first convolutional layer of 
MNIST_2C (d) 20 of 64 feature maps in the second convolutional layer of 
MNIST_2C with sparsely active neurons 

 
Fig. 7 Reconstruction errors at different layers of the SpikeCNN 
architecture 
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V. CONCLUSION 
We introduced a spike-based learning scheme to train Spiking 
Deep Networks (SpikeCNN) for object recognition problems 
using leaky integrate-and-fire (LIF) neurons.  The regenerative 
model learns the hierarchical feature maps layer-by-layer in a 
deep convolutional network in an unsupervised manner. Once 
the convolutional layers are learnt, the features are then fed to 
an output layer trained in a supervised manner by showing a 
fraction of the labeled training dataset. The output layer 
performs the overall classification of the input. While previous 
work on deep spiking networks have examined the conversion 
of ANNs to SNNs, we build a spiking deep CNN  from scratch 
with the proposed learning using spike-timing information and 
inherent latencies to implement layer-wise weight 
modification. Our experiments on the MNIST and CIFAR-10 
dataset demonstrate comparable classification accuracy with 
state-of-the-art results. Also, the sparsity in representations 
introduced with regenerative learning suggests overall power 
savings in the learning process which generally takes up a 
significant part of the time the network is used. Finally, the 
SpikeCNN system developed with our proposed learning with 
the current initialized parameters is in its first generation, and 
we expect its accuracy on CIFAR-10 to improve as we gain 
experience with the method and tune the network for better 
parameters. 
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