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Abstract— Following analyzing existing challenges in 

addressing the balance between exploration and exploitation 

encountered by evolutionary algorithms, this paper develops 

a Genetic Algorithm with speciation (GASP). It first 

incorporates a novel encoding scheme and recombination 

method for a balanced genetic divergence when locating 

global optima in complex applications, such as structural 

and dynamic design of an artificial neural network (NN). 

GASP also addresses the problem of defining a measure and 

track population diversity whose NN structure is subjected 

to continual reorganization during the evolution process. 

Further, a novel approach to the neural network phenotype 

is developed, which maps it to a distinct genome with a 

variable length capable of fully representing the multilayer 

feed-forward NN structure. Using the concept generalized 

from linguistic complexity, the distance between strings can 

thus be derived from the single string and substring counts. 

The GASP is then applied to an NN design problem to 

forecast the energy consumption of a built environment. 

With the optimal NN structure, diversity is tracked and 

improved. The results show that the GASP succeeds in 

obtaining excellent accuracy and speed.  

Keywords—genetic algorithm, neural networks, 

evolutionary computing, diversity, speciation 

I.  INTRODUCTION 

Genetic algorithm (GA) is a heuristic search algorithm 
inspired by the Darwinian principle of evolution and 
natural selection. A GA based design approach centers on 
the concept of heredity to produce the „best of breed‟ 
solutions to complex problems. In addition to design, the 
GA has been successfully applied to many other real-
world problems such as task scheduling, resource 
allocation, telecommunication network routing, finance 
strategy planning, computer gaming and machine learning.  

In a GA, possible solutions to a problem at hand are 
first encoded into strings or chromosomes. A fitness 
function is defined to measure the performance standing of 
the chromosomes. The objective of the GA is hence to 
search for the fittest chromosomes in a population of 
potential chromosomes through heuristic propagation of 
good genes from generation to generation in an 
evolutionary process. The hereditary nature directs healthy 

parents to pass down good genes to the offspring with 
appropriate selection and reproduction mechanism.  

Using a GA to optimize an artificial neural network 
(NN) allows solving NN problems more globally, as 
structural tuning and dynamic changes can be 
accommodated.  However, maintaining an appropriate 
balance between exploitative and explorative 
characteristics is key to the success of evolutionary based 
approach [1].  

In this paper, we develop a robust GA to design a 
globally optimal NN in a multimodal domain so as to 
enhance forecast accuracy and reduces structural 
inefficiency. We incorporate the GA with speciation 
(GASP) using a novel encoding scheme and 
recombination method with genetic divergence in locating 
global optima. We also develop a metric, using a concept 
generalized from linguistic complexity to measure and 
track the population diversity, upon analyzing the 
algorithm‟s performance. The GASP will be implemented 
also to solve partially connected NN problems, for a better 
generalization at a reduced cost.  

Section II reviews the related work in the area of 
reducing diversity drift in genetic search. Section III 
develops the GASP approach in detail. Section IV discuss 
the application of GASP in NN design. Section V 
examines the test results and Section VI provides 
conclusions and discusses future work.  

II. EXISTING CHALLENGES IN BALANCING 

EXPLORATION VS EXPLOITATION 

Complex optimization problem often lead to 
multimodal domains with multiple optima, global and 
local, exist in the search space. A standard GA (SGA), 
though advantageous as a global search technique, has its 
limitation in explorative search if the population is taken 
over by the “best individual” too quickly. This occurs 
when the search is directed to a local optima too 
aggressively with no new search space explored. As such, 
the genetic process is said to have converged prematurely 
with elements in the gene pool becoming similar to each 
other and further iterations of reproduction and mutation 
operations are unable to create new chromosomes. Genetic 
divergence can support global exploration and help to 
locate the global optima [2]. Hence many of the methods 
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presented in recent research for optimization of single-
objective, multimodal functions aims towards reducing the 
effect of genetic drift.  

A. Niching, Speciation and  Crowding 

Niching or speciation method mimics the natural 
evolution of different species thriving within an ecosystem 
occupying a niche area of their own. Species with similar 
biological features interbreed and competes to survive. In 
the physical environment where they dwell, resources are 
limited which must be shared among the species. In 
analogy, a niche is an optimum of the domain or attractor 
region in the search landscape, species are subpopulation 
while fitness are shared resource. Speciation in GA 
separates individuals into subpopulations of similar 
characteristics. These subpopulations are formed to 
investigate many peaks in parallel in the search domain 
[3]. In another words, they prevent GA from being trapped 
in local optima. The technique widely used in niching is 
called fitness sharing [4][5]. Fitness sharing reduces 
densely populated region in the search landscape by 
lowering the individual fitness level in this region due to 
diminishing resources. In a steady state, search moves 
across unexplored regions through fostering of other 
subpopulations where resources are more attractive. A 
sharing function measures the population diversity or 
similarities between the individuals based on either 
genotypic or phenotypic characteristics. Genotypic 
similarity, defined by a niche radius, is usually agreed by 
comparing the hamming distance between individuals via 
their genomic codes whereas phenotypic similarity is 
agreed by comparing values linked to physical parameters 
or topology such as the Euclidian distance. Two 
individuals closer than the niche radius are considered to 
be in the same species and hence share their fitness value. 
Phenotypic diversity based measure is preferred due to the 
slightly better results than genotypic diversity based 
measure [3][6]. 

Instead of dealing with an explicit radius, crowding 
attempts to replaces most similar individuals randomly 
taken from a subpopulation or crowd of size determine by 
a crowding factor [7]. The effect is to try to replace 
individual that is very similar with new individual thus 
preserving diversity. In another crowding technique called 
deterministic crowding, unlike the standing crowding 
whose competition is random in nature, the offspring 
competes directly with the parents and replaces the parents 
if its fitness is higher. This method presupposes that the 
genetic make-up of the parents would be nearest to the 
offspring [8]. And in probabilistic crowding, individuals 
with lower fitness are given a better chance to survive [9].  

Other adaptations of the speciation techniques have 
also been highlighted and discussed in [12]. For instance, 
[13] used conservation of species technique to preserve its 
genetic information from one generation to another. [14] 
suggested adopting species-wise evolution technique to 
independently evolve these solutions to converge to their 
respective optima. [15] proposed fitness sharing to be 
applied within species rather than the entire population.  

B. Diversity Measure 

Population diversity is a key measurement in the above 
implementation of multimodal search techniques. It is also 
beneficial to measure and track the population diversity to 
better understand how the search is performed. Several 
methods for determining diversity both in the genotypic 
and phenotypic space have been used.  

A common genotypic measure is pair-wise Hamming 
distance. Given P strings of length L, its pair-wise 
Hamming distance [6] is defined as: 
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is the sum of the results of the application of 

           to all pair-wise combinations the numbers    
and     of  given population of size M.  

Other metrics used to evaluate population diversity in 
GA are gene-level entropy metric, chromosome-level 
neighbor metric and population-level centre of mass metric 
[10].  The formula for entropy, which is a measures of the 
degree of disorder, is defined as, 
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where     denotes the probability of an event 

    occurring, and N the population size. At the gene-level 

for a population, Eq. (3) can be expressed as, 
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where    corresponds to the entropy in Eq. (3) for 

locus j of the whole population and l is the length of the 
chromosome.  

The chromosome-level neighbor metric measures 
diversity at chromosome-level. The metric is defined using 
the Hamming distance with neighborhood. For the 
neighbors of chromosomes    at a distance equal to k , we 
have, 

         = {     {   }       } (5) 

where k   {       }  and H is the Hamming distance 
expressed in Eq. (1). We then make    a pivot to find the 
set of neighbors at each distance k. For the entire 
population, we can derive the chromosome-level diversity 
expressed as, 
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where          is the cardinality of       , that is, 
the number of neighbors of    at a distance k in the whole 
population. 

In population-level centre mass metric [11], the 
population is treated as a matrix of genes. The centre of 
mass of a gene is taken with respect to an origin (0,0). To 
find the x coordinate of the centre of mass of a gene with 
binary value „1‟, we have the expression, 
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where         is the column position j of gene      

where the gene has binary value „1‟, and ∑ ∑     
 
   

 
    is 

the number of those genes where       . Similarly to 

obtain the y coordinate for a gene with binary value „1‟ is, 
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 where   (    ) is the row position i of gene      where 

the gene has binary value „1‟, and ∑ ∑     
 
   

 
    is the 

number of those genes where       . 

 In [20], we found the idea of defining a measure of 
diversity using genomes with variable length and structure 
interesting. This is discussed further in the next section. 

III. SPECIATED GA 

Although various literature has shown good results 
with niching and speciation techniques, our study shows 
that the technique should be adapted to best suit the 
problem definition. In NN optimization, we have designed 
a simple yet effective speciation approach by categorizing 
the NNs into their respective subpopulations based on the 
number of hidden nodes. The subpopulation are domains 
of optima and individuals within the species compete for 
survival through selection and intra-species crossover.  

In a SGA, the process of crossover of individuals with 
different topology, might end up the child not having 
comparable topology causing a “loss” of structural 
innovation. As a result, these individuals are unlikely to 
survive in a global competition. SGA would then 
converged quickly with identical individuals dominating 
the search space.  

In GASP, the intent of speciation is to protect 
structural innovation as these innovative structure would 
be isolated within their own species and hence a chance to 
be optimized. However, unlike standard niching 
implemented with a niching radius, we do not control or 
influence the population growth within the species. 
Instead, it is preferred that the species are allowed to thrive 
based on natural selection.  

We addressed both exploration and exploitation 
aspects in the algorithm as a good ratio between them is 
key in a heuristic search [19]. Exploration in GASP is 
achieved during the population initiation where individuals 
are randomly generated and then speciated into their 
respective subpopulations. These individuals then evolve 
to exploit the solution space within their niche. To avoid 
premature loss of diversity to genetic stagnation, inter-
species crossover and mutation are implemented that may 
lead to spawning of new species or revival of extinct 
species. Exploitation, on the other hand, is achieved by 
intra-species crossover and subjecting the new individuals 
to local competition. A “kill” percentage is implemented 
as a means of cleansing or replacing weaker individuals 
with healthier ones. This is to ensure convergence is 
attained. In GASP, we use two different crossover 
techniques, one is intra-species crossover, and the other is 
inter-species crossover. The GASP procedure is shown in 
Fig. 1. 

 
 
 

GASP Algorithm  

1 Begin 
2   pop=Rand_pop(); % randomly initialization the population 
3   MAXGEN=100; % set maximum generation to 100 
4   gen=0; % set generation count to 0 
5   fitness=0; % set fitness to 0 
6   Max_fit=0; 
7   TARGET=Some_number;  
8   While (fitness < TARGET) && (gen < MAXGEN)  
9         gen=gen+1; 
10         fitness=Calc_gen_fitness();  
11         Rank_fitness(pop);  
12         Replace(pop); % replace bottom 5% with top 5%       
13         subpop=Sort(pop); % sort individuals into subpop 
14         SUBPOP_SIZE=size(subpop); 
15               For i=1:SUBPOP_SIZE  
16                     SUS_select(subpop); % select solutions 
17                     intra_xo(subpop); % intra-species crossover 
18                     inter_xo(); % inter-species crossover 
19                     Rand_mutate(); % randomly enable/disable links  
20                     pop=New_pop(); % replace with new individuals 
21               End For 
22         genome=Genome_map(); % map individual genome 
23         Diversity(genome); % calculate population diversity 
24         Max_fit=Max_fitness(pop); % get best solution 
25         Plot(Max_fit); plot fittest individual trend 
26         Plot(subpop); plot subpopulation distribution 
27         Plot(Diversity); plot diversity trend 
28   End while 
29 End 

Fig. 1. GASP Procedure 

A. Intra-Species Crossover 

Intra-species crossover or in-breeding, is a form of 

phenotype crossover. In intra-species crossover, we apply 

a single-point crossover at the mid-point of hidden nodes 

in the NN structure. At this mid-point, the parents‟ 

genetic material are crossover and recombined to produce 

the new offspring. Intra-species crossover will produce 

offspring of the same structure retaining its species‟ 

compatibility. This technique safeguards structural 

innovation and provide time for potential individuals to 

breed and thrive within the species. Competition for 

survival is contained within the species to prevent global 

threat of any one species from taking over the entire 

population too quickly. We subject 90% of the population 

to intra-species crossover from which the offspring is 

reproduced to replace its parents.  

B. Inter-Species Crossover 

Inter-species crossover or cross-breeding, is a form of 

genotype crossover whereby we apply a single-point 

crossover at the mid-point of the genotype between two 

parents of different species. The resulting child is not 

guaranteed to be of the same species as the parents. That 

is, the crossover and recombination at the mid-point of the 

genotype may produces offspring of outside of the 

parents‟ species. This allows for new search spaces to be 

explored during the evolutionary process. 1% of the 

population is subjected to inter-species crossover as the 

explorative nature of the algorithm is largely undertaken 



by a random population initialization at the beginning of 

the evolutionary process. A small percentage of inter-

species crossover ensures that the solutions converge and 

not diverge causing imbalance to the heuristic search 

process. 

C. Structural and Weights Mutation 

In GASP, we introduced a mutation operation to 

provide a means to restore lost genetic material and 

prevent possible solutions stagnation. We set a 1.5% 

probability for an individual‟s weight to undergo mutation 

to a random value. We also set a 1% probability for an 

individual‟s disabled connection to be re-enabled. These 

mutation parameters are to potentially change the NN 

architecture complementing the crossover operations to 

avoid the solution from being trapped in a local minima. 

IV. NN DESIGN USING THE GASP 

A. Multi-layer Perceptron NN 

There are many variant of neural network depending 
on the network structure, the connections and the 
activation function. Feedforward neural network (FFNN) 
is the most common type of neural network. In FFNN, 

information flows only in one direction. One example of a 
feedforward NN is the multi-layer perceptron (MLP) 
shown in Fig. 2. The feedforward MLP NN in Fig. 2 
consists of 3 layers – input, output and a single hidden 
layer. Nodes in the input and output layer are 
interconnected via nodes in the hidden layer. Each 
connection is associated with a certain weight. The hidden 
and output layer could have a bias option activated with a 
constant unit of „1‟. The hidden nodes contains a non-
linear activation function. Whereas the output nodes 
usually contains a linear activation function as the output 
layer computes and sum the results of the process. During 
the modeling process, NN attempts to map the input 
variables to the output by constantly adjusting the weights 
and structure through a learning algorithm guided by an 
objective function until the desired NN architecture is 
generated. The objective function is usually in the form of 
an error function to be minimized. The relationship 
between the output neuron y to the inputs is govern by, 

               (9) 

where x represents the inputs, w a set of weights, b a 
bias term of unity value and f is the sigmoid activation 
function of the hidden nodes,  

       
 

        (10) 

 or the linear activation function of the output node, 

             (11) 

The single hidden layer NN is chosen in our example 
for it is known from the Universal Approximation 
Theorem that a single hidden layer NN can approximate 
any arbitrary continuous function [16].  

One of the challenges when evolving the structure of 
an NN is that the connection weights of a new innovation 
might need a few generations to be optimized. However 
during the process of crossover of individual with different 
topology, the child might not have the same topology 
causing a loss of structural innovation. Our GASP 
algorithm address this problem by implementing a novel 
speciation approach customized for NN optimization. In 
the algorithm, all individuals go through a phenotypic 
classification process which divides the population into 
smaller sub-population (species) according to their 
structural similarity. The individual will then compete 
within their own species for survival first, before they are 
exposed to global competition. Through this approach, 
structural innovation is protected as these structures would 
be isolated within their own species thereby giving 
prospective individuals a chance to be optimized. 

B. Chromosome, Genotype and Phenotype  

In natural genetic, information is carried in discrete 
elements called genes. The different forms of a gene, 
called allele are required to synthesize about the 
individual‟s physical traits. Specific genes are located in 
set positions on the chromosomes. The position of these 
specific genes is known as its locus. The genotype of an 
individual are its alleles at a locus. The genotype are 
visually expressed through the individual‟s phenotype. In 
another words, phenotypes are the individual‟s physical 
traits mapped to its genotype.  

To apply GA to solving NN optimization problem, an 
encoding scheme is devised to translate the possible 
candidate solutions in the chromosomes. The 
chromosomes can be of different length to cater to diverse 
NN architecture. Once designed they are then used as 
building blocks to construct the genotype to phenotype 
mapping. The genotype is the coding space and the 
phenotype is the NN structure search space. GA goal is to 
find the fittest individual in the genotype space from which 
the phenotype can be derived.  

 
Input genes            Input genes         Input genes       Bias genes       Output genes 

 
               

Fig. 3. Chromosome 

The chromosomes in Fig. 3 illustrates how the MLP 
NN in Fig. 2 is encoded. In the chromosome encoding, the 
input gene          denotes the input weight in w for the 
connection from input layer i node m to hidden layer h 
node n. The output gene          denotes the output 
weight in w for the connection from output layer o node l 
to hidden layer h node n. The parameters m, n and l 

 

Input layer

Hidden layer

Output layer

w(1,1)   w(1,2)  w(1,3)  w(2,1)   w(2,2)   w(2,3)   w(3,1)  w(3,2)   w(3,3)  w(b,1)   w(b,2)  w(b,3)   w(o,1)   w(o,2)  w(o,3)  

Figure 2. Feedforward MLP NN 



represent the size of input, hidden and output layers 
respectively. An input weight of „0‟, that is           , 
represents a disabled connection from input node m to 
hidden node n. An option for bias to, for instance, the 
hidden layer can be activated by adding the bias gene 
           to the chromosome. Details of the encoding 
scheme and its design are discussed in our earlier works in 
[17][18]. 

Using the chromosome designed in Fig. 3 as building 
blocks, we construct a chromosome matrix that could 
easily map its genotype-phenotype correlation for any 
individual. An example of a chromosome matrix, also 
known as the genotype, is shown in Fig. 4a. Its 
corresponding phenotype is shown in Fig. 4b. The 
genotype is capable of fully embodying the structure of the 
NN (weights and connections). The genotype is 
represented as a connection matrix in Fig. 4c, for ease of 
computation, code handling and NN structure analysis. 
Fig. 4c shows the connection matrix, nn_ind. The input 

weights at matrix positions; nn_ind(1,1), nn(1,3), 
nn_ind(2,1) nn_ind(2,2) and nn_ind(3,2) have „0‟ values. 

This means that the respective connections from the inputs 
to the hidden nodes are disabled with the rest of the 
connections enabled (see Fig. 4b).  

The flexibility of the proposed encoding scheme 
allows the MLP NN structure to be represented in a simple 
and efficient chromosome matrix, which in turn improves 
the GASP computational speed. 

C. Diversity Measure 

In evolutionary computing, the need to measure the 
diversity of the solution sets stems from the desire to avoid 
premature convergence of the solutions. However, it is 
worth noting that high diversity does not necessarily mean 
the diverse population was obtained by a good balance 
between exploration and exploitation [19] as a diverse 
population can be obtained by mere exploration. Also, 
diversity does not translate to fitness. A diverse population 
means the individuals are just different. Nonetheless, these 
genetic differences should be exploited to produce 
solutions closer to the global optima.  

The diversity of individuals or population can either be 
measured in the genotype or phenotype space as discussed 
in Section II, part D. As there exists no single measure that 
fits all the problem definitions [19], a diversity measure 
designed specific to the problem it aims to solve would be 
highly effective. In our diversity measure design, we 
borrow the idea from [20], and adapted for the NN 
optimization problem. 

 
 
 

nn_ind = 

[
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Fig. 4c. Connection Matrix 

The diversity measure suggested in [20] comes from 
the concept of linguistic complexity. For a string s defined 
on a given alphabet A, its linguistic complexity is defined 
as the ratio of the number of substrings of s, to the 
maximum of substrings that can be obtained from a string 
of the same length on the same alphabet. To illustrate, we 
have the linguistic complexity, LC for string s generalized 
to a population as follows: 
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where      
   | {  

    
      

 | is the maximum number of 

substrings that can be obtained with a population   
  built 

on the same alphabet A of P, and having the same number 
of individuals and with the same length. LC(P) measures 
the potential motif existence contributed by the kind and 
number of its individuals.  

This gives an idea how effective is the solution 
exploration being carried out in the genome space relative 
to what can be done with the same number of individuals, 
same genome length and on the same alphabet. To draw 
parallel from the concept of LC, we denote the population 
P as,  

    {          }   (13) 

where    is an individual from population P, whose 

genome string is    
 constituting of genomes that appear in 

the string {             }. The potential motifs is denoted 

as,  
   {          }   (14) 

and its cardinality as,  

    | {          }|   (15) 

 Hidden node 

1 

Hidden node 

2 

Hidden node 

3 

Input node 1 0 -0.348 0 

Input node 2 0 0 0.492 

Input node 3 0.628 0 0.914 

Bias Input node 4 -0.583 -0.569 0.239 

Output node 0.023 -0.345 0.295 

Fig. 4a. Chromosome Matrix for an NN Individual  

Figure 4b. Individual NN Phenotype 
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 where  {          } is the total number of substrings that 

appears only once in the genome of multiple individuals 
within the population genome, that is, 

    {          }      
    

  (16) 

We then define the diversity measure D(P) for a 
population P in Eq. (13) as follows,   
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where   is the number of individuals in a population,  

| {          }| is the total number of substrings and |   
| is 

the number of substrings in the genome of the individuals 
considered separately.  

Suppose a population has n individuals, and each 
individual    has the same genome s and consequently, the 

same substrings S, its density measure D, can be shown by 
applying Eq. 17 as, 
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A diversity measure of 1 is interpreted as all individuals in 
the population having identical genome, or no diversity. 
Analogously, if all the individuals‟ genome in the 
population are different from each other, we have D(P) = 
n. Therefore, we all always have, 

             (18) 

   where n is the size of the population. 
 
To utilize the diversity measure in Eq. (17) for our NN 

optimization problem, a method is devised to translate the 
individual‟s genotype or connection matrix to its genome 
string. To show how the method works, we use the NN 
example given in Fig. 4c for illustration. Fig. 4c shows the 
connection matrix, nn_ind. This matrix encapsulates the 
phenotype meaning of an individual NN shown in Fig. 4b. 
We implemented a code to convert the non-zero elements 
in the connection matrix to „1‟ and leave the rest of the 
elements unchanged (see Fig. 5). We then locate the 
matrix positions or the indices of the elements „1‟. These 
indices form the genomes which then constitutes the 
individual‟s genome string. The derived genome strings 
from all individuals within the population are used to 
calculate the population diversity.  

For instance in Fig. 5, the returned indices forming the 
genome string for this individual   , is 

    {3,4,5,6,9,10,12,13,14,15}.  
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Fig. 5. Connection Matrix to Genome Conversion 

To demonstrate our diversity measure approach, we 
illustrate how the genome strings are formed using 2 
connection matrices as examples; nn_ind1 and nn_ind2 
which are 5x3 matrix and 5x4 matrix respectively (See 
Fig. 6). 
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      nn_ind2_g=  
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={3,4,5,6,9,10,12,13,14,15},      

={1,3,4,5,7,9,10,12,13,14,15,16,18,19,20} 

Fig. 6. Genome String Formation 

 
The population diversity   {     }  given the example 

in Fig. 6 with two individuals,       whose genome strings 

   and    , and total number of substrings  {     }  are 

calculated as follows, 
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Now, suppose both individuals    and   , in a new 
population, are identical where their genome string 
   =      {                        } , then the diversity for 

this new population,      {     }  is,  

     {     }   
  {     } 

 |   |  |   |
  

  

     
   

In another words,      {     }   is a homogeneous 
population of clones. 

V. RESULTS AND DISCUSSION 

In this work, we use the building energy dataset 
obtained from MatLab as benchmark dataset for our 
experiments. The dataset consists of 14 attributes or inputs 
for over 4000 different households. Inputs 1 to 10 
represents coded day of week and time of day. Inputs 11 to 
14 represents temperature, humidity, solar strength and 
wind respectively. The output is energy usage, to be 
estimated from the inputs.  

The dimension for the connection matrix is chosen to 
be 16x14 specific to this optimization problems. That is, it 
is able to accommodate any NN structure with 14 inputs 
and a bias option (total 15 inputs), and 1 output. The NN is 
“free” to evolve to any number of hidden nodes up to a 
maximum of 14. As empirically-derived rule-of-thumb 
suggests the number of hidden nodes be between that of 
the input and output [21].  



We run the GASP algorithm for 100 generations using 
2000 data points from the energy building dataset. 70% is 
used for training and 30% for testing. Fig. 7 shows the 
fitness and diversity plot. The fittest NN has a fitness of 
0.9954 (maximum fitness is 1) which is found at the 98

th
 

generation. During the evolution process, the population 
diversity measure started at slightly above 3.0. It then 
declined to point A, at the 31

st
 generation before it rose to 

point B at the 46
th
 generation. It started descending from 

point B to C at the 75
th
 generation where population 

diverged over the next 10 generations to point D. This 
evolution process has an average diversity of 2.5227. Its 
genotype is shown in Fig. 8. The optimized NN has 5 
hidden nodes and several disabled links indicated by a 
weight value of „0‟. The connection matrix for this NN is 
highlighted within the bolded square of the genotype in 
Fig. 8.  
 We conducted two separate experiments for GASP and 
SGA to compare the solutions of these two algorithms in 
relations to the diversity measure, convergence rate and 
the complexity of the optimized NN. Table 1 shows the 
experimental results conducted for 20 runs. Both the 
algorithms has generated good solutions with a mean 
fitness of 0.9961. However, GASP has a slightly better 
convergence rate where the best individual was found at an 
average of 91 generations compared to SGA‟s 94. The 
individual with the optimized NN structure found is less 
complex for GASP with an average structure consisting of 
5.55 hidden nodes compared to SGA‟s 6.70. In terms of 
population diversity, GASP has a slightly more diverse 
population measured at 2.4890 to SGA‟s 2.1419. 

However, from our experiment, it is not conclusive that 
this higher diversity has translated to fitter solutions (see 
Fig. 9 and 10). Nonetheless, it is important to recognize 
that diversity improves exploration, as in our case during 
the earlier evolution process, thereafter exploitation takes 
over to narrow the search at the expense of lost diversity in 
order for the solutions to converge. 

Input/ 

Output 
Nodes 

Hidden 
Node 1 

Hidden 
Node 2 

Hidden 
Node 3 

Hidden 
Node 4 

Hidden 
Node 5 

Input 1 0.8566 -0.3664 -0.0709 0.4096 0.5871 

Input 2 0.7117 0.0000 0.0000 0.0000 0.0000 

Input 3 0.0836 0.2513 0.7073 0.0000 -0.6422 

Input 4 -1.0000 0.0000 0.6145 -0.2188 0.0397 

Input 5 0.0000 0.3458 0.6102 -1.0000 0.0000 

Input 6 -0.3450 -0.3514 0.9497 0.1742 0.1901 

Input 7 -0.4915 1.0000 0.0000 0.6388 0.0000 

Input 8 0.3986 0.0000 0.0000 0.2276 -0.5906 

Input 9 0.0000 -0.2214 0.7887 0.5477 0.0000 

Input 10 0.9018 0.6282 0.8812 -1.0000 0.0000 

Input 11 0.0000 0.0938 0.5128 -0.7773 0.6997 

Input 12 0.4535 -0.5722 0.6243 0.3277 0.0000 

Input 13 0.0000 0.5038 0.0000 0.0000 0.5273 

Input 14 -1.0000 0.7632 0.3966 -1.0000 0.0842 

Bias 1 0.8809 0.8072 -0.2944 0.9287 0.3467 

Output 1 -0.3541 0.1782 0.2602 -0.0134 0.6081 

 

 
Fig. 9. Fitness and Diversity Chart for GASP 

 

Fig. 10. Fitness and Diversity Chart for SGA 

 

VI. CONCLUSION AND FUTURE WORK 

Having the ability to make predictions of a system‟s 

future outputs has advantages in numerous modeling and 

forecasting problems. The GASP optimized NN is seen to 

lead to better management and resource planning for 

building energy consumption. In particular, our results 

show that speciation is a favorable option for solving NN 

optimization problems with (or without a potentially) 
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Figure 7. Max Fitness and Diversity Plot 



multimodal search space at reduced NN complexity. 

Subpopulating into species allows these “niches” to 

search their attractor regions to find the optimal solutions 

in their own niche. Competition largely occurs within the 

species which isolate for structural innovation.  

We have also presented a novel approach to map 

individual‟s phenotype to its unique genome string. The 

distance between individual strings and population can be 

derived from the single string and substrings counts.  

For future work on diversity measure, we shall explore 

the inclusion of NN‟s weights and layers in the mapping 

the NN phenotype to its genome string. We are also to 

further the NN speciation scheme to support multi-layers 

NN speciation to support deep learning applications. 

 
TABLE 1 EXPERIMENT RESULTS FOR GASP AND GSA 
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Fitness of best 

individual 

Best Individual 

Found (Gen) 
Average Diversity 

Structure of Best 

Individual(# of 

HD) 

Run GASP SGA GASP SGA GASP SGA GASP SGA 

1 0.9966 0.9948 76 91 2.6479 2.2074 4 5 

2 0.9968 0.9964 93 100 2.1132 3.0674 9 4 

3 0.9965 0.9965 91 100 2.5755 2.4422 5 6 

4 0.9960 0.9970 100 99 2.5188 2.0019 5 8 

5 0.9965 0.9963 65 89 3.0034 1.9475 4 7 

6 0.9961 0.9970 81 99 2.3767 1.9259 6 7 

7 0.9958 0.9968 99 97 2.5054 2.3964 5 5 

8 0.9964 0.9965 79 89 2.2898 2.3271 6 5 

9 0.9955 0.9959 96 65 2.6927 1.8340 4 8 

10 0.9962 0.9967 100 99 2.0065 2.0845 9 7 

11 0.9962 0.9956 89 99 3.1430 2.1988 5 6 

12 0.9962 0.9952 99 93 2.7448 1.7409 4 10 

13 0.9961 0.9966 100 93 2.1009 2.6106 8 5 

14 0.9960 0.9944 91 75 2.4771 1.9363 6 9 

15 0.9958 0.9963 99 95 2.4984 2.0255 5 8 

16 0.9958 0.9959 100 100 2.3004 2.3194 6 5 

17 0.9951 0.9957 100 99 2.7720 1.9211 4 7 

18 0.9961 0.9960 84 100 2.1683 1.8314 6 7 

19 0.9961 0.9961 98 99 2.2511 1.8611 5 9 

20 0.9961 0.9967 87 93 2.5937 2.1587 5 6 

Mean 0.9961 0.9961 91 94 2.4890 2.1419 5.55 6.70 

STDEV 0.0004 0.0007 10 9 0.2988 0.3202 1.54 1.63 


