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Abstract. We study the problem of training an accurate linear regres-
sion model by procuring labels from multiple noisy crowd annotators,
under a budget constraint. We propose a Bayesian model for linear re-
gression in crowdsourcing and use variational inference for parameter
estimation. To minimize the number of labels crowdsourced from the
annotators, we adopt an active learning approach. In this specific con-
text, we prove the equivalence of well-studied criteria of active learning
like entropy minimization and expected error reduction. Interestingly,
we observe that we can decouple the problems of identifying an optimal
unlabeled instance and identifying an annotator to label it. We observe
a useful connection between the multi-armed bandit framework and the
annotator selection in active learning. Due to the nature of the distribu-
tion of the rewards on the arms, we use the Robust Upper Confidence
Bound (UCB) scheme with truncated empirical mean estimator to solve
the annotator selection problem. This yields provable guarantees on the
regret. We further apply our model to the scenario where annotators are
strategic and design suitable incentives to induce them to put in their
best efforts.

1 Introduction

Crowdsourcing platforms such as Amazon Mechanical Turk are becoming pop-
ular avenues for getting large scale human intelligence tasks executed at a much
lower cost. In particular, they have been widely used to procure labels to train
learning models. These platforms are characterized by a large pool of diverse
yet inexpensive annotators. To leverage these platforms for learning tasks, the
following issues need to be addressed: (1) A learning model that encompasses
parameter estimation and annotator quality estimation. (2) Identifying the best
yet minimal set of instances from the pool of unlabeled data. (3) Determining an
optimal subset of annotators to label the instances. (4) Providing suitable incen-
tives to elicit best efforts from the chosen annotators under a budget constraint.
We provide an end to end solution to address the above issues for a regression
task.

Identifying the best yet minimal set of instances to be labeled is important
to minimize the generalization error, as the learner only has limited budget.
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This involves selection of those unlabeled instances, the labels of which when
fed to the learner, yield maximum performance enhancement of the underlying
model. The question of choosing an optimal set of unlabeled examples occupies
center stage in the realm of active learning. Past work on active learning in
crowdsourcing apply to classification [27, 23] and most of these do not directly
apply to regression where the space of labels is unbounded. For instance, the
Markov Decision Processes (MDP) based method [23] relies on label space and
thereby the state space being finite, which is not the case in regression.

Similar to the instance selection problem, the annotator choice to label an in-
stance also has a bearing on the accuracy of the learnt model. Optimal annotator
selection, in the context of classification, has been addressed using multi-armed
bandit (MAB) algorithms [1]. Here the annotators are considered as the arms
and their qualities as the stochastic rewards. In classification, the quality of the
annotators is modeled as a Bernoulli random variable, thereby making it suitable
for application of algorithms such as UCB1 [2, 7]. However for regression tasks,
the labels provided by the annotators are naturally modeled to have Gaussian
noise, the variance of which is a measure of the quality of the annotator. This
in turn is a function of the effort put in. Therefore, optimal annotator set selec-
tion problem involves identifying annotators with low variance. Though existing
work has adopted MAB algorithms for estimating variance [22] and several other
applications [30], there is a research gap in its applicability to active learning
and regression tasks and in particular where heavy tailed distributions arise as
a result of squaring the Gaussian noise. To bridge this gap, we invoke ideas from
Robust UCB [8] and set up theoretical guarantees for annotator selection in
active learning.

Another non-trivial challenge emerges when we are required to account for
the strategic behavior of the human agents. An agent, in the absence of suitable
incentives, may not find it beneficial to put in efforts while labeling the data. To
induce best efforts from agents, the learner could appropriately incentivize them.
In the field of mechanism design, several incentive schemes exist [13, 34]. To the
best of our knowledge, such schemes have not been explored in the context of
active learning for regression.

Contributions: The key contributions of this paper are as follows.
(1)Bayesian model for Regression: In Section 3, we set up a novel Bayesian
model for regression using labels from multiple annotators with varying noise
levels, which makes the problem challenging. We use variational inference for
parameter estimation to overcome intractability issues.
(2)Active learning for crowd regression and decoupling instance se-
lection and annotator selection: In Section 4.1, we focus on various active
learning criteria as applicable to the proposed regression model. Interestingly, in
our setting, we show that the criteria of minimizing estimator error and mini-
mizing estimator’s entropy are equivalent. These criteria also remarkably enable
us to decouple the problems of instance selection and annotator selection.
(3)Annotator selection with multi-armed bandits: In Section 4.2, we de-



scribe the problem of selecting an annotator having least variance. We establish
an interesting connection of this problem to the multi-armed bandit problem.
In our formulation, we work with the square of the label noise to cast the prob-
lem into a variance minimization framework; the square of the noise follows a
sub-exponential distribution. We show that standard UCB strategies based on
ψ-UCB [7] are not applicable and we propose the use of robust UCB [8] with
truncated empirical mean. We show that the logarithmic regret bound of robust
UCB is preserved in this setting as well. Moreover the number of samples dis-
carded is also logarithmic.
(4)Handling strategic agents: In Section 5, we consider the case of strategic
annotators where the learner needs to induce them to put in their best efforts.
For this, we propose the notion of ‘quality compatibility ’ and introduce a payment
scheme that induces agents to put in their best efforts and is also individually
rational.
(5)Experimental validation: We describe our experimental findings in Section
6. We compare the RMSE and regret of our proposed models with state-of-the-
art benchmarks on several real world datasets. Our experiments demonstrate a
superior performance.

2 Related Work

A rich body of literature exists in the field of active learning for statistical
models where labels are provided by a single source [28, 12, 9, 10]. Popular
techniques include minimizing the variance or uncertainty of the learner, query
by committee schemes [33] and expected gradient length [32] to name a few.
In the literature on Optimal Experimental Design in Statistics, the selection of
most informative data instances is captured by concepts such as A-optimality,
D-optimality, etc. [16, 18]. The idea is to construct confidence regions for the
learner and bound these regions. A survey on active learning approaches for
various problems is presented in [31].

The works that have looked into active learning for regression are applicable
only for a single noisy source, and not to a crowd. In crowdsourcing, several
learning models for regression have been proposed, for instance, [25, 26] obtain
the maximum likelihood estimate (MLE) and maximum-a-posteriori (MAP) esti-
mate respectively. [17] proposes a scheme to aggregate information from multiple
annotators for regression using Gaussian Processes. [4, 24] develop models for
classification using crowds. However, these do not employ techniques from active
learning. Also, they do not obtain a posterior distribution over the parameters,
and hence do not perform probabilistic inference. Of late, there have been a
few crowdsourcing classification models employing the active learning paradigm
[27, 36, 35, 23, 15]. These include uncertainty-based methods and MDPs. To the
best of our knowledge, active learning for regression using the crowds has not
been looked at explicitly.

When an annotator is requested to label an instance, and the annotator,
being strategic, does not put in the best effort, the learning algorithm could



seriously underperform. So we must incentivize the annotator to induce the
best effort. Such studies are not reported in the current literature. [11, 14]
propose payment schemes for linear regression for crowds. Both [11, 14] make
the assumption that an instance is provided only to a single annotator and also
do not look at the active learning paradigm. The idea in our work is to design
incentives for active learning in the context of crowdsourced regression which
would induce the annotators to put in their best efforts.

In the next section, we explain our model for regression using the crowd,
assuming non-strategic annotators.

3 Bayesian Linear Regression from a Non-strategic
Crowd

Given a data instance x ∈ Rd, the linear regression model aims at predicting
its label y such that y = w>x. Instead of x, non-linear functions Φ(.) of x, can
be used. To avoid notational clutter, we work with x throughout this paper.
The coefficient vector w ∈ Rd is unknown and training a linear regression model
essentially involves finding w. Let D be the initially procured training dataset
and let U denote the pool of unlabeled instances. We later (in Section 4.1) select
instances from U via active learning to enhance our model.

In classical linear regression, the labels are assumed to be provided by a single
noisy source. In crowdsourcing, however, there are multiple annotators denoted
by the set S = {1, . . . ,m}. Each of the annotators provides a label vector which
we denote by y1, . . . ,ym, where yj ∈ Rn for j = 1, . . . ,m. Each annotator may
or may not provide the label for every instance in the training set. We, therefore,
define an indicator matrix I ∈ {0, 1}n×m, where Iij = 1 if annotator j labels
instance xi, else Iij = 0. We denote by nj , the number of labels provided by
annotator j. That is, nj =

∑
i Iij . We also define a matrix Xj ∈ Rnj×d whose

rows contain the instances that are labeled by annotator j. Also, we denote by
yij , the label provided by annotator j for xi, which is the same as ith element
of the label vector yj . The true label of a data instance xi is given by w>xi.
Each annotator j introduces a Gaussian noise in the label he provides. That
is, yij ∼ N (w>xi, β

−1
j ) where, βj is the precision or inverse variance of the

distribution followed by yij . Intuitively, βj is directly proportional to the effort
put in by annotator j. We assume that there is always a maximum level of effort
that annotator j can put in and inverse variance corresponding to his best effort
is given by β∗j , which is unknown to the learner as well as other annotators.
In general, an annotator may be strategic and may exert a lower effort level
βj < β∗j if appropriate incentives are not provided. In this section, however,
we adhere to the assumption that annotators are non-strategic and annotator j
always introduces a precision of β∗j , thereby setting βj = β∗j . The parameters of
the linear regression model from crowds, therefore, become Θ = {w, β1, · · · , βm}.
The aim of training a linear regression model is to obtain estimates of Θ using
the training data D. We now describe a Bayesian framework for this.
Bayesian Model and Variational Inference for Parameter Estimation:
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Fig. 1: Plate notation for our model

A Bayesian framework for parameter estimation is well suited for active learn-
ing as incremental learning can be done conveniently. Bayesian framework has
been developed for estimating the parameters of the linear regression model when
labels of training data are supplied by a single noisy source [5]. To the best of
our knowledge, the counterpart of such a Bayesian framework in the presence
of multiple annotators has not been explicitly explored. We assume a Gaussian
prior for w with mean µ0 and precision matrix or inverse covariance matrix
Λ0. We assume Gamma priors for βj ’s, that is, p(w) ∼ N (µ0, Λ

−1
0 ), p(βj) ∼

G(γja0, γ
j
b0) for j = 1, . . . ,m. The plate notation of the Bayesian model described

above is provided in Figure 1. The computation of the posterior distributions
p(w | D) and p(βj | D) for j = 1, · · · ,m is not tractable. Therefore, we ap-
peal to variational approximation methods [3]. These methods approximate the
posterior distributions using mean field assumptions. We use q(w) and q(βj) to
represent the mean field variational approximation of p(w | D) and p(βj | D)
respectively. The variational approximation begins by initializing the parameters
of the prior distributions, {µ0, Λ0} and {γja0, γ

j
b0} for all j = 1, · · · ,m. At each

iteration of the algorithm, the parameters of the posterior approximation are
updated and the steps are repeated until convergence.

Lemma 1. The variational update rules for the posterior approximations using
mean field assumptions are q(w) ∼ N (µn, Λ

−1
n ) and q(βj) ∼ G(γjan, γ

j
bn) where

Λn =

[
Λ0 +

∑
j
E[βj ]

∑
i:Iij=1

xix
>
i

]
(1)

µn = Λ−1n

[
Λ0µ0 +

∑
j
E[βj ]

∑
i:Iij=1

yijxi

]
(2)

γjan = γja0 + nj/2 (3)

γjbn = γjb0 +
1

2

∑
i:Iij=1

(
y2ij − yijµ>nxi

)
+

1

2
Tr
(
Xj>XjΛ−1n

)
+

1

2
µ>nX

j>Xjµn (4)

Proof. If p and q denote the true and approximate posterior joint distributions of
the parameters respectively, we know that, ln p(D) = L(q) +KL(q || p) , where,



L(q) =
∫
q(Θ) ln

{
p(D,Θ)
q(Θ)

}
dΘ and KL(q||p) = −

∫
q(Θ) ln

[
p(Θ|D)W
q(Θ)

]
dΘ is the

KL divergence between the distributions q and p. By the mean field assumption,
the joint distribution q(w, β1, · · · , βm) factorizes as follows, q(w, β1, · · · , βm)
= q(w)

∏m
j=1 q(βj). For simplicity we denote by qw the distribution q(w) and

by qβj
the distribution q(βj).

L(q) =

∫
qw

m∏
i=1

qβj

ln p(D, Θ)−
∑

i∈w,β1,··· ,βm

qi

 dβjdw

∝
∫
qw

{∫
ln p(D, Θ)

m∏
i=1

qβi
dβi

}
dw −

∫
qw ln qwdw

=

∫
qw ln p̃(D,w)dw −

∫
qw ln qwdw (5)

where, p̃(D,w) = Eβ [ln p(D, Θ)] + constant and β = {β1, . . . , βm}. In order
to minimize KL(q||p), we must maximise L(q). Eqn (5) shows that L(q) is the
negative KL-divergence between p̃(D,w) and qw. L(q) is maximised when the
KL-divergence between p̃(D,w) and qw is minimized. Therefore, we must set
qw = p̃(D,w) = Eβ [ln p(D, Θ)]. By similar calculations, we must set, qβj

=
p̃(D, βj) = Ew,β−j [ln p(D, Θ)], where β−j = {β1, · · · , βj−1, βj+1, · · · , βm}.

log q(w) ∝ Eβ [log p(Y,w, β | X, δ, γ)]

= Eβ [log p(w, β) + log p(Y | X,w, β)]

= log p(w | δ) + Eβ [log p(β | γ)] + Eβ [log p(Y | X,w, β)]

∝ 1

2π
|Λ0| −

1

2
(w − µ0)>Λ0(w − µ0)

+ Eβ

log
∏
ij

βj
2π

exp

(
−βj(yij −w>xi)

2

2

)
∝ −1

2
(w − µ0)>Λ0(w − µ0)

+ Eβ

∑
ij

log
βj
2π
−
(
βj(yij −w>xi)

2

2

)
= −1

2
(w − µ0)>Λ0(w − µ0)

+
∑
ij

Eβj

[
log

βj
2π
−
(
βj(yij −w>xi)

2

2

)]
∝ −1

2
(w − µ0)>Λ0(w − µ0)

+
∑
j

Eβj

[
−
(
βj
∑
i(yij −w>xi)

2

2

)]



= −1

2
(w>Λ0w − 2w>Λ0µ0 + µ>0 Λ0µ0

+
∑
ij

Eβj [βj ]

2
(y2ij + x>i ww>xi − 2yijw

>xi)

∝ −1

2
w>

[
Λ0 +

(∑
j
E[βj ]

∑
i:Iij=1

xix
>
i

)]
w

+ w>
[
Λ0µ0 −

1

2

∑
j
E[βj ]

∑
i:Iij=1

yijxi

]
By completing the squares we get the update rules for w. The similar steps can
be performed to get the variational updates for βj . Due to constraints on space,
we have not included the steps.

The variational updates for µn and Λn defined in Eqns (1) and (2) involve
E[βj ] = γjan/γ

j
bn. The updates for γjbn given in Eqn (4) involve µn and Λn. This

interdependency between the update equations leads to an iterative algorithm.

Remark 1 (Parameter Estimation). : Our approach is not tied to the variational
inference approximation scheme. For example, MCMC can be used instead.

Lemma 2. Asymptotic convergence of Bayes estimators: Let w∗ be the
true underlying value of w and the Bayes estimator for w under the least squares
loss be µn. Then, limn→∞ ED[µn]→ w∗.

Proof. Let µn and Λn be the mean and precision respectively, of the approximate
posterior distribution q(w) , estimated from the training set D. Let w∗ be the
realized value of the underlying w.

ED[µn] = Λ−1n (Λ0µ0 +
∑

j
E[βj ]

∑
i:Iij=1

xiED[yij ])

= Λ−1n (Λ0µ0 + (Λn − Λ0))w∗

= w∗ + Λ−1n Λ0(µ0 −w∗) (6)

If the second term in Eqn 6 approaches 0 as n → ∞, the estimate µn is an
asymptotically unbiased estimate for w. Using standard linear algebra results,
we can prove that the determinant of the precision matrix det(Λn) approaches∞
with large number of samples, that is, limn→∞ det(Λn)→∞. Hence the second
term in Eqn 6 approaches zero. Therefore limn→∞ED[µn]→ w∗.

Lemma 2 is a desirable property of the estimators, and in general holds true for
Bayes estimators.

Inference: We now describe an inference scheme to make prediction about the
label of a test data instance. We denote by ŷtest the predicted label for the
test instance xtest. From the Bayesian framework of parameter estimation, The
posterior predictive distribution for ŷtest turns out to be as follows: p(ŷtest |
xtest,D) ∼ N (x>testµn,x

>
testΛ

−1
n xtest). This follows from standard results in [5].

We can use this distribution later in scenarios like active learning.



4 Active Learning for Linear Regression from the Crowd

We now discuss various active learning [31] strategies in our framework. Let
U be the set of unlabeled instances. The goal is to identify an instance, say
xk ∈ U , for which seeking a label and retraining the model with this additional
training example will improve the model in terms of the generalization error. In
the crowdsourcing context, since multiple annotators are involved, we also need
to identify the annotator t from whom we should obtain the label for xk. The
active learning criterion, thus, involves finding a pair (k, t) so that retraining
with the new labeled set D ∪ {(xk, ykt)} would provide maximum improvement
in the model.

4.1 Instance Selection

To our crowdsourcing model, we now apply two criteria well-studied in active
learning from a single source. We also show that all these seemingly different
criteria embody the same logic.

Minimizing Estimator Error Minimizing estimator error is a natural crite-
rion for active learning [29]. The error in the estimator µn+1, if we choose a pair
(k, t), is given by, Err(µn+1) = Eykt

[µn+1] −w. The error in the estimator µn,
before including the instance (xk, ykt) in the training set is, Err(µn) = µn −w.

Lemma 3. The relation between errors in µn+1 and µn is given by,

‖Err(µn)‖ /(1 + βtx
>
k Λ
−1
n xk) ≤ ‖Err(µn+1)‖ ≤ ‖Err(µn)‖ (7)

Proof. We first compute Eykt
[µn+1].

Eykt
[Λn+1µn+1] = Λn+1Eykt

[µn+1]

= Λnµn + xk(x>k w)βt (8)

Making necessary substitutions and rearranging the terms,

Eykt
[µn+1]− µn = −Λ−1n xkx

>
k Err(µn+1)βt

Again rearranging the terms and subtracting w from both the sides yields,

Err(µn+1) =
(
I + Λ−1n xkx

>
k βt

)−1
Err(µn). We now bound Err(µn+1), in terms of

the old error, Err(µn) as follows: ‖Err(µn+1)‖ ≤
∥∥(I +Σnxkx

>
k βt)

−1
∥∥ ‖Err(µn)‖

where,
∥∥(I + Λ−1n xkx

>
k βt)

−1
∥∥ is the spectral norm of the matrix (I+Λ−1n xkx

>
k βt)

−1.
Since Λ−1n xkx

>
k is a rank one matrix, the matrix I+Λ−1n xkx

>
k βt has d−1 eigen-

values equal to 1 and one eigenvalue equal to 1+βtx
>
k Λ
−1
n xk. Note, x>k Λ

−1
n xk > 0

since Λ−1n is a positive definite matrix. Therefore, spectral norm of the matrix
(I +Λ−1n xkx

>
k βt)

−1 is 1 and its minimum eigenvalue is 1/(1 + βtx
>
k Λ
−1
n xk) and

we arrive at the error bound.

From Theorem 3, it is clear that to reduce the value of the lower bound, we must
pick a pair (k, t) for which the score βtx

>
k Λ
−1
n xk is maximum.



Minimizing Estimator’s Entropy This is another natural criterion for ac-
tive learning which suggests that the entropy of the estimator after adding an
example should decrease [20, 21]. Formally, let H(w | D) and H(w | D′) denote
the entropies of the estimator before and after adding an example, respectively,
where we have D′ = D∪{(xk, ykt)}. Again, let us assume βj ’s are known for the
time being. The entropy of the distribution before adding an example satisfies:
H(w | D) ∝ det(Λ−1n ). After adding the example, entropy function behaves as
follows. H(w | D′) ∝ det(Λ−1n+1), where

det(Λ−1n+1) = det(Λ−1n )/(1 + βtx
>
k Λ
−1
n xk) (9)

From (9), we would like to choose an instance xk and an annotator t that jointly
maximize βtx

>
k Λ
−1
n xk so that det(Λ−1n+1) as well as estimator’s entropy are mini-

mized. Recall, the same selection strategy was obtained while using the minimize
estimator error criterion. Let λ∗ = λmax(Λ−1n ) and λ∗ = λmin(Λ−1n ). We can fur-
ther bound the estimator precision as follows.

1/(1 + βtλ
∗ ‖xk‖2) ≤ det(Λ−1n+1)/ det(Λ−1n ) ≤ 1/(1 + βtλ∗ ‖xk‖2)

We observe that the selection of the best instance xk and the best annotator St
can be decoupled. That is, we can first select an instance xk for which x>k Λ

−1
n xk

is maximum and independently select an annotator for whom βt is maximum.
But this scheme of annotator selection may lead to starvation of best annotators
if the annotators have not been explored sufficiently. Hence we only use this
strategy for selecting an instance and not for selecting the annotator.

4.2 Selection of an Annotator

Having chosen the instance xk, next the learner must decide which annotator
should label it. Consider any arbitary sequential selection algorithm A for the
annotators. If the variance of the annotators’ labels were known upfront, the
best strategy would be to always select the annotator introducing the minimum
variance 1/β∗ = min1≤j≤m 1/βj . The variances of the annotators’ labels are
unknown and hence a sequential selection algorithm A incurs a regret defined
by Regret-Seq(A) below. We denote the sub-optimality of annotator j by ∆j =
(1/βj)− (1/β∗).

Definition 1. Regret-Seq(A, t): If Tj(t) is the number of times annotator j
is selected in t runs of A, the expected regret of A in t runs, with respect to the
choice of annotator, is computed as, Regret-Seq(A, t) =

∑m
j=1∆jE[Tj(t)].

The problem is to formally establish an annotator selection strategy which yields
a regret as low as possible. The main challenge is that the annotators’ noise level
is unknown and must be estimated simultaneously while also deciding on the
selection strategy. We observe the connections of this problem to the multi-armed
bandit (MAB) problem. In MAB problems, there are m arms each producing
rewards from fixed distributions P1, · · · , Pm with unknown means γ1, · · · , γm.



The goal is to maximise the overall reward and for this, at every time-step a
decision has to be made as to which arm must be pulled. We denote the sub-
optimality of arm i by ∆MAB

i = γ∗ − γi, where γ∗ = max1≤i≤m γi.

Definition 2. Regret-MAB(M, t): If Ti(t) is the number of times arm i is
selected in t runs of any MAB algorithm M , the expected regret of M in t runs,
Regret-MAB(M, t), is computed as, Regret-MAB(M, t) =

∑m
i=1∆

MAB
i E[Ti(t)].

We now show that the active learning problem in crowdsourcing regression tasks
can be mapped to the MAB problem. We know that, E[(ykj−(w>xk))2] = 1/βj .
Since we are interested in the annotator introducing the minimum variance, we
could work with a MAB framework where the rewards of the arms (annotators
in our case) are drawn from the distribution of −(ykj − (w>xk))2. This idea
was used in [22] in the context of sequential selection from a pool of Monte
Carlo estimators. If the selection strategy A appeals to any MAB algorithm M
defined on the distributions −(ykj − (w>xk))2, Regret-MAB(M, t) will be the
same as Regret-Seq(A, t), as proved by [22]. This implies that for the selection
strategy, we could work with any standard MAB algorithm such as UCB on the
distribution of −(ykj − (w>xk))2 and Regret-Seq(A, t) would be the same as
Regret-MAB(M, t), for an appropriately formulated MAB algorithm M.

UCB Algorithm on −(ykj − (w>xk))2 As mentioned, we can work with
MAB algorithms on −(ykj−(w>xk))2 for which we look at the widely used UCB
family of MAB algorithms. The UCB algorithm is an index based scheme which,
at time instant t selects an arm i that has the maximum value of sum of the
estimated mean (γ̂i) and a carefully designed confidence interval ci,t to provide
desired guarantees. To design the UCB confidence interval ci,t, a fairly general
class of algorithms called ψ-UCB [7] can be used. The procedure for applying ψ-
UCB for a random variable G with some arbitrary distribution, involves choosing
a convex function ψG(λ), such that, lnE[exp(|λ(G − E[G])|] ≤ ψG(λ) for all
λ ≥ 0. Further, an application of Chernoff bounds gives the confidence interval.
In particular when G satisfies the sub-Gaussian property, the choice of ψG(λ) is
easy. In our setting, we will see that ψ-UCB is inapplicable.

Lemma 4. Inapplicability of ψ-UCB: Let the distribution of random variables
Gj follow a zero-mean normal distribution for j = 1, · · · ,m. The distribution
of −G2

j is sub-exponential which is a heavy-tailed distribution. For an MAB

framework where the rewards of the arms are sampled from −G2
j , ψ-UCB is not

applicable.

Proof. A variable G is sub-exponential if E[exp(λG)] ≤ 1/(1 − λ/a) for 0 <
λ < a. We now prove that the random variable G2, where G ∼ N (0, σ2) is



sub-exponential.

E[exp(λG2)] = 1/(σ
√

2π)

∫ ∞
−∞

exp(z2(λ− (1/2σ2)))dz (10)

= 1/(σ
√

2π)

∫ ∞
−∞

exp(−z2((1− 2λσ2/2σ2)))dz (11)

= 1/(σ
√

2π)

∫ ∞
−∞

exp(−z2/(2σ2/(1− 2λσ2)))dz (12)

= 1/
√

1− 2λσ2 (13)

< 1/(1− 2λσ2) for 0 ≤ λ < 1/2σ2 (14)

Setting a = 1/σ2 shows that G is sub-exponential. A random variable −G2 is
sub-exponential iff G2 is sub-exponential. Therefore −G2 is sub-exponential.

Let Gj ∼ N (0, σ2
j ). We now compute the functions, E[exp(λ(−G2

j +E[G2
j ]))]

and E[exp(λ(E[−G2
j ] + (G2

j )))]. E[G2
j ] = σ2

j .

E[exp(λ(−G2
j + E[G2

j ]))] = E[exp(λ(−G2
j + σ2

j ))]

=
exp(λσ2

j )

σj
√

2π

∫ ∞
−∞

exp(−λx2) exp(
−x2

2σ2
j

)dx

= exp(λσ2
j )/(σj

√
2π)

∫ ∞
−∞

exp(−x2/2(σ2
j /(1 + 2λσ2

j )))dx

= exp(λσ2
j )/
√

1 + 2λσ2
j

Similar calculations also yield,

E[exp(λ(G2
j − E[G2

j ]))] = exp(−λσ2
j )/
√

1− 2λσ2
j

In order to apply ψ-UCB for the MAB framework where the rewards of the
arms are sampled from −G2

j , we need to compute a function ψ(λ) such that for

all λ ≥ 0, lnE[exp(λ(G2
j − E[G2

j ]))] ≤ ψ(λ) and lnE[exp(λ(−G2
j + E[G2

j ]))] ≤
ψ(λ). E[exp(λ(G2

j − E[G2
j ]))] is not even defined for λ ≥ 1/(2σ2

j ) and hence the
function ψ(λ) cannot be computed. Therefore ψ-UCB cannot be applied to this
framework.

In our setting, ykj − w>xk follows a normal distribution and −(ykj − w>xk)2

has a sub-exponential distribution which is heavy tailed. Therefore from Lemma
4, an upper confidence interval cannot be obtained using ψ-UCB.

Robust-UCB with Truncated Empirical Mean To devise upper confidence
intervals for heavy tailed distributions, Robust UCB [8] prescribes working with
‘robust’ estimators such as a truncated empirical mean, where samples that lie
beyond a carefully chosen range are discarded. The necessary condition to be
satisfied while applying Robust UCB is that the reward distribution of the arms



should have moments of order 1 + ε for some ε ∈ (0, 1]. Since the distribution of
−(ykj− (w>xk))2 has finite variance, Robust UCB with the truncated empirical
mean can be used by setting ε = 1. At round t, the truncated empirical mean of
the samples, the absolute value of which do not exceed

√
ut/ log δ−1, is computed

as,

µ̂jt =
1

ncj

∑
i:Iij=1

ξij 1

(
|ξij | ≤

√
ut/ log δ−1

)
(15)

where ξij = −(yij − µ>wxi)
2 and µw is the estimator of w obtained from the

variational inference algorithm. In Eqn 15, ncj is the number of samples that

are actually considered, δ is the desired confidence on the deviation of µ̂jt from
1/βj for all j, u is an upper bound on ξ1+εij . From Lemma 2 µw is an unbiased
estimate for w and hence we use µw instead of w. The parameter δ can be tuned
appropriately to get tight bounds on the regret.We now describe the algorithm.

Input: No. of annotators m, Unlabeled set U , Labeled set D, nj , n
c
j , for

j = 1, · · · ,m
Set µw, Λw using variational inference procedure described earlier; t := 0 ;

Set µ̂j
t for the annotators using Eqn (15);

while ( the learner has budget or the model has not attained the desired RMSE
) do

– Choose an instance xk = arg maxx∈U x
>Λ−1

w x ;
– Get a label ykj∗ from an annotator j∗ such that
j∗ ∈ arg max

1≤j≤m
µ̂j
t +

√
32u(log t)/nj ;

– t := t+ 1 ; nj∗ := nj∗ + 1 ; D := D ∪ {(xk, ykj∗)} ;
– Run variational inference procedure described earlier

and update µw;
– If (ykj∗ − µ>wxi)

2 <
√
ut/ log δ−1

• nc
j∗ := nc

j∗ + 1 ;

• Update µ̂j∗
t using Eqn (15);

end
Algorithm 1: Robust UCB for selecting the annotators

Theorem 1. Regret-Seq(Algo 1, T ) ≤
∑
i:∆i>0

32u log T

∆i
+ 5∆i.

Proof. We first prove that, with probability at least 1− δ,

µ̂jt ≤ (−1/βj) + 4
√
u log δ−1/nj (16)

Let Ct =
√
ut/ log δ−1. Let the random variable ξ = −(ykj − (w>xk))2. As

mentioned earlier ξ1+ε = ξ2 < u. Note that

E
[
ξ21ξ≤Ct

]
= E

[
|ξ2|1ξ≤Ct

]
≤ u (17)



E[ξ1|ξ|>Ct
] ≤ E[|ξ|2]1/2E[|1ξ≥Ct

|2]1/2 ≤
√
u(P{ξ ≥ Ct})1/2

≤
√
u(E[ξ2]/C2

t )1/2 = u/Ct (18)

Equation (18) arises due to Holder’s inequality. Further,

E[ξ]− 1

nj

nj∑
t=1

ξt1[ξt≤Ct] =
1

nj

nj∑
t=1

(E[ξ]− E[ξ1|ξ|≤Ct
])

+
1

nj
(E[ξ1|ξ|≤Ct

]− ξt1[ξt≤Ct])

=
1

nj

nj∑
t=1

E[ξ1|ξ|>Ct
] +

1

nj
(E[ξ1|ξ|≤Ct

]− ξt1[ξt≤Ct])

≤ u

Ct
+

√
2u log δ−1

nj
+

2Cn log δ−1

3nj
(19)

The first term in Eqn (19) arises as a consequence of Eqn (18) and the remaining
terms arise as a result of Bernstein’s inequality with some simplification. Further
algebraic simplification of Eqn (19) gives us Eqn (16).
For a MAB algorithm A using µ̂jt as an estimator for −1/βj , the regret satisfies
the following bound when δ = T−2, where T is the total time horizon of plays
of the MAB algorithm.

Regret-MAB(A, T ) ≤
∑

i:∆i>0

32u log T

∆i
+ 5∆i. (20)

Proof of Eqn (20) involves bounding the number of trials where a sub-optimal
arm is pulled, similar to the technique in [2, 8]. A pull of a sub-optimal arm
indicates one of the following three events occur:(1) The mean corresponding to
the best arm is underestimated (2) the mean corresponding to a sub-optimal arm
is over-estimated (3) the mean corresponding to the sub-optimal arm is close to
that of the optimal arm. Next we bound each of the three events and use union
bound to get the final result. Eqn (16) is used to get bounds for events (1) and
(2). Regret-Seq(Algo 1, T ) = Regret-MAB(Robust-UCB, T ) from [22].

Theorem 2. The expected number of samples discarded by the Robust UCB
algorithm in t trials of the algorithm, E[W (t)] ≤ 4(log t)2.

Proof. As per the robust UCB algorithm, at the tth time instant, the probability
of the random variable ξ = (ykj −w>xk))2 exceeding (ut/(4 log t))1/(1+ε),

P (ξ > (ut/(4 log t))1/(1+ε)) = P (ξ1+ε > ut/(4 log t))

≤ E[ξ]1+ε4 log t

ut
(by Markov inequality)

≤ 4 log t/t



The number of samples discarded upto a time n is

E[W (n)] =

n∑
t=1

E[1[Zt > (ut/(4 log t))ε/(1+ε)]]

=

n∑
t=1

4 log t/t ≤ 4(log n)2 �

5 The Case of Strategic Annotators

Till now, we have inherently assumed that annotators are non-strategic. Now we
look at the scenario where an annotator who has been allocated an instance is
strategic about how much effort to put in. For this, we assume that, for each an-
notator j, the precision βj introduced while labeling an instance is proportional
to the effort put in by annotator j. We now refer to the effort as βj for simplicity.
It is best for the learning algorithm when the annotator j puts in as much effort
(high βj) as possible thereby reducing the variance in the labeled data. A given
level of effort incurs a cost to the annotator cj(βj). We assume that cj(.) is a
non-negative strictly increasing function of βj with cj(0) = 0. The exact form
of cj(.) is unknown to the learner. From the annotator’s point of view, a high
value of effort βj might incur a higher cost and thus the annotator might not be
motivated to put in higher effort.

In order to take into account the strategic play of the human annotators,
we appeal to mechanism design techniques. Mechanism design comprises alloca-
tion and payment rules. The mechanism is to be designed to meet at least the
following objectives.

Definition 3. Individual Rationality (IR): A mechanism is IR if the expected
utility of every participating agent is non-negative.

Definition 4. Quality Compatibility: We say a mechanism is ‘quality compati-
ble’ at level β if it induces every participating agent to operate under precision
β ≥ β.

We now present a mechanism design solution which meets the above design goals.
Proposed Mechanism: (1) We use Algorithm 1 as the allocation rule. (2)The

payment rule for annotator j when his estimated precision is β̂j is,

P (β̂j) = Bmin

{
1,max

{
0,

(
β̂j − β
β − β

)}}
(21)

We assume that the learner has a finite budget B per example. Also the anno-
tators are expected to have precisions in the range [β, β]. An effort level in this
expected range fetches a corresponding proportional payment to the annotator.
If an annotator puts in an effort less than β, he does not receive any payment.

An effort level higher than β fetches an annotator a maximum payment of B,
due to the limitation on the willingness of the learner.



Annotator’s optimization problem: The utility of the annotator when
operating at the effort level βj is U(βj) = P (βj)− cj(βj). The optimal effort for
the annotator, β∗j = argmax

βj

U(βj).

Theorem 3. The proposed mechanism is IR and quality compatible.

c1(β) c2(β)

c3(β)

P (β)

β β3 = ββ2

B

Fig. 2: Realizations of cj(βj) in relation to the payment rule P (βj)

Proof. The payment scheme is individually rational as annotators participate
only when P (βj) > cj(βj) in that case, they obtain a positive utility. The utility
is therefore non-negative and hence the mechanism is IR.

In order to prove that the payment scheme is quality compatible, we consider
the three possible realizations of cj(βj) in relation to the payment rule P (βj).

1. There exists no βj for which P (βj) > cj(βj). In this scenario, an annotator
will choose to not participate, as there is clearly no benefit from participation.
The cost function c1(β) in Figure 2 captures this.

2. There exists some βj such that β < βj ≤ β, for which P (βj) > cj(βj) and

the maximum utility is attained at βj∗ , such that, β < βj∗ < β. The cost
function c2(β) in Figure 2 demonstrates this scenario where an effort β2 > β
maximizes his utility.

3. There exists βj such that β < βj ≤ β, for which P (βj) > cj(βj) and the

maximum utility is attained at βj∗ = β. The cost function c3(β) in Figure 2
demonstrates this. �

6 Experimental Results

We conducted experiments on three real world datasets from the UCI repository
[19] - Housing, Redwine and Whitewine, the details of which are provided in
Table 1a. To simulate the annotators, we added zero-mean Gaussian noise to
the output variables. 1/

√
βj values of the annotators were randomly chosen

from two sets of intervals U1 = [0.1, 1] and U2 = [1, 2]. Annotators with 1/
√
βj

chosen from interval U1 are clearly better than those chosen from U2.

6.1 Data Preprocessing

We worked with a transformation Φ : Rd → Rd of the original data matrix
X. For the Housing and the Whitewine datasets, we worked with the following



0 10 20 30 40 50 60 70 80 90

No. of labels
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Te
st

R
M

S
E

Whitewine dataset
Random
RUCB
Instance
Single Source AL
Full pool

(a)

0 10 20 30 40 50 60 70 80 90

No. of labels
0

100

200

300

400

500

R
eg

re
t

Whitewine dataset
Random
RUCB
Instance

(b)

0 5 10 15 20 25 30

No. of labels
5.0

5.5

6.0

6.5

7.0

7.5

8.0

Te
st

R
M

S
E

Housing dataset

Random
RUCB
Instance
Single Source AL
Full pool

(c)

0 5 10 15 20 25 30

No. of labels
0

100

200

300

400

500

600

R
eg

re
t

Housing dataset

Random
RUCB
Instance

(d)

0 10 20 30 40 50 60 70 80 90

No. of labels
0.6

0.8

1.0

1.2

1.4

1.6

1.8

Te
st

R
M

S
E

Redwine dataset
Random
RUCB
Instance
Single Source AL
Full pool

(e)

0 5 10 15 20 25 30

No. of labels
0

20

40

60

80

100

120

140

160

R
eg

re
t

Redwine dataset

Random
RUCB
Instance

(f)

Fig. 3: Active learning results on various datasets. The legends for the figures in
each row are provided on the corresponding figure in the first row

non-linear transformation Φb(x;Rb, s) = 1/(1 + exp(−‖x−Rb‖ /s)), b = 1→ d
whereas, for the Redwine dataset, the original data matrix X was used. The
value of s was fixed using cross-validation. The parameters Rb for b = 1 → d,
were set as the k-means cluster representatives of the dataset. All the features
were normalized.

6.2 Performance of Bayesian Parametric Model

We compared our Bayesian parameter estimation algorithm (without active
learning) with MLE [25] and Gaussian Process based method [17]. From the
complete dataset C, a random 30% of data was used as test dataset T . We
refer to the set C \ T as the full pool of training instances F . 50 annotators
were used, out of which, for 40 of them, the parameter 1/

√
βj was chosen from

U1, and for the remaining, from U2. The parameters of the Bayesian model
described earlier were learnt using the full pool F labeled by the 50 annota-
tors, as the training data. The experiments were repeated with 10 different
splits of the data. We report the Average Root Mean Square Error (RMSE)



scores on the test set T . The RMSE for the test dataset containing Ntest in-
stances with true output vector z and predicted output vector ŷ, is calculated

as, RMSE(ŷ; z) =
√∑Ntest

i=1 (ŷi − zi)
2
/Ntest. Our results are provided in Table

1b. Our method consistently outperforms Groot’s method and compares well
with MLE.

Remark 2. With increasing size of the dataset, the performance of our model
approaches MLE (as demonstrated in Table 1b, Whitewine dataset). This is
consistent with the result that with increased size of training data set, Bayesian
estimates perform similar to MLE [6]. It further shows the efficacy of our learning
scheme explained in Section 3. The additional advantage that our model offers
is the suitability to further apply active learning methods, which is not offered
by other learning schemes like MLE[25] and Groot et al [26].

Dataset Size d Φ

Housing 506 12 Nonlinear
Redwine 1599 11 Linear
Whitewine 4898 11 Nonlinear

(a) Details of datasets

Dataset Our method MLE Groot et al.

Housing 4.7209 4.93834 5.998169
Redwine 0.51490 0.65868 0.67354
Whitewine 0.75740 0.75748 1.235

(b) Average test RMSE values when the
whole dataset is used (without active
learning). ‘Our method’ refers to the vari-
ational inference based learning scheme
explained in Section 3

Table 1: Details of datasets and performance of the model

6.3 Active Learning Experiments

We now describe our experiments with the active learning criteria. In order to
test the results of active learning on linear regression, we used the set T as the
test dataset as in the previous case. Initially, only 10 instances from F labeled
by all annotators were used as the training set D. F \ D was used as the un-
labeled set U . At every step of active learning, the label ykj∗ of one instance
xk was procured from an annotator j∗, chosen using Algorithm 1. The model
was relearnt using the new training set D = D ∪ {(xk, ykj∗)}. The RMSE was
calculated on T and the results were plotted at every step. We also plotted the
regret for Algorithm 1 at every step. The experiments were repeated for 10 dif-
ferent splits of the dataset. The test RMSE when the set F was used for training
(so that D = F) was also plotted. This error is the best achievable error in the
crowdsourcing scenario.
To the best of our knowledge, our work is the first attempt towards active learn-
ing for regression from the crowd and therefore there are no other baselines in
the literature to compare our method against. However we have used the follow-
ing baselines for comparison:
(1)Random: Random selection of instances and annotators.
(2)Instance: Algorithm 1 for selecting the instances and random selection of an-
notators.



(3)Single Source AL: The labels were provided by a single source with negligible
noise. Active selection of instances was performed using uncertainty sampling.
The RMSE and regret plots are provided in Figure 3. Clearly the Robust UCB
strategy outperforms ‘Random’ as well as ‘Instance’ with respect to RMSE as
well as regret and approaches the ‘Single Source AL’ with fewer number of la-
beled examples.

Remark 3. Our active learning algorithm demonstrates a superior performance
with just a few additional labels (Figure 3). A similar trend was observed for
the rest of the curve, which was omitted in the plots for the sake of clarity.

7 Conclusions and Future Work

We set up a Bayesian framework to infer the parameters of linear regression using
crowds. As closed form Bayesian solution is intractable, we used approximation
schemes. To improve this initially learnt regression model, we used various active
learning techniques and studied their theoretical foundations. We established
the connections with MAB algorithms and explored the use of Robust UCB
for annotator selection in active learning, providing theoretical guarantees and
also performing a wastage analysis. Next, we introduced a payment scheme for
annotators to ensure that they put in their best efforts while labeling the data.
Our experiments on real data show the efficacy of our techniques.

Our approach of Bayesian learning, MAB algorithm for annotator selection,
uncertainty sampling for instance selection and design of quality compatible
mechanisms to elicit best efforts from crowd workers is applicable for a wide
range of tasks like classification, ordinal regression etc. It would be interesting
to study the suitability of various MAB algorithms depending on the form of the
distributions used to model the annotators’ qualities. Modeling the subjectivity
of the annotators, their dynamic entry and exit, and the design of incentives in
these scenarios is also challenging.
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