Abstract:
Face Super Resolution(FSR) is to infer High Resolution(HR) facial images from given Low Resolution(LR) ones with the assistance of LR and HR training pairs. Among existin...Show MoreMetadata
Abstract:
Face Super Resolution(FSR) is to infer High Resolution(HR) facial images from given Low Resolution(LR) ones with the assistance of LR and HR training pairs. Among existing methods, local patch based methods are superior in visual and objective quality than global based methods. These local patch based methods are based on the consistency assumption that the neighbors in HR/LR space form similar local geometry. But when LR images are Very Low Quality(VLQ), the LR space is seriously contaminated that even two distinct patches look similar, which means that the consistency assumption is not well held anymore. To this end, in this paper we use the target patch as well as the surrounding pixels, which we called parent patch, to represent the target patch. By incorporating the peripheral information, the parent patch is much more robust to noise in the LR and HR consistency learning. The effectiveness of proposed method is verified both quantitatively and qualitatively.
Date of Conference: 24-29 July 2016
Date Added to IEEE Xplore: 03 November 2016
ISBN Information:
Electronic ISSN: 2161-4407