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Abstract—A Content-Based Image Retrieval (CBIR) system
which identifies similar medical images based on a query image
can assist clinicians for more accurate diagnosis. The recent
CBIR research trend favors the construction and use of binary
codes to represent images. Deep architectures could learn the
non-linear relationship among image pixels adaptively, allowing
the automatic learning of high-level features from raw pixels.
However, most of them require class labels, which are expensive
to obtain, particularly for medical images. The methods which
do not need class labels utilize a deep autoencoder for binary
hashing, but the code construction involves a specific training
algorithm and an ad-hoc regularization technique. In this study,
we explored using a deep de-noising autoencoder (DDA), with a
new unsupervised training scheme using only backpropagation
and dropout, to hash images into binary codes. We conducted
experiments on more than 14,000 x-ray images. By using class
labels only for evaluating the retrieval results, we constructed
a 16-bit DDA and a 512-bit DDA independently. Comparing to
other unsupervised methods, we succeeded to obtain the lowest
total error by using the 512-bit codes for retrieval via exhaustive
search, and speed up 9.27 times with the use of the 16-bit
codes while keeping a comparable total error. We found that
our new training scheme could reduce the total retrieval error
significantly by 21.9%. To further boost the image retrieval
performance, we developed Radon Autoencoder Barcode (RABC)
which are learned from the Radon projections of images using
a de-noising autoencoder. Experimental results demonstrated its
superior performance in retrieval when it was combined with
DDA binary codes.

I. INTRODUCTION

Retrieving similar medical images given a query image can
be useful for more accurate diagnosis. A Content-Based Image
Retrieval (CBIR) system, which identifies similar images
based on an input image, is thus important for fields such as
radiology and pathology. Building such a system is formidably
difficult for two reasons. First, the similarity is hard to define
for visual data. There is a semantic gap between low-level
pixel values and high-level semantics [1]. Second, the recent
advance in medical imaging devices has led to the production
of a gigantic amount of image data. It has been reported that
the Vanderbilt Medical Center had compiled over 100 million
anonymized medical images in 18 months [2]. A sophisticated
CBIR system must be able to search through this Big Medical
Image Data efficiently in response to the user’s query. Hence,
for medical images, accuracy and speed are the two most
critical criteria for performance of a CBIR system.

The recent trend in CBIR research is the construction
and use of binary representations (codes) for image retrieval
[3], because they offer several advantages over real-valued
descriptors. For example, (1) they enable us to utilize the fast
bitwise operation in hardware; (2) they are hashable, allowing
the use of memory in exchange for fast retrieval; (3) they
require much less storage.

There are many methods (as reviewed in Section II) to
hash images into binary codes. Despite their availability, they
mostly seek linear projections and thus cannot capture the
underlying non-linearity inherent in the image data [4], [5].
Kernelized methods have this capability, but an appropriate
kernel function, which may not exist, needs to be chosen [5].

Recently, there are increasing attempts [4], [6]–[9] to apply
deep architectures (neural networks with at least 3 hidden
layers), which could learn the non-linear relationship among
image pixels, to hash images into binary codes. However,
these methods mostly require class labels, yet obtaining class
labels are expensive in the field of medical imaging. A recent
study [2] labeled 2100 medical images in collaboration with a
radiologist, while the unlabeled data involved was 1 million.
A very small amount of labeled data is unlikely to be adequate
for training deep architectures. It may lead to over-fitting
if over-trained. From the practical perspective, unsupervised
methods should therefore be explored. Semantic hashing [10],
[11] is a recent work that builds a deep autoencoder [12] by
stacking restricted boltzmann machines (RBMs) [13], to learn
binary codes from documents [10] or images [11] for retrieval.
However, building a deep autoencoder by stacking RBMs
for binary hashing [11] is complicated since a specific RBM
training algorithm and an ad-hoc regularization technique are
needed. Recently, it is reported that a deep autoencoder built
by stacking de-noising autoencoders, i.e. a deep de-noising
autoencoder (DDA), has comparable performance in learning
features for supervised classification task [14]. However, the
unsupervised method using a DDA to hash images into binary
codes has not been explored.

Deep architectures have been applied in medical image
analysis [15]–[18]. There are also some methods [2], [19]
applying deep architectures for medical image retrieval but
they are not hashing the medical images into binary codes,
except one recent study [1], based on supervised methods
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using kernel. To our knowledge, no studies have used deep
architectures to hash medical images into binary codes without
class labels for retrieval.

Traditional methods seem to be unable to capture the un-
derlying non-linearity inherent in images. Kernelized methods,
on the other hand, are not adaptable. Most methods based on
deep architectures require class labels. Obtaining class labels
for medical images is a laborious task and not easily doable
for large databases. The methods which do not need class
labels train a deep autoencoder by adopting a specific training
algorithm and an ad-hoc regularization technique. Until now
no studies have used deep architectures to hash medical images
into binary codes without class labels for retrieval. Hence, one
objective of this study is to introduce a new unsupervised
scheme for training a deep de-noising autoencoder (DDA)
to hash images into binary codes using backpropagation and
standard regularization techniques. As well, we will investigate
the feasibility and performance of using a DDA to hash X-ray
images into binary codes without class labels.

Indicated by our experimental results on the benchmark
dataset IRMA from ImageCLEFmed09 [20], the new unsu-
pervised training scheme introduced by us had a significant
impact on the retrieval performance, decreasing the total error
by 21.9%. Using the same Exhaustive Search strategy, the
binary codes learned by our DDA were found to achieve
the lowest total error on this dataset comparing to other
unsupervised methods reported in the literature. Using the
fast retrieval strategy, we required only 7.18ms to retrieval
a image on a laptop, achieving a speed-up of 9.27x over the
Exhaustive Search strategy with a comparable total error. The
best unsupervised retrieval result on this dataset was achieved
by the combined use of RABC and DDA binary codes.

The rest of this paper is organized as follows: The related
work is reviewed in Section II. Our methodology is described
in Section III. The experimental results and their analysis are
shown in Section IV. The whole study is summarized and
concluded in Section V.

II. RELATED WORK

A. Hashing Images into Binary Codes

The existing methods to hash images into binary codes
can be categorized into two classes: data-independent and
data-dependent (or learning-based) methods. Data-independent
methods do not look into the data distribution when hashing
images into binary codes. One popular method in this class
is Locality Sensitive Hashing (LSH) [21]. It uses random
projections to construct hash functions such that similar im-
ages would have the same hash codes with high probability.
However, it works only with theoretical guarantees for some
metric spaces, e.g. l0, l2 and Jaccard distances [4], [22].

Data-depending methods investigate the data distribution
when hashing images into binary codes. They are also called
learning-based methods. This class of method can be cate-
gorized into two sub-classes: unsupervised and supervised.
For the unsupervised sub-class, no class label is required to
learn the hash functions. For example, Spectral Hashing [23]

is to obtain balanced binary codes by solving a spectral graph
partitioning problem, but the input data is assumed to be
uniformly distributed in Rd [3]. Kernelized Locality-Sensitive
Hashing (KLSH) [24] formulates the random projections nec-
essary for LSH in kernel space using a subset of samples,
such that the underlying embedding of the data needs not to
be explicitly known and computable [3], but an appropriate
kernel is required and its scalability is questioned [5]. For
the supervised sub-class, class labels are required to learn
the hash functions. Labeled training data can be used for
constructing a pairwise similarity matrix to learn the hashing
functions. Binary Re-constructive Embedding (BRE) [25] is
to minimize the deviation between the original Euclidean
distances and the learned Hamming distances. Minimum Loss
Hashing (MLH) [26] is to minimize the difference between the
learned Hamming distance and the binary quantization error.
Kernel-based Supervised Hashing (KSH) [27] map samples
into binary codes whose Hamming distances are minimized
on similar pairs and maximized on dissimilar pairs.

Nevertheless, these approaches require the use of class
labels, which are expensive to acquire if the data is large. Note
that some methods only require a subset of training data having
class labels. However, they are prone to over-fitting when
labeled data is small [22]. Semi-supervised hashing (SSH)
[22] minimizes empirical error for the pairwise similarity in
the training samples, regularized by maximizing the variance
of the labeled and unlabeled data. But these methods mostly
seek linear projections and thus cannot capture the non-
linear structure of samples [4], [5]. Kernelized methods could
capture the underlying non-linearity, but an appropriate kernel
function, which may not exist, needs to be chosen [5].

B. Hashing by Deep Architectures

Recently, there are increasing attempts [4], [6]–[9] to use
deep architecture to hash images into binary codes. Most of
these methods require class labels. They utilize Convolutional
Neural Network (CNN) [4], [8], [9] to conduct multi-class
classification, followed by binarizing the activations of a fully-
connected layer with a threshold and taking the binarized
results as hash codes. However, as mentioned before, obtaining
class labels is an expensive task for large datasets, and these
methods are likely to overfit if over-trained on a few labeled
data [22]. On the other hand, there are limited attempts in
using deep architectures to hash images into binary codes
without using labels for retrieval. Semantic hashing [10], [11]
is a recent approach that builds a deep autoencoder [12]
by stacking restricted Boltzmann machines (RBMs) [13], to
learn binary codes from documents [10] or images [11] for
retrieval. However, building a deep autoencoder by stacking
RBMs for binary hashing [11] is complicated because 1) a
specific RBM training algorithm called contrastive divergence
is needed, and 2) An ad-hoc regularization technique, i.e.
binarizing the forward activities in the coding layer [11],
needs to be adopted. Recently, it has been reported that a
deep autoencoder built by stacking de-noising autoencoders,
i.e. a deep de-noising autoencoder (DDA), has a comparable
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performance in learning features for supervised classification
task [14]. To our knowledge, there are no studies on how to
use a DDA to hash images into binary codes.

C. Hashing Medical Images into Binary Codes

There is a small number of studies [28]–[33] involving
hashing medical images into binary codes, and to a lesser
extent for image retrieval [28], [29], [33]. Rather than hashing
the entire images into binary codes, the research community
in medical image retrieval adopts localized methods such as
obtaining binary descriptors from the images, assuming that
some local regions are more important in medical images [32].
Local Binary Pattern (LBP) descriptor [34] has been most
commonly used for similar purposes [28], [29], [33]. Recently,
a new descriptor called “Radon Barcode” was proposed [33],
[35], which obtains binary codes from a medical image by
binarizing its Radon projections. It reported superior perfor-
mance than LBP in X-ray images. We compare the binary
codes learned by our method with these methods, and study
if it is possible to learn binary codes from Radon projections.

III. METHODOLOGY

A. Problem Definition

Let X = {xn}Nn=1 be a set of N X-ray images, where each
X-ray image xn is reshaped from a two-dimensional matrix to
a one-dimensional vector. Given X , the problem is to learn a
mapping F : X → {0, 1}N×k, i.e. to map a X-ray image xn
to a k-bit binary code bn ∈ {0, 1}k, such that the semantic
similarity between the images is preserved in the binary codes.

B. Proposed Method

The overall idea of the proposed method is to use autoen-
coders to learn high-level features from X-ray images in an
unsupervised manner. As well, we will use thresholding to
binarize the high-level features into binary codes. How we
use the binary codes for X-ray images retrieval is illustrated
in Fig 1. Here we use a specific type of autoencoder, namely
de-noising autoencoder [14], to reduce learning features from
noises. We also stack multiple de-noising autoencoders into a
deep architecture called deep de-noising autoencoder (DDA)
[14] to enhance feature learning capability.

In general, to train a DDA for hashing X-ray images into
binary codes, there are four steps:

Step 1: Image Pre-processing. All images are first resized
to a small size (default: 32 × 32). As X-ray images are in
grayscale, through dividing all intensity values by 255, they
are normalized to be in [0, 1].

Step 2: Unsupervised Layer-by-layer Training. (Algo-
rithm 1) A DDA is constructed by first training each layer as
an individual de-noising autoencoder by backpropagation, as
reported in [14]. A dropout layer [36] is introduced after the
input layer, such that for each training sample, a randomly
chosen subset (default: 20%) of the inputs is set to zero. Note
that this drop-out layer has no effects on testing.

Algorithm 1 layerTrain
Input: a set of training images X , a list of fan-
in/fan-out of each layer in encoder Lenc {e.g. Lenc =
[(1024,768),(768,512)]}
Output: a list of encoder weights Wenc, a list of decoder
weights Wdec { e.g. Wenc = [W (1)

enc, W (2)
enc], Wdec = [W (1)

dec,
W

(2)
dec]}

{Constants}
epoch = 100, batchSize = 16, p = 0.2
{Initialization}
Wenc = [], Wdec = []
{Train layer by layer}
for i from 1 to size(Lenc) do

encFanIn, encFanOut = Lenc[i]
decFanOut, decFanIn = Lenc[i]
{Set up a NN with a dropout layer, an input-hidden layer
and a hidden-output layer, with weights initialized by the
scheme in [37]}
Q = setUpLayers([DropoutLayer(encFanIn, encFanIn, p),
SigmoidLayer(encFanIn, encFanOut),
SigmoidLayer(decFanIn, decFanOut)])
{Train the network on X for epoch times}
for e from 1 to epoch do

trainNN(Q, X , batchSize) {Train NN by backpropa-
gation with a mini-batch of batchSize via RMSProp
[38]}

end for
{Add the weights at the end of the weight lists}
append(Wenc, getEncoderWeights(Q));
append(Wdec, getDecoderWeights(Q));

end for
{Return Wenc, Wdec}
return Wenc, Wdec

Step 3: Unsupervised Fine-Tuning with Dropout. (Al-
gorithm 2) After unsupervised layer-by-layer training, the de-
noising autoencoders are stacked one-by-one to construct a
DDA. According to [10], the last layer of the decoder is turned
into a softmax layer. We introduce one new change to the
architecture to improve the hashing performance. A dropout
[36] layer is added before the coding layer to regularize it,
as shown in Fig. 2. A Dropout layer has been reported to be
a way to add noise [14], by randomly setting the output of
hidden units to be zero. Note that this dropout layer has no
effects in testing. After these changes, the DDA is then trained
by backpropagation.

Step 4: Decoder Removal After the training, the decoder
in the DDA is removed. Then, the DDA becomes a binary
hashing function for X-ray images. To hash an image into
binary codes, a normalized image, as a one-dimensional real-
valued vector is fed into the trained DDA. After passing
through all the layers, a one-dimensional real-valued vector
outputted by the last sigmoid layer of the trained DDA is
obtained. A threshold (>0.5) is then applied on this real-valued
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ID: 1891 ID: 2144 ID: 372357

…

DDA Binary HashingDatabase images

Binary Code(s)

1891: 0,1,0,…,0

2144: 1,0,1,…1

…

372357: 0,1,1,…,1

…

Annotation

Retrieval

ID: 765441

1. Input

DDA Binary Hashing

Binary Code(s)

765441: 0,1,1,…,1

3. ComparisonA query image

2. Input

Thresholding

Thresholding

Fig. 1. Deep de-noising autoencoder (DDA). For all images, we use a trained DDA to annotate each of them with a k-bit binary code. Given a query image,
we use the same DDA to annotate it with a k-bit binary code, followed by comparing this binary code with the binary codes of all database images.

vector to obtain a binary code vector.

C. X-ray Image Retrieval using Binary Codes

The retrieval of X-ray images is to identify the most similar
images in the databases corresponding to a user’s input X-ray
image. It should be noted that the images in the databases and
the users’ input images are called training images and testing
images, respectively. The following two X-ray image retrieval
strategies are studied.

1) Exhaustive Search: After training a DDA, all training
images are assigned with binary codes by it. For retrieval, the
trained DDA is used for assigning a binary code to a given
testing image. The binary code of the testing image is then
compared with all binary codes of the training images. The
ones with the least number of bit difference (shortest Hamming
distance) are retrieved. The entire process is depicted in Fig
1. In our experiments, we only retrieved the first hit (the most
similar image).

2) Semantic Hashing (SH): If this strategy is adopted, two
DDAs are trained, where one is for hashing X-ray images
into short binary codes (16 bits), and another is for hashing
X-ray images into long binary codes (512 bits). All training
images are assigned with both short and long binary codes. A
hash table is then used for hashing the training images using
the short binary codes as hash keys. Note that multiple X-ray
images can share the same hash key.

In retrieval, the two DDAs are used to obtain both the short
and long binary codes for a given test image. A number of bit
flips, e.g. H , is then conducted on the short binary code of the
test image to obtain a new short binary code. We repeat the
process until all short binary codes with H bit differences are
obtained. Using the short binary code of the test image with
the short binary codes with H bit differences, a list of X-ray
images are retrieved. The long binary code of the test image is

then compared with those of the retrieved X-ray images. The
ones with a small number of bit differences are retrieved. In
our experiments, we only retrieved the first hit.

IV. RESULTS

A. Dataset

To evaluate the retrieval performance, we used a benchmark
dataset called IRMA (Image Retrieval Medical Applications)
dataset as part of ImageCLEFmed09 initiative [20] which has
12677 images for training and 1733 images for testing, all
images classified using IRMA codes. There are in total 193
classes. Each class is associated with a unique IRMA code.
An IRMA code is mainly used for evaluating content-based
medical image retrieval performance (hence not available in
the real world). It is a string of 13 characters, where each of
them is within the set of {0,. . . ,9,a,. . . ,z}. The 13 characters
in an IRMA code are divided into four structures, in the
following format: TTTT-DDD-AAA-BBB, where T, D, A and
B mean technical, directional, anatomical and biological codes
respectively. It should be noted that these IRMA codes are
classified by professionals for benchmarking. In the real world,
no medical images have associating IRMA codes.

B. Evaluation Metric

To evaluate the performance of image retrieval, we used the
formula provided by ImageCLEFmed09 to compute the error
between the IRMA codes of the testing image and the first hit
retrieved training image. We then summed up the error for all
testing images. The formula is provided as follows:

ETotal =

1733∑
m=1

4∑
j=1

lj∑
i=1

1

blj ,i

1

i
δ(Imlj ,i, Ĩ

m
lj ,i) (1)

Here, m is an indicator to each image. j is an indicator
of the structure of an IRMA code. lj refers to the number of
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Fig. 2. This figure shows the difference between the traditional design (left) and our design (right) of a deep (de-noising) autoencoder (DDA) with the
following architecture. We added a dropout layer before the coding layer to regularize it. A Dropout layer has been reported to be a way to add noise [14].
Note that the dropout layer is only effective in training and has no effects in testing. We trained this entire DDA by Methodology Step 3 Unsupervised
Fine-tuning.

characters in each structure of an IRMA code. For example,
in the IRMA code: 1121-4a0-914-700, l1 = 4, l2 = 3, l3 = 3
and l4 = 3. i is an indicator to a character in a particular
structure. Here, l2,2 refers to the character âĂŸaâĂŹ and l4,1
refers to the character âĂŸ7âĂŹ. blj ,i refers to the number of
branches, i.e. number of possible characters, at the position i in
the lthj structure in an IRMA code. Im refers to the mth testing
image and Ĩm refers to its top 1 retrieved image. δ(Imlj ,i, Ĩ

m
lj ,i

)
compares a particular position in the IRMA code of the testing
image and the retrieved image. It then outputs a value in {0,
1} according to the following rules.

δ(Imlj ,i, Ĩ
m
lj ,i) =

{
0, Imlj ,h = Ĩmlj ,h∀h ≤ i
1, Imlj ,h 6= Ĩmlj ,h∃h ≤ i

(2)

We used the Python implementation of the above formula
provided by ImageCLEFmed09 to compute the errors.

C. Implementation and Parameter Setting

The deep learning library Keras (http://keras.io/) with
Theano backend [40] is adopted for implementation. The
parameter setting is described as follows: The dropout pa-
rameter was set as 0.2, i.e. 20% of the inputs would be
randomly set as zeroes. For both Methodology Step 2 and
Step 3, the number of epochs and batch size were 100 and
16, respectively. The default loss function was binary cross-
entropy. The default optimizer in Methodology Step 2 was
RMSProp [38]. The default optimizer in Methodology Step 3
was RMSProp [38] for short codes and Adam [39] for long
codes. These optimizers were used with default settings. All
the experiments were run on a computer with 8.0 GB RAM, a
i5-2410M-2.30GHz CPU (4 Cores) and a GT520M Graphics
card. The neural networks were trained on the GPU. These
settings were used in all experiments unless further specified.

D. Experiment Series 1

The objective of this experiment to investigate whether the
binary codes tagged by a DDA on X-ray images can be used

for image retrieval without using class labels. First, we pre-
processed the training and testing images, according to Step
1 in the Methodology section. Second, according to Steps 2
and 3, we trained a DDA on the training images. Third, using
Step 4, we used them to tag all training and testing images
with binary codes. Afterward, we studied the X-ray image
retrieval performance using these binary codes, according to
an exhaustive search strategy mentioned in Section III-C1. We
evaluated the performance using Equations 1 and 2. The results
are shown in Table I. There are two types of DDA, where one
is for short binary codes (16 bits) with the encoder architec-
ture: 1024 inputs → 768 sigmoid neurons → 512 sigmoid
neurons → Dropout → 16 sigmoid neurons and another is for
long binary codes (512 bits) with the architecture: 1024 inputs
→ 768 sigmoid neurons → Dropout → 512 sigmoid neurons.
Note that the dropout layer is only useful in training but not
in testing. For comparison, the X-ray image retrieval errors of
other binary codes such as Radon Barcode (RBC) [33], Local
Binary Pattern (LBP) [34] and Local Radon Binary Pattern
(LRBP) [41] on the same IRMA dataset using the Exhaustive
Search strategy are listed from [33] for reference.

TABLE I
A COMPARISON OF THE IMAGE RETRIEVAL PERFORMANCE BETWEEN THE

BINARY CODES LEARNED FROM DEEP DE-NOISING AUTOENCODER
(DDA) AND OTHER METHODS FOR IRMA IMAGES.

Binary Code / Method Label needed Length of code ETotal

TAUbiomed [42] Yes N/A 169.5
DDA1024→768→512→16 No 16 703.95
DDA1024→768→512 No 512 344.08

RBC4 [33] No 512 476.62
RBC8 [33] No 1024 478.54
RBC16 [33] No 2048 470.57
RBC32 [33] No 4096 475.62
LBP [34] No 7200 463.81

LRBP4 [41] No 7200 483.54
LRBP32 [41] No 7200 501.96

As shown in Table I, the 512-bit binary code learned by
DDA has achieved a lower error total (ETotal) comparing
to all the other binary codes including the latest developed

5
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Algorithm 2 fineTune
Input: a set of training images X , a list of fan-in/fan-
out of each layer in encoder Lenc, a list of encoder
weights Wenc, a list of decoder weights Wdec {e.g. Lenc

= [(1024,768),(768,512)], Wenc = [W (1)
enc, W (2)

enc], Wdec =
[W (1)

dec, W (2)
dec]}

Output: a trained DDA Q
{Constants}
epoch = 100, batchSize = 16, p = 0.2
{Initialization}
encoderLayers = [], decoderLayers = [];
{Set up encoder layers}
for i from 1 to size(Lenc) do

encFanIn, encFanOut = Lenc[i]
if i == size(Lenc) then

appendLayers(encoderLayers,
[DropoutLayer(encFanIn, encFanIn, p)])

end if
appendLayers(encoderLayers,
[SigmoidLayer(encFanIn, encFanout, Wenc[i])])

end for
{Set up decoder layers}
for j from size(Lenc) downto 1 do

decFanOut, decFanIn = Lenc[j]
if j == size(Lenc) then

appendLayers(decoderLayers,
[SoftmaxLayer(decFanIn, decFanout, Wdec[j])])

else
appendLayers(decoderLayers,
[SigmoidLayer(decFanIn, decFanout, Wdec[j])])

end if
end for
{Set up the NN}
Q = setUpLayers(merge(encoderLayers, decoderLayers) )
{Train the network on X for epoch times}
for e from 1 to epoch do

trainNN(Q, X , batchSize) {Train NN by backpropagation
with a mini-batch of batchSize via RMSProp [38] for
short binary codes and Adam [39] for long binary codes}

end for
{Return a trained DDA}
return Q

Radon Barcode [33]. We also observe that even the length of
binary codes has increased, the error total is still much higher
compared to the 512-bit binary code. Note that the lowest
error total achieved in this dataset is 169.5 by TAUbiomed
[42] which requires class labels. No class information was
used in ours and the rest in Table I.

E. Experiment Series 2

The objective of this experiment was to investigate whether
Semantic Hashing (SH) (Section III-C2) can be applied on the
X-ray images to speed up the retrieval process. We used the 16-
bit and 512-bit DDA binary codes for hashing and re-ranking,

respectively. The number of bit flips was to be 1, 2 and 3. For
comparison, we also recorded the error total and retrieval time
per image for a baseline Pearson Correlation method. Given a
test image, the Pearson Correlation Coefficient was computed
between the test image and every training image. The training
image associated with the highest absolute Pearson Correlation
Coefficient was retrieved. This baseline Pearson Correlation
method was studied on both 32 × 32 and 64 × 64 images.
The results are shown in Table II.

The Table II records the training time, error total and
retrieval time per image for different methods. Note that
the training time and the retrieval time per image were the
averages of 20 independent runs of the full testing set (starting
with the same random seed), along with the 95% confidence
interval. As shown, Semantic Hashing with 2-bits flip has
achieved a speedup of 9.27x over the Exhaustive Search
Strategy via 512-bit binary codes learned from a DDA with
a comparable total error, and a speed-up of 411.32x over the
baseline Pearson Correlation method with a lower error total.

F. Experiment Series 3

The objective of this experiment was to investigate whether
we can (1) learn binary codes from Radon projections [33]
of X-ray images and (2) use them for boosting the image
retrieval performance. We first computed the Radon projec-
tions of all training and test images with the size of 256
× 256 on 16 projections such that each image has a 4096-
dimension real-valued vector. To obtain the binary code,
it was proposed in [33] to use the median value of each
projection to binarize the Radon projections, known as Radon
Barcode (RBC) [33]. In this experiment, we constructed a
de-noising autoencoder with the encoder architecture: 4096
inputs → Dropout → 2048 sigmoid neurons. We trained this
de-noising autoencoder on the Radon projections using the
default parameter setting, except that in Methodology Step 3
we set the epoch to be 2200. We name the binary code learned
as Radon Autoencoder Barcode (RABC). We further define
the bit difference between a test image Im and a candidate
image Ic as dRABC2048(I

m,Ic)
2048 + dDDA512(I

m,Ic)
512 , where the

former is the normalized bit difference between the 2048-
bit RABC of the testing and the candidate image, and the
latter is the normalized bit difference between the 512-bit
DDA binary code of the testing and the candidate image. The
image retrieval results under the Exhaustive Search strategy
are shown in Table III.

As shown, the error total achieved by RABC is significantly
lower than that of RBC, even though the length of binary
code of former is half of the latter. This shows that the
binary codes learned from the Radon projections contain much
compact information. The best image retrieval performance
was achieved by the combined use of RABC and the 512-bit
DDA binary codes learned in Experiment 1. This shows the
effectiveness of RABC in improving image retrieval perfor-
mance. A demonstration of binary codes is in Fig. 3.
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TABLE II
A COMPARISON OF THE IMAGE RETRIEVAL PERFORMANCE BETWEEN EXHAUSTIVE SEARCH STRATEGY, SEMANTIC HASHING (SH) AND PEARSON

CORRELATION FOR IRMA IMAGES.

Binary code / method Length of code Training time (s) Retrieval time (ms) per image ETotal

DDA1024→768→512→16 16 5420.09±10.65 50.93±0.86 703.95
DDA1024→768→512 512 5084.72±6.13 66.58±1.22 344.08

SH (Number of Bit Flips: 1) 16; 512 10504.81±14.02 5.62±0.11 414.80
SH (Number of Bit Flips: 2) 16; 512 10504.81±14.02 7.18±0.12 378.30
SH (Number of Bit Flips: 3) 16; 512 10504.81±14.02 24.91±0.76 365.24

Pearson Correlation (32 × 32) N/A N/A 2311.60±37.89 399.68
Pearson Correlation (64 × 64) N/A N/A 2587.91±30.34 402.05

TABLE III
COMPARISON OF IMAGE RETRIEVAL PERFORMANCE FOR IRMA IMAGES.

Binary code / method Length of code Training time (s) Retrieval time (ms) per image ETotal

DDA1024→768→512 512 5084.72±6.13 66.58±1.22 344.08
RBC256×256,16proj 4096 N/A 162.50±0.37 546.09
RABC4096→2048 2048 about 270,600 109.28±0.29 362.54

DDA1024→768→512/512 + RABC4096→2048/2048 512;2048 about 275,690 233.30±2.88 330.60

 
(a) 11501: 1121-210-230-700 

 
(f) 11601: 1121-120-331-700 

 
(b) 16-bit DDA Binary Code 

 
(g) 16-bit DDA Binary Code 

 
(c) 512-bit DDA Binary Code 

 
(h) 512-bit DDA Binary Code 

 
(d) 2048-bit Radon 

Autoencoder Barcode 

 
(i) 2048-bit Radon 

Autoencoder Barcode 

 
(e) 4096-bit Radon Barcode 

 
(j) 4096-bit Radon Barcode 

 

Fig. 3. This figure shows the IRMA code, 16-bit DDA Binary Code, 512-bit
DDA Binary Code, 2048-bit Radon Autoencoder Barcode and 4096-bit Radon
Barcode of image 11501 (a-e) and 11601 (f-j).

G. Experiment Series 4

The objective of this experiment was to investigate the
effects brought by the dropout layer on the binary hashing
performance of a DDA. In Methodology Step 3 (Unsupervised
Fine-tuning), we introduced a change in the DDA architecture
that is different from both the DDA mentioned in [14] and the
very deep autoencoder mentioned in [11]. We added a dropout
[36] layer before the coding layer, where 20% randomly
chosen inputs to the coding layer would be set as zeros in
training. We also used different optimizers (Adam [39] or
RMSProp [38]) in Methodology Step 3 to identify the best
training scheme.

We focused our experiment on the following DDA encoder
architecture: 1024 inputs → 768 sigmoid neurons → Dropout
→ 512 sigmoid neurons. Based on this configuration, for

each possible scenario, we started from the same set weights
initialized by Methodology Step 2 and trained the DDA using
Methodology Step 3. After learning the binary codes, we
studied the image retrieval performance under the Exhaustive
Search Strategy. The results are in Table IV.

TABLE IV
COMPARISON OF IMAGE RETRIEVAL PERFORMANCE

Configuration Optimizer ETotal

No Step 3 N/A 440.40
Step 3 without dropout RMSProp 410.64

Step 3 RMSProp 370.70
Step 3 without dropout Adam 561.47

Step 3 Adam 344.08

We observe that the dropout layer brought to the DDA
has a significant improvement effect on the binary hashing
performance. In Table III, the error total with no step 3 is
440.40. Using RMSProp as the optimizer, if we use Step 3
without dropout, the error is decreased by 29.76. If we use Step
3 (with dropout), the error is further decreased by 39.94. Using
Adam as the optimizer, if we use Step 3 without dropout, the
error is increased by 121.07, probably because of over-fitting.
If we use Step 3 (with dropout), the error is decreased by
96.32, a reduction of total error by 21.9%. This indicates the
importance of adding a dropout layer before the coding layer,
independent of the optimizer used.

V. CONCLUSION

In this study, we explored the use of Deep De-noising Au-
toencoder (DDA) to hash X-ray images into binary codes with-
out class labels. We introduced a new unsupervised training
scheme by adding a dropout layer to the DDA architecture in
the step of Unsupervised Fine-tuning. Conducting experiments
on the benchmark dataset IRMA from ImageCLEFmed09, we
observe that this is important for satisfactory binary hash-
ing performance, reducing the total retrieval error by up to
21.9%. Moreover, we demonstrated an alternative in order to
construct a deep (de-noising) autoencoder by stacking (de-
noising) autoencoder directly for binary hashing, using only
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backpropagation and dropout, simplifying the implementa-
tion. Furthermore, we developed Radon Autoencoder Barcode
(RABC) and used it to improve retrieval performance. All
these indicate the potential of our method for CBIR in practice,
specifically for big image data like medical images whose
labels are expensive to obtain.
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