
Distributed Variance Regularized Multitask Learning
Michele Donini∗, David Martinez-Rego†, Martin Goodson‡, John Shawe-Taylor†, Massimiliano Pontil†§

∗University of Padova, Padova, Italy
†University College London, Malet Place, London WC1E 6BT, UK

‡Skimlinks, London, UK
§Istituto Italiano di Tecnologia, Via Morego, Genoa, Italy

Abstract—Past research on Multitask Learning (MTL) has
focused mainly on devising adequate regularizers and less on
their scalability. In this paper, we present a method to scale
up MTL methods which penalize the variance of the task weight
vectors. The method builds upon the alternating direction method
of multipliers to decouple the variance regularizer. It can be
efficiently implemented by a distributed algorithm, in which the
tasks are first independently solved and subsequently corrected
to pool information from other tasks. We show that the method
works well in practice and convergences in few distributed
iterations. Furthermore, we empirically observe that the number
of iterations is nearly independent of the number of tasks,
yielding a computational gain of O(T) over standard solvers. We
also present experiments on a large URL classification dataset,
which is challenging both in terms of volume of data points
and dimensionality. Our results confirm that MTL can obtain
superior performance over either learning a common model or
independent task learning.

I. INTRODUCTION

Multitask Learning (MTL) is nowadays an established
area of machine learning that has shown its benefits in many
applications. MTL aims at simultaneously learning models
for multiple related tasks by inducing some knowledge
transfer between them. A typical MTL algorithm introduces a
regularization term or prior that imposes an adequate shared
bias between the learning tasks. This idea was inspired by
research on transfer learning in psychology, which brought
up the hypothesis that the abilities acquired while learning
one task (e.g. to walk, to recognize cars, etc.) presumably
apply when learning a similar task (to run, to recognize
trucks, etc.) [Silver and Mercer, 1996], [Thrun, 1997] and
was first coined inside the machine learning community in
the 90’s [Caruana, 1997], [Thrun, 1997]. The notion of what
“task relatedness” means in practice is still not completely
clear but theoretical studies support the intuition that training
simultaneously from different related tasks is advantageous
when compared to single task learning [Baxter et al., 2000]
[Ben-David et al., 2003] [Maurer et al., 2006]. The benefits
usually include more efficient use of small data sets in
new related tasks and improved generalization bounds when
learning simultaneously.
Recent successful studies on large datasets suggest that the use
of models whose training process can be scaled up in terms
of the size of the database is key to obtain good results. In
large scale learning scenarios, the reduction of the estimation
error that can be achieved by leveraging bigger datasets
compensates the bias introduced by the use of simpler models

such as linear classifiers [Bottou et al., 2008]. This trend has
produced several algorithms that put the focus on scaling up
the training of simple linear models such as support vector
machines to PB of data, see [Shalev-Shwartz et al., 2014] and
references therein. Despite this success, the MTL community
has targeted the formulation of different regularizers that
foster the correct information sharing between tasks in
specific situations, overlooking their scalability. Nevertheless,
MTL formulations apply very naturally to many large scale
scenarios where we expect heterogeneous (although related)
regimes to be present in the data.
Scalability of MTL can be challenged from
two different angles. Recent applied studies on
MTL [Birlutiu et al., 2013] [D’Avanzo et al. 2013]
[Bai et al., 2012] [Huang et al., 2013], tackle scenarios
such as preference learning, ranking, advertising targeting
and content classification. Those studies mainly focus on
the scalability when the number of examples increases.
But scalability issues can also be encountered when the
number of tasks grows. Think for example about learning:
i) the preferences of a client on a per client basis, ii) the
categorization of webpages on a per host basis or iii) the
relevance of a query-document pair for a specific combination
of user aspects like region, sex, age, etc. A common feature
of these applications is that: (a) many tasks suffer a lack of
data to learn from, and (b) the number of free parameters to
learn grows with the number of tasks. The first issue has been
one of the main motivations of multitask learning, namely to
leverage data from similar tasks in order to improve accuracy.
On the other hand, the second challenge could impose a
limitation on the learning process if the number of tasks
grows big since it means a larger amount of data to transfer on
the network, stored and managed by the learning algorithms.
Thus, if we combine MTL with parallel optimization, we
would obtain a practical process that is expected to obtain
higher accuracy.

A. Our Contribution

A key goal of this paper is to equip one of
the most widespread MTL methods presented in
[Evgeniou and Pontil, 2004] with a parallel optimization
procedure. For this purpose, we employ the alternating
direction method of multipliers (ADMM), see for example
[Eckstein and Bertsekas, 1992], [Boyd, 2010] and references
therein. We focus on MTL methods which involve the variance

of the task weight vectors as the regularizer. We show that
the optimization process can be efficiently implemented in
a distributed setting, in that the different tasks can first be
independently solved in parallel and subsequently corrected
to pool information from other tasks. We report on numerical
experiments, which indicate that the method works well
and converges in few distributed iterations. We empirically
observe that the number of iterations is nearly independent
of the number of tasks, yielding a computational gain of
O(T) over standard solvers. We also present experiments on
a large URL classification dataset, which is challenging both
in terms of volume of data points, dimensionality and number
of different tasks. Our results confirm that MTL can obtain
superior performance over either learning a common model
or independent task learning.

B. Related Work

The study of parallel MTL systems has been introduced
in some previous works. In [Dinuzzo et al., 2011] the authors
present a client-server MTL algorithm which maintains the
privacy of the data between peers. Their method applies
to the square loss function. In this paper we focus on the
hinge loss, however our algorithm readily applies to other
convex loss functions. It also preserves the privacy of data
from different tasks since this does not need to leave client’s
side. In [Ahmed et al., 2014], the authors develop a parallel
MTL strategy for hierarchies of tasks. This solution is based
on Bayesian principles and presents some limitations when
implemented on a MapReduce platform. In comparison, our
approach takes a maximum margin approach that, although it
does not include any hierarchy of tasks, maps naturally to any
MapReduce environment and establishes the underpinnings
to be extended to more complex situations. Very recently,
in [Wang et al., 2015], the authors presented a distributed
algorithm for group lasso multitask learning, addressing its
statistical properties.

The paper is organized as follows. In Section 2 we briefly
review the notation and the MTL method. We present our
approach for making the optimization separable in Section
3. In Section 4, we describe in detail the main steps of
the proposed algorithm. In Section 5 we present a stochastic
gradient descent method to solve the inner SVM optimization
problem and detail the convergence properties of this process.
Experimental results with both artificial and real data are
detailed in Section 6. Finally, In Section 7 we draw our
conclusions and discuss perspectives for future work.

II. BACKGROUND

When we refer to multitask learning (MTL) we mean the
following situation. We have T learning tasks and we assume
that all data from these tasks lie in the same space Rd × Y ,
where Y = {−1, 1} for binary classification and Y = R for
regression. Associated with each task t we have mt data points

(x1t, y1t), (x2t, y2t), . . . , (xmtt, ymtt) (1)

sampled from a distribution Pt on X × Y . We assume that
this distribution Pt is different for each task but that different
Pt are related. The goal is to learn T functions h1, h2, . . . , hT

such that the average error 1
T

T∑
i=1

E(x,y)∼Pt
[`(y, ht(x))] is low

for a prescribed loss function `. Note that when T = 1,
this framework includes the single task learning problem as
a specific case.

In [Evgeniou and Pontil, 2004] an intuitive formulation for
relatedness between tasks inspired by a hierarchical bayesian
perspective was presented. This formulation assumes that the
hypothesis class of each individual task is formed by the set
of linear predictors (classifiers) whose parameter vectors are
related by the equations

wt = vt + w0, t = 1, , T. (2)

The vector vt models the bias for task t and the vector
w0 represents a common (mean) classifier between the tasks.
Within this setting, the tasks are related when they are similar
to each other, in the sense that the vectors vt have small norms
compared to the norm of the common vector w0. Note also
that this setting may be useful in a transfer learning setting,
in which we do not have data for a new task but we can still
make predictions using the common average w0.

In the above setup, an optimal w0 and a set of optimal vt
for each task is found by solving the following optimization
problem which is an extension of linear SVMs for a single
task (which corresponds to the case T = 1), namely

min
w0,vt

{
T∑
t=1

ft(w0+vt) +
λ1
T

T∑
t=1

‖vt‖22 + λ2‖w0‖22

}
(3)

where ft(·) =
∑mt

i=1 `(yit, 〈·,xit〉), the empirical error for the
task t.

Define the variance of the vectors w1, . . . ,wT as

Var(w1, . . . ,wT) =
1

T

T∑
t=1

∥∥∥wt −
1

T

T∑
s=1

ws

∥∥∥2
2
.

It can be shown [Evgeniou and Pontil, 2004, Lemma 2.2] that
problem (3) is equivalent to the problem

min
wt

{
T∑
t=1

(
ft(wt) + ρ1‖wt‖22

)
+ ρ2T Var(w1, . . . ,wT)

}
(4)

where the hyperparameters are linked by the equations

ρ1 =
1

T

λ1λ2
λ1 + λ2

, ρ2 =
1

T

λ21
λ1 + λ2

.

This connection makes it apparent that the regularization term
encourages a small magnitude of the vectors wt (large margin
of each SVM) while simultaneously controlling their variance.

III. DISTRIBUTED MTL VIA ADMM

The utility of problem (4) is that its objective function
– unlike that in problem (3) – is almost separable across
the different tasks. Namely, the only term in the objective
function in (4) that prevents decoupling is the last summand,

which makes the gradients for different tasks dependent. If
we could remove this dependency, both the data and weight
vectors for different tasks could be maintained in different
nodes of a computer cluster without the need of centralizing
any information and so making the method scalable. For this
purpose we use an optimization strategy based on the alternat-
ing direction method of multipliers (ADMM), see for example
[Boyd, 2010], [Eckstein and Bertsekas, 1992] and references
therein. This method solve the general convex optimization
problem

minimize
w,z

f(w) + g(z)

subject to Mw = z
(5)

where f and g are two convex functions. Different al-
gorithms have been proposed to tackle this optimiza-
tion with different convergence characteristics, see, for ex-
ample, [Boyd, 2010], [Mota et al., 2011], [He et al, 2012],
[Hong, 2013]. In this paper we employ the ADMM algorithm
outlined in [Eckstein and Bertsekas, 1992]. Although poten-
tially faster algorithms exists, such as [Goldstein et al., 2014],
their convergence analysis require stronger assumptions which
are not meet in our problem.

We define the augmented Langrangian function Lη at
w, z,y as

Lη(w, z,y) = f(w) + g(z) + 〈y,Mw − z〉
+
η

2
‖Mw + z‖22

where η is a positive parameter. Each ADMM step requires
the following computations

wk = argmin
x

Lη(w, zk−1,yk−1)

zk = argmin
z

Lη(wk, z,yk−1)

yk = yk−1 + η(Mwk − zk)

(6)

where k is a positive integer and z0, y0 are some starting
points. We call each round of (6) an ADMM iteration. This
process is repeated until convergence.

A convenient identification between problem (4) and the
ADMM objective function (5) shows that the multitask objec-
tive can be efficiently optimized through this strategy. Namely,
problem (4) is of the form (5) for the choice M = I and

f(w) =

T∑
t=1

ft(wt) +
ρ1
2

T∑
t=1

‖wt‖22

g(z) = ρ2T Var(z1, . . . , zT) +
ρ1
2
‖z‖22

where we set w to be the concatenation of the weight vectors
wt for all the tasks, and we force z = w in order to make
f(w) + g(z) equal to the original objective in the feasible
region.

The augmented Lagrangian for this specific case is

Lη(w, z,y) =

T∑
t=1

ft(wt) +
ρ1
2

T∑
t=1

(‖wt‖22 + ‖zt‖22)

+ρ2T Var(z1, . . . , zT) + 〈y,w − z〉+
η

2
‖w − z‖22.

Using this expression, the first three updating equations in the
ADMM optimization strategy (6) become

wk = argmin
w

{ T∑
t=1

ft(wt) +

T∑
t=1

ρ1
2
‖wt‖22

+ 〈yk−1t ,wt〉+
η

2
‖wt − zk−1t ‖22

}
zk = argmin

z

{
ρ2T Var(z1, . . . , zT) +

ρ1
2
‖z‖22

− 〈yk−1, z〉+
η

2
‖wk−1 − z‖22

}
yk = yk−1 + η(wk − zk).

(7)

We are left to analyze how to solve the first two optimization
steps to obtain wk and zk. It is noticeable that in the first
of these steps the optimization over the tasks is completely
decoupled, that is the component vectors wk

t can be computed
independently of each other – we discuss how to do this
in Section V. Thus, the update of each task’s weight vector
can be run in parallel with no communication involved once
data is distributed by tasks. As we shall see in Section IV-B
the second optimization step, in which the only information
sharing between the tasks occurs, can also be carried out with
minimal communication just by averaging the vectors for the
different tasks, hence leading to an scalable strategy.

IV. ALGORITHM

In the previous section we showed how the MTL problem
in equation (3) or (4) can be solved by the iterative scheme
(6). In this section, we analyse the minimization problems for
wk and zk, noting that both can be computed in a distributed
fashion.

A. Optimization of each individual task

The update formula for the weights w in (7) can be
implemented with different methods. The optimization of the
weights completely decouple across the tasks wt and each can
be compute by solving the problem

min
wt

{
ft(wt) +

ρ1 + η

2
‖wt‖22 + 〈yt − ηzt,wt〉

}
. (8)

One natural approach is to use (sub)gradient descent, possibly
in a stochastic setting when the number of datapoints of a task
is large. In this paper we consider the case that ` is the hinge
loss, namely `(y, y′) = h(yy′), where h(·) = max(0, 1 − ·).
In Section V we detail a stochastic gradient descent method
to solve problem.

B. Optimization of the auxiliary variables

The update step for the auxiliary variable zk is more
advantageous computationally since we can work out a closed
formula. The objective function is given by

ρ2

T∑
t=1

∥∥∥zt− 1

T

T∑
s=1

zs

∥∥∥2
2
+
ρ1
2
‖z‖22+〈yk,wk−z〉+η

2
‖wk−z‖22

for fixed wk and yk. Removing constant terms that do not
depend on z, this can further be rewritten as

F (z) =
〈
z,
(
ρ2D

TD+
ρ1
2
I
)
z
〉
−〈yk, z〉+η

2

(
‖z‖22 − 2〈wk, z〉

)
where matrix D ∈ RTd×Td is given in block form as

D =



DM D0 D0 · · · D0

D0 DM D0 · · · D0

D0 D0 DM · · · D0

...
...

...
...

...
D0 D0 D0 · · · DM


, (9)

being d the number dimensions of a block and T the number of
blocks. Finally, DM = T−1

T Id×d and D0 = − 1
T Id×d, where

Id×d is the d× d identity matrix.
If we take the derivative of the above objective function we

can see that the optimal solution can be found by solving the
system of linear equations

(2ρ2D
TD + (ρ1 + η)I)zk = (yk + ηwk).

The following lemma shows that the inverse E =
(2ρ2D

TD + (ρ1 + η)I)−1 has a convenient closed analytical
formula.

Lemma 1. Let E = (2ρ2D
TD+ (ρ1 + η)I)−1, where matrix

D ∈ RTd×Td is defined equation (9). The matrix E has the
following structure

E =


EM E0 E0 · · · E0

E0 EM E0 · · · E0

E0 E0 EM · · · E0

· · · · · · · · · · · · · · ·
E0 E0 E0 · · · EM

 ∈ RTd×Td

where EM and E0 are:

EM =
1

T

(
1

η + ρ2
+

T − 1

η + 2ρ1 + ρ2

)
Id×d,

E0 =
2ρ1

T (η + ρ2)(η + 2ρ1 + ρ2)
Id×d.

Proof. We have to prove that (2ρ2D
TD + (ρ1 + η)I)E =

E(2ρ2D
TD+(ρ1+η)I) = I ∈ RTd×Td. The first observation

of the proof is the particular structure of the matrix D that is
an idempotent symmetric matrix and then DTD = D2 = D.
So, the matrix 2ρ2D

TD + (ρ1 + η)I is also equal to G =
2ρ2D+ (ρ1 + η)I and has the following structure in RTd×Td

GM G0 · · · G0

G0 GM · · · G0

· · · · · · · · · · · ·
G0 G0 · · · GM

 (10)

where G0 = 2ρ2D0, GM = 2ρ2DM + (ρ1 + η)Id×d, where
Id×d is the identity matrix in d dimensions. Then, we can

evaluate the block product between E and G. This product
generates a block matrix where each block on the diagonal is

(T − 1)E02ρ2D0 + EM (2ρ2DM + (ρ1 + η)Id×d) = Id×d,

and the off-diagonal block are zero, since

(T − 2)E02ρ2D0 + E0(2ρ2DM + (ρ1 + η)Id×d)

+ EM2ρ2D0 = 0d.

This formula reveals that the optimization over z1, . . . , zT
can also be run in parallel. First, we can reduce the vectors

from all the tasks to a single vector w = E0

T∑
t=1

wt. Then,

each vector can be updated in parallel by using again EM and
E0. Similarly to the optimization of wt, this operation can
be readily done in a framework such as MapReduce to speed
up computations with a very reduced need of broadcasting
information.

C. Convergence

We comment on the convergence properties of our method.
Our observations are a direct consequence of the gen-
eral analysis in [Eckstein and Bertsekas, 1992]. Specifically,
[Eckstein and Bertsekas, 1992, Theorem 8] applies to our
problem, with (using their notation) ρk = 1 for every k ∈ N,
their p equal to our y and their λ equal our η. The theorem
requires that the matrix M is full rank, f and g are closed
proper convex functions and the sum of the errors of the inner
optimization problems is finite. All these hypothesis are meet
in our case. In particular, the optimization over z is performed
exactly as discussed in Section IV-B. The optimization over
w are the parallel SVMs which we can solve to arbitrary
precision using for example gradient descent. As we will see
in our numerical experiments only few iterations are sufficient
to reach a good suboptimal solution and gradient descent may
be replaced by its stochastic version (discussed below) without
affecting the good convergence of the algorithm.

V. SGD OPTIMIZATION OF EACH INDIVIDUAL TASK

When we have to solve problems with a large number
of points, it is not computationally feasible to solve the
optimization of each individual task with batch algorithms.
In this section, we observe that it is possible to exploit a
Stochastic Gradient Descent (SGD) strategy for our proposed
method. Firstly, we show that the optimal solution of the
optimization problem is contained inside a convex ball. From
this results, we are able to satisfy the hypothesis of conver-
gence of the SGD technique for strongly convex functions
[Rakhlin et al., 2012], [Shalev-Shwartz et al., 2014]. Specifi-
cally, we prove the boundedness of the directions followed in
the SGD optimization of w, in each outer step k ≥ 0 of the
ADMM strategy.

Algorithm 1 depicts the optimization of the weight vectors
wt using the SGD for strongly convex functions. The opti-
mization for each task presented in Equation 8 is equivalent
to the problem minwt

Ft(wt), where

Ft(wt) = Lt(wt) +
γt
2
‖wt‖22,

Lt(wt) =
1

mt

(
mt∑
i=1

h(yit〈wt,xit〉) + 〈yt − ηzt,wt〉

)
and γt = (ρ1 + η)/mt. In order to be able to apply SGD
we need to sample a direction ut at each step q such that
E[ut|wt] is a subgradient of Ft at wt. If at each step we
sample randomly and with replacement a pattern xit from
the training set, the following sequence of directions complies
with the above restriction

ut=

{
γtwt+ 1

m (yt − ηzt) if yit〈wt,xit〉 ≥ 1,
−yitxit + γtwt+ 1

m (yt − ηzt) otherwise.

In the following lemma, we show that the optimal solution
of the original optimization problem resides inside a convex
ball.

Lemma 2. If w∗ is the optimal solution of problem (4) then

‖w∗‖2 ≤
√

TM
2λ1

, where M =
T∑
t=1

mt.

Proof. Let µ = Tλ2

λ1
. We make the change of variables w =(√

µw0,v1, . . . ,vT
)
∈ R(T+1)d and introduce the map φ :

Rd × {1, . . . , T} 7→ R(T+1)d, defined as

φ(x, t) =

(
x
√
µ
, 0, . . . , 0,x, 0, . . . , 0

)
. (11)

Following [Evgeniou and Pontil, 2004] we rewrite problem
(3) as a standard SVM problem in the extended input space
for the feature map (11), namely

min
w

{
C

M∑
i=1

h(yi〈w, φ(xi, ti)〉) +
1

2
‖w‖22

}

where C = T
2λ1

and M =
T∑
t=1

mt. Since at the optimum

the gap between the primal and dual objective vanishes, there
exists α∗ ∈ [0, C]M such that

1

2
‖w∗‖22 + C

M∑
i=1

h(yi〈w, φ(xi, ti)〉) =

M∑
i=1

α∗i −
1

2
‖w∗‖22.

Using the fact that
M∑
i=1

h(yi〈w, φ(xi, ti)〉) ≥ 0 we conclude

that ‖w∗‖22 ≤
∑M
i=1 α

∗
i ≤MC = TM

2λ1
= β.

This lemma thus proves that in Algorithm 1 it
is safe to restrict the set of feasible solutions to
the ball B := {x ∈ Rd : ‖x‖22 ≤ β} with
β = max(

√
TM/(2λ1),

√
M/(2λ1)) and it justifies

the projection step at line 7 of the algorithm.

Algorithm 1 Optimization of each individual task
Input: Dataset {(xit, yit), i = 1, . . . ,mt} for task t, parame-

ters ρ1, γt, η, zt, yt, T , M
Output: Optimal weight vector wt

1: w0
t ← 0

2: γt ← ρ1+η
mt

3: for q ← 1 to n do
4: δ ← 1

qγt
5: Choose a random pattern (xit, yit) from the set
6: w

q+ 1
2

t ← wq
t − δut

7: wq+1
t ← min

(
1, β 1

‖w
q+1

2
t ‖2

)
w
q+ 1

2
t

8: return ŵt = 2
n

n∑
q=n

2 +1

wq
t

Now, we analyze the convergence of Algorithm 1
and we base our proof on a recent result presented
in [Rakhlin et al., 2012], [Shalev-Shwartz et al., 2014] which
states (adapting their result to our notation) that the aforemen-
tioned strategy converges with the rate E[Ft(ŵt)]−Ft(wt) ≤
ρ2

2γtn
after n iterations, provided when Ft(w) is γt-strongly

convex and E[‖ut‖2] ≤ ρ2 for some finite constant ρ. Clearly,
the objective function Ft is strongly convex with constant
γt = ρ1+η

mt
, see [Shalev-Shwartz et al., 2014, Lemma 13.5].

We are left to prove that the directions ut followed in the SGD
optimization of w in each outer step k ≥ 0 of the ADMM
strategy are bounded, which we state in the following theorem.

Theorem 1. If all the examples xit satisfy ‖xit‖22 ≤ R then for
every iteration k ∈ N of the outer ADMM scheme and every
inner iteration q, there exists ρ > 0 such that the directions of
the SGD in Algorithm 1 are bounded in average, E[‖ukt ‖22] ≤
ρ2 < +∞ for every t = 1, . . . , T .

Proof. At each outer step k, the direction for the task t is:

ukt =

{
γtw

k
t + 1

m (ykt − ηzkt) if `kit = 0,
−yitxit + γtw

k
t + 1

m (ykt − ηzkt) if `kit > 0

where we use the shorthand `kit = yit〈wt,xit〉.
We are interested in finding a bound for the quantity ‖ukt ‖22.

From the definition we have that

‖ukt ‖22 ≤ ‖yitxit‖22 + γ2t ‖wk
t ‖22 +

1

m2
(‖ykt ‖22 + η2‖zkt ‖22).

We have already shown that ‖wk
t ‖22 ≤ β and from the

hypothesis we have that ‖yitxit‖22 ≤ R. Now, we are interested
in finding a finite bound for the quantity ‖ykt ‖22 + η2‖zkt ‖22.
From the initialization of the algorithm, we have that ‖y1

t ‖22 +
η2‖z1t‖22 < +∞. In fact, ‖y1

t ‖22 < +∞ and ‖z1t‖22 < +∞. We
can use the induction for the value ‖ykt ‖22+η2‖zkt ‖22 changing
the step k. We can exploit the hypothesis that

‖yit‖22 + η2‖zit‖22 < +∞, ∀i < k

and then ‖yit‖22 < +∞ and η2‖zit‖22 < +∞, ∀i < k.

By definition, the following inequalities hold

‖ykt ‖22 ≤ ‖yk−1t ‖22 + ‖ηwk−1
t ‖22 + ‖ηzk−1t ‖22

≤ ‖yk−1t ‖22 + η2β + η2‖zk−1t ‖22

≤ ‖y1
t ‖22 +

k−1∑
i=2

η2(β + ‖zit‖22) =: Φkt .

By the induction hypothesis the value Φkt < +∞. Also, we
have that

‖zkt ‖22 ≤ ‖E‖22(‖ykt ‖22 + η2‖wk
t ‖22),

where E = (2ρ2D
TD + (ρ1 + η)I)−1 is symmetric and then

‖E‖22 is its spectral radius rE ∈ R+. Then, we can claim that

‖zkt ‖22 ≤ rE(‖ykt ‖22 + η2β) ≤ rE(Φkt + η2β) =: Ψk
t < +∞.

Finally, the following bound holds:

‖ukt ‖22 ≤ R+ γ2t β +
1

m2
(Φkt + η2Ψk

t) := ρ2 < +∞.

VI. EXPERIMENTAL RESULTS

In this section present numerical experiments which high-
light the computational efficiency of our algorithm, and report
on the advantage offered by the MTL strategy in formula (3)
in a challenging url classification dataset. Our implementation
is available at https://github.com/torito1984/MTLADMM.

A. Artificial data

In the first experiment we generated an artificial dataset
which is captured by the model (2) and, in addition, introduces
a set of irrelevant features.

The number of relevant and irrelevant features was set to
8 and 100, respectively. The dataset is made of 400 different
binary classification tasks, 5 of which have 1000 patterns and
the rest 16 patterns. To generate the data we first sample the
components w01, . . . , w0d of the mean vector w0 iid form
a zero mean Gaussian with variance σ = 0.25. Then, we
randomly pick 5 of the relevant features and create a vector
wt for each task by adding a Gaussian perturbation with zero
mean and standard deviation σi = 2w0i. Next for each task,
we generate a balanced set of points on each side of the
classification hyperplane. To generate a point we: (1) pick a
sign s with a 50% chance, (2) starting from the origin, move
in a random direction sd where d is the normal vector of the
classification hyperplane and p ∈ N(5, 0.1) (this generates a
well behaved dataset with some random margin violations),
(3) finally we choose a random direction in the subspace of
dimension d − 1 parallel to the classification hyperplane and
make a jump with magnitude sampled from N(0, 20). Since
we are generating patterns with a low margin covering many
different directions in the parallel subspace, only the tasks with
1000 patterns have enough data to achieve high test accuracy
by their own. For the rest of the tasks – which account for
around 55% of the dataset – the number of points is insufficient
to achieve a reasonable solution and they should benefit from

10−2 100 102 104 106 108 1010
0.5

0.6

0.7

0.8

0.9

1

log(λ2

λ1
)

A
cc

ur
ac

y

MTL λ1 = 2 MTL λ1 = 20
MTL λ1 = 200 SVM (best)

Fig. 1. Classification performance for the artificial classification dataset

an MTL approach. We will see that a similar situation arises
in the real dataset we cover hereunder.

Returning to formula (3), it is instructive to observe that,
for a fixed λ1 > 0, if we let λ2 → ∞, the optimization
problem is equivalent to training separate linear SVMs on each
task. In this situation and in high dimension, the method will
overfit the dataset. On the other hand, for a fixed λ2 > 0, if
we let λ1 → ∞, the optimization problem is equivalent to
training a single linear SVMs on the full dataset, which may
underfit the data. In practical situations, we expect the optimal
hyperparameters to lay in between these two situations, and
obtaining lower accuracy for both extremes.

1) Classification performance: Figure 1 depicts the average
test accuracy for a 10-fold CV in the aforementioned dataset.
Solid lines depict the accuracy of the proposed algorithm
for different values of λ1 and λ2. As expected, the optimal
hyperparameters lay in between both extremes for λ2/λ1 and
overfitting arises for when λ2 � λ1. The dotted line depicts
the accuracy of a single SVM trained with a state of the art op-
timization algorithms for linear SVMs in [Hsieh et al., 2008].
We can observe that, with appropriate hyperparameters, MTL
is superior to single task learning thanks to the information
sharing.

2) Convergence: One question that may arise is how many
ADMM iterations are needed to achieve a good result in
practice. This would be the major bottleneck of the proposed
method since ADMM iterations are sequential. We ran exper-
iments with the same data generation strategy and varying the
dimensionality. The number of relevant features was kept at
10% of the dimensionality.

First, in Figure 2, it can be observed that a higher dimension
slows down the convergence to the optimum in the first itera-
tions, an order of tens of iterations is enough to obtain a good
accuracy. Second, we compared a MatLab implementation
of the standard MTL called MALSAR1 in performance and

1MALSAR code: http://www.public.asu.edu/ jye02/Software/MALSAR

https://github.com/torito1984/MTLADMM

computational complexity varying the number of different
tasks in the set {20, 40, 60, 80, 100, 200, 400, 800, 1200}. We
keep the sample sizes per task fixed and measure MALSAR
running time. For our method, we are interested in finding the
number of outer ADMM iterations needed to converge to the
same accuracy of MALSAR with a tolerance of 10−4.

In Table I, a comparison of the computational complexities
is presented. We collected the CPU time required by the
standard MTL implementation in order to find the optimal
solution, varying the number of tasks. We compared these
values with respect to the number of outer ADMM steps that
our algorithm required to reach the same solution. For this
purpose, we introduce the variable α = λ2

λ1+λ2
. This variable

imposes the quantity of shared information among the tasks.
In fact, when α is equal to zero, we are training a single SVM
for all the tasks, on the other hand, with α = 1 we are training
a different SVM for each single task.

In comparison we observed that the CPU time of MALSAR
varies quadratically with number of tasks. For example for
α = 0.5 the CPU was of 3.3, 4.8,..., secs. for T=20,40,...,1200

From these results, we are able to claim that the standard
MTL implementation has a quadratic complexity with respect
to the number of tasks, whereas our ADMM implementation
is able to reach the same optimal solution in a fixed number
of outer steps.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

ADMM iterations

A
cc

ur
ac

y

100 features 500 features 1000 features

Fig. 2. Performance of ADMM with different dimensionality

B. URL classification

The next dataset was extracted from a production environ-
ment in an online advertising firm. For online targeting, a data
provider supplies data to an advertiser indicating which users
are interested in specific product classes. In order to determine
the interest of each user, web pages are first classified into
interest categories (eg ‘fashion’, ‘photography’ etc). Thereafter
the browsing behavior of users can be used to predict their
interests. One way of achieving it is to predict the category
of a page from the contents of a url. We can tackle this
task using a bag-of-words strategy [Joachims, 2002]. Modern

Tasks MALSAR time (s) ADMM steps
α = 0.5 α = 0.0 α = 0.1 α = 0.5 α = 1.0

20 3.3 21 16 10 10
40 4.8 21 16 11 11
60 6.4 21 16 10 10
80 8.3 21 16 10 10

100 10.7 21 16 10 10
200 33.1 21 16 11 11
400 95.8 21 16 11 11
800 342.5 21 16 11 11
1200 698.3 21 16 10 10

TABLE I
CPU TIME OF MALSAR ALGORITHM AND NUMBER OF OUTER STEPS OF
OUR ADMM ALGORITHM IN ORDER TO REACH THE SAME ACCURACY OF
MALSAR, WITH DIFFERENT AMOUNTS OF TASKS. THE VARIABLE α IS

EQUAL TO α = λ2
λ1+λ2

urls carry enough information to identify the page contents
thanks to Search Engine Optimization strategies. Before being
able to apply this, words should be detected and segmented
into meaningful n-grams. This process can be easily achieved
though a Viterbi-like strategy. The details of the algorithm used
can be found in [Segaran et al., 2009, Ch. 4]. It calculates
the most likely segmentation of a string containing text with
no spaces based on a Viterbi-like probability maximization
process and the prior probabilities of different n-grams ex-
tracted from the 1 Trillion words dataset gathered by Google
[Brants et al., 2006]. Once the URL is segmented, a bag-of-
words representation is built.

The dataset treated is a collection of urls extracted from

Fig. 3. # of patterns per task (client) in the URL classification dataset.

the client base at Skimlinks labeled by humans as related to
fashion or not. The dataset is a compound of over 500,000
urls extracted from 4,326 different client hosts embedded in
a 150,000 dimension bag of words vector space. Thus, we
have a binary classification task for a set of different tasks
(clients/hosts). We hypothesize that different clients may use
different vocabularies and ways of building urls, but that
the underlying set of n-grams that indicate fashion should
be shared between all of them. In addition, we can see in
Figure 3 that the number of urls extracted from each client
is highly skewed, so most tasks do not have enough data to

Method Validation Train Test
Linear SVM
single task 0.780±0.014 0.813±0.021 0.768±0.083

Linear SVM
individual tasks 0.793±0.001 0.926±0.027 0.811±0.001

ADMM5 0.801±0.001 0.918±0.007 0.814±0.001

ADMM30 0.817±0.001 0.887±0.003 0.836±0.001

ADMM50 0.817±0.001 0.891±0.003 0.835±0.001

TABLE II
CLASSIFICATION ACCURACY±std FOR SKIMLINKS DATASET.

build a reliable model in such a high dimensional space. This
problem’s scenario is similar to the artificial case previously
treated and so we expect that sharing information between
tasks could be beneficial.

Table II summarizes the results for the categorization dataset
when compared to its single task and individual tasks coun-
terparts. As it can be observed in the third column, there is an
expected gain of 6% accuracy when compared with a single
SVM model trained for all the the tasks and of 3% when
compared to an SVM trained individually for each task. When
comparing these results with the distribution of patterns per
task, we can observe that there is enough variety between
tasks that hinders SVM capacity to adapt to all of them. On
the other hand, for less populated tasks there is not enough
data to achieve a high accuracy and so all the information is
not exploited. The capacity to transfer information embedded
in MTL seems to balance the right amount of regularization
and information sharing, giving the best results.

One of the questions in systems where an individualised
response is needed is what to do in a cold start situation, i.e.
what response to provide when we do not have data for some
individual task. Single model training would advocate to use
the same model as for all the tasks, whereas if we choose
to have individualised models, we would lack the model for
that case. It seems natural to think that the average model
w0 in formula (2), which constitutes the bias for any task
in the context, would be the right answer. In the previous
dataset we discarded 29753 patterns from unpopulated task.
So these tasks would be a sample of “cold start” of tasks we
do not have data on. The accuracy of w0 and of the single
task SVM previously obtained are 82% and 80% respectively.
When unified with the results in Table II, we can see that MTL
shows a good adaptation to individual tasks and, at the same
time, a good prior bias is also discovered.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented an algorithm for distributed
MTL with task variance regularization. The iterations of the
proposed algorithm are completely parallel and an accurate
solution can be obtained in tens of iterations. The approach
decouples the training of the different tasks by making use of
an ADMM optimization scheme. We have tested the approach
both on an artificial and on a real large scale datasets and
proven that this MTL method can scale up to real large
scale problems with better accuracy. We hope that our results
will encourage further research on scaling up other MTL

methods and their application to real heterogeneous databases.
The method presented could be readily extended to more
general MTL regularizers of the form

∑T
s,t=1〈ws,wt〉Gst.

An interesting question is for which classes of positive def-
inite matrices G distributed optimization over the auxiliary
variables zt would still be possible, like in the case studied in
this paper. For example, this should be possible when matrix G
is the graph Laplacian of a tree as in [Khosla et al., 2012]. Yet
another extension of the method presented in this paper arises
in the context of multitask latent subcategory models as in
[Stamos et al., 2015], where our algorithm could be employed
to solve large scale image classification and detection problems
for computer vision. Finally, ideas from [Suzuki, 2013] may
be employed to obtain fully stochastic versions of our method.

Acknowledgements: David Martinez Rego was supported by
the Xunta de Galicia through the postdoctoral research grant
POS-A/2013/196. We wish to thank Patrick Combettes, Taiji
Suzuki and Yiming Ying for valuable comments.

REFERENCES

[Ahmed et al., 2014] A. Ahmed, A. Das, A.J. Smola. Scalable hierarchical
Multitask Learning Algorithms for Conversion Optimization in Display
Advertising. ACM International Conference on Web Search and Data
Mining, pages 153-162, 2014.

[Bai et al., 2012] J. Bai, K. Zhou, G. Xue, H. Zha, Z. Zheng, Multi-task
learning to rank for web search. Pattern Recognition Letters, 33:173-181,
2012.

[Baxter et al., 2000] J. Baxter. A model of inductive bias learning, Journal
of Artificial Intelligence Research, 12:149-198, 2000.

[Ben-David et al., 2003] S. Ben-David, R. Schuller. Exploiting Task Relat-
edness for Multiple Task Learning, SIGKDD, pages 567-580, 2003.

[Birlutiu et al., 2013] A. Birlutiu, P. Groot, T. Heskes. Efficiently learning
the preferences of people. Machine Learning, 90:1-28, 2013.

[Brants et al., 2006] T. Brants and A. Franz. Web 1T 5-gram Version 1.
Philadelphia: Linguistic Data Consortium, 2006.

[Bottou et al., 2008] L. Bottou and O. Bousquet. The Tradeoffs of Large
Scale Learning. NIPS, 2006.

[Boyd, 2010] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein.
Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers. Foundations and Trend in Machine
Learning, 3:1-122, 2010.

[Caruana, 1997] R. Caruana. Multi-task learning. Machine Learning, 28:41-
75, 1997.

[D’Avanzo et al. 2013] C. D’Avanzo, A. Goljahani, G. Pillonetto, G. De
Nicolao, G. Sparacino. A multi-task learning approach for the extrac-
tion of single-trial evoked potentials. Journal Computer Methods and
Programs in Biomedicine 110:125-136, 2013.

[Dinuzzo et al., 2011] F. Dinuzzo, G. Pillonetto, G. De Nicolao. Client-
server Multitask Learning from distributed datasets. IEEE Transactions
on Neural Networks, 22:290-303, 2011.

[Wang et al., 2015] J. Wang, M. Kolar, N. Srebro. Distributed Multitask
Learning. arXiv preprint, Oct 2015.

[Eckstein and Bertsekas, 1992] J. Eckstein and D.P. Bertsekas. On the
Douglas-Rachford splitting method and the proximal point algorithm for
maximal monotone operators. Mathematical Programming 55(1-3):293-
318, 1992.

[Evgeniou and Pontil, 2004] T. Evgeniou, M. Pontil. Regularized Multi-Task
Learning. SIGKDD, 2004.

[Goldstein et al., 2014] T. Goldstein, B. O’Donoghue, S. Setzer and R.
Baraniuk. Fast alternating direction optimization methods. SIAM Journal
on Imaging Sciences, 7(3), 1588-1623, 2014.

[He et al, 2012] B. He and X. Yuan. On theO(1/n) Convergence Rate of the
Douglas-Rachford Alternating Direction Method. SIAM J. Numer. Anal.,
50(2):700-709, 2012.

[Hong, 2013] M. Hong and Z. Luo. On the Linear Convergence of the
Alternating Direction Method of Multipliers, arXiv:1208.3922v3, 2013.

[Hsieh et al., 2008] C. Hsieh, K. Chang, S. Sathiya Keerthi, S Sundararajan.
A Dual Coordinate Descent Method for Large-scale SVM. ICML, 2008.

[Huang et al., 2013] S. Huang, W. Peng, J. Li, D. Lee, Sentiment and topic
analysis on social media: a multi-task multi-label classification approach.
Proceedings of the 5th Annual ACM Web Science Conference, pages
172-181, 2013.

[Khosla et al., 2012] A. Khosla, T. Zhou, T., Malisiewicz, A.A. Efros, A.
Torralba. Undoing the damage of dataset bias. In Proc. ECCV, pages
158-171, 2012.

[Joachims, 2002] T. Joachims, Learning to Classify Text using Support
Vector Machines, Dissertation, Kluwer, 2002.

[Segaran et al., 2009] T. Segaran, J. Hammerbacher. Beautiful Data: The
Stories Behind Elegant Data Solutions. O’Reilly Media, 2009.

[Maurer et al., 2006] Andreas Maurer. Bounds for linear multitask learning.
Journal of Machine Learning Research, 7:117-139, 2006.

[Mota et al., 2011] J.F.C. Mota, J.M.F. Xavier, P.M.Q. Aguiar, M. Püschel.
A proof of convergence for the alternating direction method of
multipliers applied to polyhedral-constrained functions, arXiv preprint
arXiv:1112.2295, 2011.

[Rakhlin et al., 2012] A. Rakhlin, O. Shamir and K. Sridharan. Making
Gradient Descent Optimal for Strongly Convex Stochastic Optimization.
ICML 2012.

[Shalev-Shwartz et al., 2014] S. Shalev-Shwartz, S. Ben-David. Understand-
ing Machine Learning. From Theory to Algorithms. Cambridge University
Press. 2014.

[Shawe Taylor and Cristianini, 2004] J. Shawe Taylor and N. Cristianini.
Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.

[Silver and Mercer, 1996] D. L. Silver and R.E Mercer. The parallel transfer
of task knowledge using dynamic learning rates based on a measure of
relatedness. Connection Science, 8, p. 277?294, 1996.

[Thrun, 1997] S. Thrun and L. Pratt. Learning to Learn. Kluwer Academic
Publishers, November 1997.

[Stamos et al., 2015] D. Stamos, S. Martelli, M. Nabi, A. McDonald, V.
Murino, M. Pontil. Learning with Dataset Bias in Latent Subcategory
Models. In Proceedings of CVPR, pages 3650-3658, 2015.

[Suzuki, 2013] T. Suzuki. Dual Averaging and Proximal Gradient Descent for
Online Alternating Direction Multiplier Method. International Conference
on Machine Learning, JMLR Workshop and Conference Proceedings
28(1): 392–400, 2013.

	Introduction
	Our Contribution
	Related Work

	Background
	Distributed MTL via ADMM
	Algorithm
	Optimization of each individual task
	Optimization of the auxiliary variables
	Convergence

	SGD Optimization of each individual task
	Experimental results
	Artificial data
	Classification performance
	Convergence

	URL classification

	Conclusions and Future Work
	References

