
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Multi-instance Graphical Transfer Clustering for
Traffic Data Learning

Shan Xue, Jie Lu, Jia Wu, Guangquan Zhang, and Li Xiong

Abstract— In order to better model complex real-world data
and to develop robust features that capture relevant informa-
tion, we usually employ unsupervised feature learning to learn a
layer of features representations from unlabeled data. However,
developing domain-specific features for each task is expensive,
time-consuming and requires expertise of the data. In this paper,
we introduce multi-instance clustering and graphical learning to
unsupervised transfer learning. For a better clustering efficient,
we proposed a set of algorithms on the application of traffic data
learning, instance feature representation, distance calculation
of multi-instance clustering, multi-instance graphical cluster
initialisation, multi-instance multi-cluster update, and graphical
multi-instance transfer clustering (GMITC). In the end of this
paper, we examine the proposed algorithms on the Eastwest
datasets by couples of baselines. The experiment results indicate
that our proposed algorithms can get higher clustering accuracy
and much higher programming speed.

I. INTRODUCTION

TRANSFER learning is desirable for the cases when the

data contains different features or distribution changes

so that statistical models need not to be rebuilt from scratch

using newly collected training data [1]. Unlike traditional

machine learning, in transfer learning domain, the source task

is used to restore useful knowledge for new tasks to extract

from and the target tasks is the task to apply source task

on the novel task [2]. It focuses on learning situations of

cross feature spaces and distributions. The inner workings of

an unsupervised transfer learning problem are complex with

many interacting components.

Multi-instance learning [3] is a variation of problems

that deal with the incomplete knowledge on examples, in

which, patterns are given as bags and each bag consists of

some instances. The labels are assigned to bags, rather than

instances. In a binary multi-instance learning classification

problem [4], a typical assumption is that a bag should

be labeled as positive if at least one of its instances is

Shan Xue is with the Lab of Decision Systems & e-Service Intelligence
(DeSI), the Centre for Quantum Computation & Intelligent Systems (QCIS),
Faculty of Engineering and Information Technology (FEIT), University
of Technology Sydney, Australia, and is affiliated with the School of
Management, Shanghai University, China (Shan.Xue@student.uts.edu.au).

Jie Lu and Guangquan Zhang are with the Lab of Decision Systems
& e-Service Intelligence (DeSI), the Centre for Quantum Computation
& Intelligent Systems (QCIS), Faculty of Engineering and Information
Technology (FEIT), University of Technology Sydney, Australia ({jie.lu,
guangquan.zhang}@uts.edu.au).

Jia Wu is with the Centre for Quantum Computation & Intelligent Sys-
tems (QCIS), Faculty of Engineering and Information Technology (FEIT),
University of Technology Sydney, Australia (jia.wu@uts.edu.au).

Li Xiong is with the School of Management, Shanghai University, China
(xiongli8@shu.edu.cn).

This work is supported by the Australian Research Council (ARC) (No.
DP140101366), and the Shanghai Education Commission (No. 14ZS085).

positive; and negative if all of its instances are negative.

The goal of the multi-instance learning classification problem

is to learn a classifier that can predict labels of new bags

or instances. However, almost all of the transfer learning

methods are designed to solve traditional single instance

learning problems [5] [6] [7], while in many cases transfer

learning can be better formulated as multi-instance learning

problems. Therefore, if we want to transfer knowledge from

some domains to others, it requires the solution of multi-

instance transfer learning [8].

Graphical models can be viewed as estimating a function

f(·) on the graph [9]. f(·) should satisfy both be close to

the given labels yL on the labeled nodes and be smooth on

the whole graph at the same time. This can be expressed

in a regularisation framework where the first term is a loss

function, and the second term is a regulariser. Moreover,

it is more important to construct a good graph [10] from

unsupervised transfer learning and then to choose among the

methods.

Despite of the challenge of real-time analysis in traffic

information services [11], another challenge is on how to

develop a computing infrastructure by big data to deal with

the large volumes and variety of data so that the multiple

data sources can be involved.

The aims of this paper is to provide solutions for unsu-

pervised transfer learning within the following situations, (1)

the multi-instance domain where the feature spaces are het-

erogeneous; (2) the unsupervised clustering algorithm which

will be trained by unlabeled datasets; (3) evolutionaries in

proposed algorithm which can get optimal solutions faster;

and (4) knowledges that can be gained from long-life learning

which transfer learning mechanism contributes. Meanwhile,

the proposed algorithm in this paper can fully support most

application scenarios, such as large-scale traffic datasets

learning.

II. GRAPHICAL CLUSTERING IN MULTI-INSTANCE

TRANSFER LEARNING

A. Multi-instance Learning

DEFINITION 1 (Bag [12]): A bag Bi = {B(I)
i } contains

a number of objectives (instances), in which B
(I)
i denotes

sub-bag with instances in Bi. A bag Bi’s label is denoted

by yi ∈ Y , with Y = {−1,+1}. A bag is labeled positive if

one or multiple instances in the bag is positive, and negative

otherwise. B = {B1, · · · , Bp} denotes the set of p bags,

and the aggregation of all objectives in B is denoted by

I = {I1, · · · , Iq}, where q is the total number of instances.

Algorithm 1 Instance Feature Representation

Input:
I: An instance dataset;

G: A graph dataset;

nf : The number of features to be selected.

Output:
f = {f1, · · · , fnf

}: A set of features.

1: f = ∅, ρ = 0;

2: for each feature fk in f do
3: L′ ← Apply I and G to obtain the graphical matrix;

4: r(fk) ← Apply L′ to compute the score of feature fk;

5: if |f | < max or r(fk) > ρ then
6: f ← f ∪ fk
7: end if
8: if |f | ≥ max then
9: f ← f/ argminfi∈f r(fi)

10: end if
11: ρ = minfi∈f r(fi).
12: end for
13: return f .

Similarly, the set of all positive (or negative) bags can be

denoted by B+ (or B−).

DEFINITION 2 (Instance Feature Representation [12]):
According to multi-instance bag constraint, all instances in

a negative bag are negative. So a negative bag Bi ∈ B−

can be represented by an instance feature vector xB
i =∑mi

j=1 x
j
i/mi, where mi denotes the number of instances

in Bi ∈ B+, the instance with the largest distance from

negative bags is used to denote the positive bag. So

the instance feature vector for a positive bag is xB
i =

arg minxj
i∈Bi

∑
xB
k ∈B− exp(−‖xj

i − xB
k ‖2/t).

In this paper, we employ the instance feature represen-

tation and extend it to the Algorithm 1. In Algorithm 1,

we extract a set of instances I from the bag set B and it

corresponds to the graph set G. ρ denotes the minimum value

of the scores r(fk). The main idea of this algorithm is that,

after score all the selected features, if the number of features

f are smaller than max or the scores of the new feature

fk are larger than ρ, fk will be included into f ; and if the

number of features f are larger than max, f will be upgraded

by new scores. For each feature fk, the processes above will

be applied and ρ is going to be updated.

B. Multi-instance Graphical Clustering

The algorithm BAg-level Multi-instance Clustering

(BAMIC) [13] clusters all the training bags into k disjoint

groups Gi(1 ≤ i ≤ k) each containing a number of training

bags. Given two bags of instances A = {a1, · · · , am} and

B = {b1, · · · , bn}, the maximal and minimal Hausdorff

distances are defined as Eq. (1) and Eq. (2) respectively,

where ‖a − b‖ measures the distances between instances a
and b which takes the form of Euclidean distance.

Algorithm 2 Distances of Multi-instance Clustering

Input:
B: A bag dataset;

G: A graph dataset.

Output:
Bag dist: Distance metric used to calculate distances

between bags and graphs.

1: Bag dist(Bi, Bj) ← Distance between bags by applying

Eq. (7);

2: Bag dist(Bi, Gj) ← Distance between bag and graph by

applying Eqs. (3) and (7);

3: Bag dist(Gi,Gj) ← Distance between graphs by apply-

ing Eqs. (4)-(6);

4: return Bag dist.

maxH(A,B) = max{max
a∈A

min
b∈B

‖a− b‖,max
b∈B

min
a∈A

‖b− a‖}
(1)

minH(A,B) = min
a∈A,b∈B

‖a− b‖ (2)

DEFINITION 3 (Average Hausdorff Distance [13]): In Eq.

(3), where | · | measures the cardinality of a set. In words,

aveH(·, ·) averages the distances between each instance in

one bag and its nearest instance in the other bag. Con-

ceptually speaking, average Hausdorff distance takes more

geometric relationships between two bags of instances into

consideration than those of maximal and minimal Hausdorff

distances.

aveH(A,B) =∑
a∈A minb∈B‖a− b‖+∑

b∈B mina∈A‖b− a‖
|A|+ |B|

(3)

DEFINITION 4 (Graph Kernel [14]): Given two multi-

instance bags Bi and Bj which are presented as graphs

Gbag({xbagu}nbag

u=1 , {ebagv}
mbag

v=1), bag = i, j, where nbag

and mbag are the number of nodes and edges in Gbag ,

respectively.

kG(Bi, Bj) =

ni∑

a=1

nj∑

b=1

knode(xia,xjb)+

mi∑

a=1

mj∑

b=1

kedge(eia, ejb),

(4)

where knode and kedge are positive semi-definite kernels. To

avoid numerical problem, kG is normalised to

kG(Bi, Bj) =
kG(Bi, Bj)√

kG(Bi, Bi)
√

kG(Bj , Bj)
. (5)

The knode and kedge can be defined in many ways. Here

we simply define knode using Gaussian RBF kernel [15] as

knode(xia,xjb) = exp(−γ‖xia − xjb‖2). (6)

Algorithm 3 Multi-instance Graphical Cluster Initialisation

Input:
U = {X1, · · · , XN}: Unlabeled multi-instance training

set;

k: Number of clusters.

Output:
ω: The cluster selection labels.

1: Cj ← Randomly selected k training bags as the initial

medoids;

2: repeat
3: for j ∈ {1, 2, · · · , k} do
4: Gj = {Cj};

5: end for
6: for i ∈ {1, 2, · · · , N} do
7: index = argminj∈{1,2,··· ,k}Bag dist(Xi, Cj) ←

Bag dist by applying Algorithm 2;

8: Gindex = Gindex ∪ {Xi};

9: end for
10: for j ∈ {1, 2, · · · , k} do
11: Cj = argminA∈Gj (

∑
B∈Gj

Bag dist(A,B)/|Gj |) ←
Bag dist by applying Algorithm 2;

12: end for
13: until {the clustering results do not change};

14: ω ← Apply index and Cj ;

15: return ω.

DEFINITION 5 (Bag Kernel [14]): Given two multi-instance

bags Bi and Bj which contains ni and nj instances, respec-

tively.

kg(Bi, Bj) =

∑ni

a=1

∑nj

b=1 WiaWjbk(xia,xjb)∑ni

a=1 Wia

∑nj

b=1 Wjb

, (7)

where Wia = 1/
∑ni

u=1 w
i
au, Wjb = 1/

∑nj

v=1 w
j
bv , and

k(xia,xjb) is defined as similar as Eq.(6).

For multi-instance graphical clustering, Algorithm 2 de-

fines the calculation of all the distances shown in multi-

instance clustering. For the three kinds of distance, i.e.,

distances between bags, distances between bag and graph,

and distances between graphs, we denote a function Bag dist

output from Algorithm 2. In Algorithm 3, we initial the

multi-instance graphical clustering when unlabeled multi-

instance training set comes. The data structures and knowl-

edge are saved in such clustered graph and can be sequen-

tially upgraded. A set of cluster selection labels is output

from Algorithm 3.

C. Clustering Strategies of Multiple Clusters Update

The idea is to partition a large graph in smaller sub-

graphs (clusters) based on Brown and Smith [16], which can

be computed efficiently. Let Cd, d = 1, · · · , k be disjoint

nodes of the entire node set N , i.e., Cd ∩ Ce = ∅, and

∪k
d=1C

d = N . Denote xCd the random variables in cluster

Cd, and ωCd the cluster specific evidence. The number of

nodes in cluster Cd will be in the order of one to around

ten. The ranking is based on dynamic programming within

Algorithm 4 Multi-instance Multi-Cluster Update

Input:
B: A bag dataset;

G: A graph dataset.

Output:
Y: A vector of bag labels for B.

1: ω ← The selection vector of bags by Algorithm 3;

2: for Clusters d = 1 : k do
3: GCd ← Dynamic value of cluster d in graph G;

4: [vCd , GCd] = v(ωCd) ← Initial cluster-based dy-

namic values of cluster d;

5: v(ωCd)−M = 0 ← Initial generic retirement value;

6: end for
7: while ∃ d : vCd > 0 do
8: C∗ = argmaxd{M} ← Best cluster;

9: Y = [Y, GC∗] ← Best node in cluster C∗;

10: ωGC∗ = BGC∗ ← Set sampled BGC∗ at ωGC∗ ;

11: end while
12: for Clusters d = 1 : k do
13: [vCd , GCd] = v(ωtC∗

Cd,SC∗) ← Update cluster-based

dynamic values of cluster d;

14: M : vd(ωCd ,M) − M = 0 ← Update cluster index

by applying Eq. (9);

15: end for
16: return Y.

clusters, given the current information. Once we collect

data in clusters, we update the probabilities, use dynamic

programming again, and get a new ranking. This provides

the basis for the selection.

vi(ω) =

k∑

j=1

p(xi = j|ω)
[
rji + δ · v(ωj

i)
]

(8)

DEFINITION 6 (Multi-instance Graphical Clustering
[17]): Assume that dynamic programming is set up for each

cluster, given the current evidence. By considering a variation

of (Eq. (8)), with a generic retirement value M instead of

0 in the decision rule, we have expected value for cluster d
given by:

vd(ω,M) =max
i∈Cd

{
k∑

j=1

p(xi = j)
[
rji + δ max

s∈Cd/{i}

{
k∑

l=1

p(xs = l|xi = j)(rls + · · ·),M}
]
,M},

(9)

where vd(ω,M) → M .

In the algorithm of multiple clusters update for multi-

instance sequential clustering (Algorithm 4), we rank the

cluster according to Definition 6. Dynamic programming in

the best cluster gives the first node. We update the probability

model for all the clusters, given the observation (sample out-

come) in the selected node. All graphical clusterings are also

modified based on the updated probabilities. Then, we choose

Ds Source Domain

1~mk Source

Bki Bag 1~nk

Ikij 1~nkiInstance

Yki Bag Label

hkij Instance Label

Dt Target Domain

0 Target

B0i Bag 1~n0

I0ij 1~n0iInstance

Y0i Bag Label

h0ij Instance Label

Fig. 1. Data structure of GC-MITL

Algorithm 5 GMITC: Graphical Multi-instance Transfer

Clustering

Input:
Bs = {B1, · · · ,Bk, · · · ,Bnk

}: The bags in Ds;

B0: The bag in Dt;

Output:
GC, C = {C1, · · · , Ck}: A clustered graph.

1: GC ← Initial clustered graph of source domain;

2: YBs ← Multiple cluster update for cluster labels of

source bags by applying Algorithm 4;

3: for all B0 do
4: f ← Features explored by Algorithm 1;

5: Bag dist(B0i, Bki) ← Distances between target bags

and source bags, calculated by Algorithm 2;

6: ωB0 ← Cluster selection labels of target bags by

applying Algorithm 3;

7: YB0
← Multiple cluster update for cluster labels of

incoming target bags by applying Algorithm 4;

8: end for
9: if YB0 ∈ YBs then

10: GC ← GC ∪B0;

11: else
12: GC ← GC ∪ {GCB0 ,B0}
13: end if
14: return GC.

the best cluster at the second stage using these clusterings.

We proceed until all the nodes have been observed or there

are no more clusterings greater than 0.

D. Graphical Multi-instance Transfer Clustering

In processing high-dimensional data, unsupervised learn-

ing is commonly used for exploratory purposes. Before

learning, we may only have limited knowledge on how data

is distributed. It can be grouped into multiple but unknown

numbers of clusters with arbitrary shapes, reside on multiple

low-dimensional manifolds, encompass mixed data structures

(e.g., clusters and manifolds), or may contain no structure at

all.

DEFINITION 7 (Unsupervised Transfer Learning [1]):
Given a source domain Ds with a learning task Ts, a target

domain Dt and a corresponding learning task Tt, unsuper-

vised transfer learning aims to help improve the learning of

the target predictive function ft(·) in Dt using the knowledge

in Ds and Dt, where Dt is different from Ds and labels Ys

and Yt are not observable.

III. EXPERIMENTS

A. Experimental Conditions

We implement the proposed method using MATLAB tool

and validate its performance on East-West dataset. We first

test the proposed algorithms on 12 kinds of data standardis-

ation methods. Then, we apply the optimised standardisation

methods on instance clustering and bag clustering, respec-

tively. In our experiments, the algorithms are evaluated in

terms of cluster accuracy and program speed. Besides, the

clustering results are compared with the real cluster label

which we can find in the original dataset.

To make the dataset into 3 sources and make them different

but relevant, we used the well-known East-West dataset and

randomly selected equal amount of features from each bag.

The randomness is also a good way to help us test the

clustering effects. The structure of the dataset are shown in

Table I.

B. Instance Clustering v.s. Bag Clustering

This experiment compares cluster effects on instances and

bags. In instance clustering, we only cluster the instances

(ni = 213) of East-West dataset where each instance has 24

features.

Step 1, Standard values of 24 features. Different results of

standardisation are shown in follows, A. No standardisation;

B. Delete none 0-1 features; C. Standard none 0-1 features

by average method; D. Standard all features by average

method; E. Standard none 0-1 features by zscore function

from MATLAB; F. Standard all features by zscore function

TABLE I

PROCESSED EAST-WEST DATASET FOR TRANSFER CLUSTERING

Source1 Source2 Source3
Bags No. Instances Attributes Attributes Attributes Clusters

14 4 Ran #8 Ran #8 Ran #8 -
15 16 Ran #8 Ran #8 Ran #8 +
18 16 Ran #8 Ran #8 Ran #8 +
26 4 Ran #8 Ran #8 Ran #8 -
33 4 Ran #8 Ran #8 Ran #8 -
45 16 Ran #8 Ran #8 Ran #8 -
50 16 Ran #8 Ran #8 Ran #8 -
65 9 Ran #8 Ran #8 Ran #8 +
70 4 Ran #8 Ran #8 Ran #8 -
84 16 Ran #8 Ran #8 Ran #8 -
88 4 Ran #8 Ran #8 Ran #8 -
90 16 Ran #8 Ran #8 Ran #8 +
92 9 Ran #8 Ran #8 Ran #8 -

100 16 Ran #8 Ran #8 Ran #8 +
101 9 Ran #8 Ran #8 Ran #8 +
104 16 Ran #8 Ran #8 Ran #8 +
120 9 Ran #8 Ran #8 Ran #8 +
125 9 Ran #8 Ran #8 Ran #8 +
128 4 Ran #8 Ran #8 Ran #8 -
129 16 Ran #8 Ran #8 Ran #8 +

TABLE II

INSTANCE CLUSTERING ON 12 METHODS

No. A B C D E F G H I J K L

1 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

2 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

3 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

4 46.48% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

5 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

6 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

7 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

8 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

9 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

10 45.54% 61.03% 61.03% 60.09% 67.61% 60.09% 60.09% 67.61% 66.2% 60.09% 60.09% 61.03%

from MATLAB column by column; G. Standard all features

by zscore function from MATLAB as matrix; H. Standard

none 0-1 features by self-defined zscore (without abs); I.

Standard none 0-1 features by self-defined zscore (with

abs); J. Standard all features by self-defined zscore (without

abs); K. Standard all features by self-defined zscore (with

abs); and L. Standard none 0-1 features to 0-1 values by

rules. Step 2, We treat the East-West dataset as the source

domain and randomly separate 24 features into 3 sources, i.e.,

source 1, source 2 and source 3. Each source has 8 features,

respectively. Step 3, Cluster source1, source2 and source3

separately. Step 4, Decide the final clusters across domain,

i.e., cluster 1 and cluster 2. Step 5, Label cluster 1 and

cluster 2 by negative (0) and positive (1) which without any

supervise. Step 6, Calculate accuracy of instance clustering.

According to the instance clustering results shown in Table

II, we find that only A has different results after source

randomly selection; some methods can get 3 totally different

clustering results on 3 source domains (y = [1, 0, 0, 0]),
i.e., B (61.03%), C (61.03%), E (67.61%), H (67.61%), I

(66.2%); and some methods can get robust clustering results

(no matter whether clustering results on each source are the

same, 2 in same or all not same, the clustering result of cross

domain are the same) to the randomly source selections,

i.e., D (60.09%), F (60.09%), G (60.09%), J (60.09%), K

(60.09%).

While, the experiment of bag clustering clusters bags

(nb = 20) of the East-West dataset. The overall bags

consist of instances (ni = 213) and they have unbalanced

instances amounts. To make cross domain transfer clustering,

we randomly select 3 sources from 24 features of all in-

stances. Meanwhile we examine the 8 different bag distance

calculation methods on the 2 optimised data standardisations.

The details of 16 methods and their results are explained as

follows.

The 8 different bag distance calculation methods on bag

clustering for source domain are, A1. Average Hausdorff

Distance, Eq. (3); A2. Maximal Hausdorff Distance, Eq.

(1); A3. Minimal Hausdorff Distance, Eq. (2); B. Graph

Kernel without edges, Eqs. (4)-(6); C1. Bag Kernel, Eq. (7),

where delta set by Maximal Hausdorff Distance, Eq. (1); C2.

Bag Kernel, Eq. (7), where delta set by Minimal Hausdorff

Distance, Eq. (2); C3. Bag Kernel, Eq. (7), where delta set

by Average Hausdorff Distance, Eq. (3); and C4. Bag Kernel,

Eq. (7), where delta set by general distance calculation.

We examine them on 2 optimised data standardisation

methods E and G, respectively. The results are shown in the

following tables (Table III and IV).

TABLE III

BAG CLUSTERING OF 12 METHODS ON STANDARDISATION E

No. A1 A2 A3 B C1 C2 C3 C4

1 75.00% 55.00% 50.00% 55.00% 60.00% 50.00% 50.00% 50.00%
2 75.00% 75.00% 50.00% 55.00% 50.00% 50.00% 50.00% 50.00%
3 75.00% 75.00% 65.00% 55.00% 50.00% 50.00% 50.00% 55.00%
4 75.00% 75.00% 65.00% 55.00% 50.00% 55.00% 50.00% 50.00%
5 75.00% 75.00% 55.00% 55.00% 50.00% 55.00% 50.00% 50.00%
6 75.00% 75.00% 55.00% 55.00% 50.00% 55.00% 50.00% 50.00%
7 75.00% 75.00% 50.00% 55.00% 50.00% 50.00% 50.00% 55.00%
8 75.00% 75.00% 50.00% 55.00% 50.00% 50.00% 50.00% 50.00%
9 75.00% 75.00% 50.00% 55.00% 50.00% 55.00% 50.00% 50.00%

10 75.00% 75.00% 50.00% 55.00% 50.00% 55.00% 50.00% 50.00%

TABLE IV

BAG CLUSTERING OF 12 METHODS ON STANDARDISATION G

No. A1 A2 A3 B C1 C2 C3 C4

1 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
2 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
3 45.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
4 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 60.00%
5 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
6 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
7 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
8 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%
9 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%

10 25.00% 45.00% 35.00% 60.00% 55.00% 55.00% 55.00% 55.00%

The average accuracy, maximum accuracy and minimum

accuracy of these 16 methods are shown in Fig. 2. The

results indicate that the method A1 that applied on the

first standardisation method E gets the highest results and

robustness. Meanwhile, both the standardisation methods

A1 A2 A3 B C1 C2 C3 C4
20

30

40

50

60

70

80
ave1
ave2
max1
max2
min1
min2

Fig. 2. Accuracies of average, maximum and minimum on 8 bag distance
methods with 2 standardisation methods

A1 A2 A3 B C1 C2 C3 C4
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Standard 1
Standard 2

Fig. 3. Programming speed of 8 bag distance methods with 2 standardis-
ation methods

and bag distance calculation methods strongly affect multi-

instance clustering accuracy and graphical method shows the

best results.

C. Programming Speed Evaluations

The instance clustering speeds on the E and G methods

are 12.322s and 25.205s. However, the 2 methods combines

8 bag distance calculation methods show a much faster

programming speed. The average speed of bag clustering is

1.316s (1.278s on E and 1.355s on G), the highest speed

is 1.982s (C2 on G), and the lowest speed is 1.707s (B on

E). That exactly proofs the contributions of multi-instance

graphical transfer clustering are not only on accuracy, but

also on the programming speed. In further study into the

speed differences, we find insource clustering consumes a

lot of time on instance clustering; but in bag clustering,

the bag distance calculation is the most time consuming

process. That is to say, multi-instance algorithm with transfer

learning algorithm dramatically help save programming time

on one same clustering task. Meanwhile, bag clustering also

increases cluster accuracy.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a graphical multi-instance trans-

fer clustering algorithm, namely GMITC, supporting by a

set of algorithms of instance feature representation, distances

of multi-instance clustering, multi-instance graphical cluster

initialisation and multi-instance multi-cluster update. We

apply them to a real-world traffic problem, i.e., a well-known

East-West Challenge. Since the original East-West dataset is

for machine learning and multi-instance classification, we

pre-process it for unsupervised transfer learning use. The

randomness of source selection also help test the experi-

ment and indicate the robustness. The experiment results

show confirmations that multi-instance clustering jointly with

graphical transfer learning (unsupervised) do good in both

cluster accuracy and programming speed. The further study

of this research will be on multi-instance graphical transfer

clustering on online large datasets.

REFERENCES

[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp.
1345–1359, 2010.

[2] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer
learning using computational intelligence: A survey,” Knowledge-
Based Systems, vol. 80, pp. 14–23, 2015.

[3] Z. Fu, A. Robles-Kelly, and J. Zhou, “Milis: Multiple instance learning
with instance selection,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 33, no. 5, pp. 958–977, 2011.

[4] B. Babenko, N. Verma, P. Dollár, and S. J. Belongie, “Multiple instance
learning with manifold bags,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 2011, pp. 81–88.

[5] X. Cao, Z. Wang, P. Yan, and X. Li, “Transfer learning for pedestrian
detection,” Neurocomputing, vol. 100, pp. 51–57, 2013.

[6] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object cate-
gories,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, no. 4, pp. 594–611, 2006.

[7] P. Huang, G. Wang, and S. Qin, “Boosting for transfer learning from
multiple data sources,” Pattern Recognition Letters, vol. 33, no. 5, pp.
568–579, 2012.

[8] D. Zhang and L. Si, “Multiple instance transfer learning,” in Data
Mining Workshops, 2009. ICDMW’09. IEEE International Conference
on. IEEE, 2009, pp. 406–411.

[9] J. Wu, X. Zhu, C. Zhang, and P. S. Yu, “Bag constrained structure
pattern mining for multi-graph classification,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 26, no. 10, pp. 2382–2396,
2014.

[10] J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph
classification,” Cybernetics, IEEE Transactions on, vol. 45, no. 3, pp.
416–429, 2015.

[11] S. Xue, L. Xiong, S. Yang, and L. Zhao, “A self-adaptive multi-view
framework for multi-source information service in cloud its,” Journal
of Ambient Intelligence and Humanized Computing, pp. 1–16, 2015.

[12] J. Wu, X. Zhu, C. Zhang, and Z. Cai, “Multi-instance multi-graph
dual embedding learning,” in Data Mining (ICDM), 2013 IEEE 13th
International Conference on. IEEE, 2013, pp. 827–836.

[13] M.-L. Zhang and Z.-H. Zhou, “Multi-instance clustering with applica-
tions to multi-instance prediction,” Applied Intelligence, vol. 31, no. 1,
pp. 47–68, 2009.

[14] Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li, “Multi-instance learning by
treating instances as non-iid samples,” in Proceedings of the 26th
annual international conference on machine learning. ACM, 2009,
pp. 1249–1256.

[15] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-
instance kernels.” in ICML, vol. 2, 2002, pp. 179–186.

[16] D. B. Brown and J. E. Smith, “Optimal sequential exploration: Bandits,
clairvoyants, and wildcats,” Operations research, vol. 61, no. 3, pp.
644–665, 2013.

[17] G. Martinelli and J. Eidsvik, “Dynamic exploration designs for
graphical models using clustering with applications to petroleum
exploration,” Knowledge-Based Systems, vol. 58, pp. 113–126, 2014.

