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Abstract—This work is a further study on the Generalized
Constraint Neural Network (GCNN) model [1], [2]. Two chal-
lenges are encountered in the study, that is, to embed any type of
prior information and to select its imposing schemes. The work
focuses on the second challenge and studies a new constraint
imposing scheme for equality constraints. A new method called
locally imposing function (LIF) is proposed to provide a local
correction to the GCNN prediction function, which therefore
falls within Locally Imposing Scheme (LIS). In comparison,
the conventional Lagrange multiplier method is consideredas
Globally Imposing Scheme (GIS) because its added constraint
term exhibits a global impact to its objective function. Two
advantages are gained from LIS over GIS. First, LIS enables
constraints to fire locally and explicitly in the domain only
where they need on the prediction function. Second, constraints
can be implemented within a network setting directly. We
attempt to interpret several constraint methods graphically from
a viewpoint of the locality principle. Numerical examples confirm
the advantages of the proposed method. In solving boundary
value problems with Dirichlet and Neumann constraints, the
GCNN model with LIF is possible to achieve an exact satisfaction
of the constraints.

I. I NTRODUCTION

Artificial neural networks (ANNs) have received significant
progresses after the proposal of deep learning models [3]–[5].
ANNs are formed mainly based on learning from data. Hence,
they are considered asdata-drivenapproach [6] with ablack-
box limitation [7]. While this feature provides a flexiblility
power to ANNs in modeling, they miss a functioning part
for top-down mechanisms, which seems to be necessary for
realizinghuman-likemachines. Furthermore, the ultimate goal
of machine learning study is insight, not machine itself. The
current ANNs, including deep learning models, fail to present
interpretations about their learning processes as well as the
associated physical targets, such as human brains.

For adding transparency to ANNs, we proposed a gener-
alized constraint neural network (GCNN) approach [1], [8],
[9]. It can also be viewed as aknowledge-and-data-driven
modeling(KDDM ) approach [10], [11] because two submod-
els are formed and coupled as shown in Fig. 1. To simplify
discussions later, we refer GCNN and KDDM approaches to

Fig. 1. Schematic diagram of a KDDM model [10], [11]. A GCNN model
is formed when the data-driven submodel is ANNs [1].

the same model.
GCNN models were developed based on the previously

existing modeling approaches, such as the “hybrid neural
network (HNN)” model [12], [13]. We chose “generalized
constraint” as the descriptive terms so that a mathematical
meaning is stressed [1]. The terms of generalized constraint
was firstly given by Zadeh in 1990’s [14], [15] for describinga
wide variety of constraints, such as probabilistic, fuzzy,rough,
and other forms. We consider that the concepts of generalized
constraint provide us a critical step to construct human-like
machines. Implications behind the concepts are at least two
challenges as follows.

1. How to utilize any type of prior information that holds
one or a combination of limitations in modeling [1], such
as ill-defined or unstructured prior.

2. How to select coupling forms in terms of explicitness [1],
[9], physical interpretations [11], performances [9], [11],
locality principle [16], and other related issues.

The first challenge above aims to mimic the behavior
of human beings in decision making. Bothdeductionand
inductioninferences are employed in our daily life. The second
challenge attempts to emulate thesynaptic plasticityfunction
of human brain. We are still far away from understanding
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mathematically how human brain to select and change the
couplings. The two challenges lead to a further difficulty as
stated in [1]: “Confronting the large diversity and unstructured
representations of prior knowledge, one would be rather diffi-
cult to build a rigorous theoretical framework as already done
in the elegant treatments of Bayesian, or Neuro-fuzzy ones”.
The difficulty implies that we need to study GCNN approaches
on a class-by-class basis. This work extends our previous study
of GCNN models on a class of equality constraints [2], and
focuses on the locality principle in the second challenge. The
main progress of this work is twofold below.

1. A novel proposal of “Locally Imposing Scheme (LIS )”
is presented, resulting in an alternative solution different
from “Globally Imposing Scheme (GIS)”, such as La-
grange multiplier method.

2. Numerical examples are shown for a class of equality
constraints including a derivative form and confirm the
specific advantages of LIS over GIS on the given exam-
ples.

We will limit the study on the regression problems with
equality constraints. The remaining of the paper is organized as
follows. Section II discusses the differences between machine
learning problems and optimization problems. Based on the
discussions, the main idea behind LIS is presented. The
conventional RBFNN model and its learning are briefly in-
troduced in Section III. Section IV demonstrates the proposed
model and its learning process. Numerical experiments on two
synthetic data sets are presented in Section V. Discussionsof
locality principle and coupling forms are given in Section VI.
Section VII presents final remarks about the work.

II. PROBLEM DISCUSSIONS AND MAIN IDEA

Mathematically, machine learning problems can be equiv-
alent to optimization problems. We will compare them for
reflecting their differences. An optimization problem with
equality constraints is expressed in the following form [17]:

min F (x)
s.t. Gi(x) = 0, i = 1, 2, · · ·

(1)

where F (x) : Rd → R, is the objective function to be
minimized over the variablex, andGi(x) is the ith equality
constraint. In machine learning, its problem having equality
constraints can be formulated as [18]:

min E[(y − f(x))2],
s.t. gi(x) = 0, i = 1, 2, · · ·

(2)

whereE is an expectation,f(x) : Rd → R, is the prediction
function which can be formed from a composition of radical
basis functions (RBFs), andgi(x) is theith equality constraint.

Eq. (2) presents several differences in comparing with Eq.
(1). For a better understanding, we explain them by imaging a
3D mountain (or a two-input-single-output model). First, while
a conventional optimization problem is to search for an opti-
mization point on awell-defined mountain(or objective func-
tion F ), a machine learning problem tries to form anunknown
mountain (or prediction functionf ) with a minimum error

from the observation data. Second, the equality constraints in
the optimizations imply that the solution should be locatedat
the constraints. Otherwise, there exist no feasible solutions.
For a machine learning problem, the equality constraints
suggest that an unknown mountain (or prediction function)
surface should go through the given form(s) described by
function(s) and/or value(s). If not, an approximation should
be made in a minimum error sense. Third, machine learning
produces a larger variety of constraint types which are not
encountered in the conventional optimization problems. The
main reason is thatgi(x) comes from a prior to describe
the unknown real-system function. Sometimes,gi(x) is not
well defined, but only shows a “partially known relationship
(PKR)” [1]. This is why the terms of generalized constraints
are used in the machine learning problems. For this reason, we
rewrite (2) in a new form from [1] to highlight the meaning
of gi(x) in the machine learning problems:

min E[(y − f(x))2],
s.t. Ri〈f〉 = gi(x) = 0, x ∈ Ci, i = 1, 2, · · ·

(3)

whereRi〈f〉 is the ith partially known relationship about the
function f , andCi is the ith constraint set forx.

Based on the discussions above, we present a new proposal,
namely “Locally Imposing Scheme (LIS )”, in dealing with the
equality constraints in machine learning problems. The main
idea behind the LIS is realized by the following steps.

Step 1. The modified prediction function, say,F (x), is
formed by two basic terms. The first is an original prediction
function from unconstrained learning model and the second is
the constraint functionsgi(x).

Step 2. When the inputx is located within the constraint set
Ci, one enforcesF (x) to satisfy the functiongi(x). Otherwise,
F (x) is approximately formed from all data excepted for those
data within constraint sets.

Step 3. For removing the jump switching in Step 2, we
use “Locally Imposing Function (LIF )” as a weight on the
constraint term and the complementary weight on the first
term so that a continuity property can be held to the modified
prediction functionF (x).

The idea of the first two steps have been reported from
the previous studies, particularly in boundary value problems
(BVPs) [19]–[21]. They used different methods to realize Step
2, such as polynomial methods in [19], RBF methods in [20],
and length methods in [21]. If equality constraints are given by
interpolation points, other methods are shown [1], [9], [22].
Hu, et al. [1] suggested that “neural-network-based models
can be enhanced by integrating them with the conventional
approximation tools”. They showed an example to realize Step
2 and apply Lagrange interpolation method. In the following-
up study, an elimination method was used in [9]. All above
methods, in fact, fall into the GIS category. In [2], Cao and
Hu applied the LIF method to realize Step 2 and demonstrated
that equality function constraints are satisfied completely and
exactly on the given Dirichlet boundary (see Fig 4(e) in [2])
but the LIF was not smooth in that work.

We can observe that the LIS is significantly different from



the conventional Lagrange multiplier method that belongs to
“Globally Imposing Scheme (GIS)” because the Lagrange
multiplier term exhibits a global impact on an objective
function. A heuristic justification for the use of the LIS is
an analogy to the locality principle in the brain functioning of
memory [16]. All constraints can be viewed as memory. The
principle provides bothtime efficiencyand energy efficiency,
which implies that constraints are better to be imposed through
a local means. The LIS in together with the GIS will open
a new direction to study the coupling forms towardsbrain-
inspiredmachines.

III. C ONVENTIONAL RBF NEURAL NETWORKS

Given the training data setX = [x1, . . . , xn]T and its
desired outputsy = [y1, . . . , yn]

T , wherexi ∈ R1×d is an
input vector,yi ∈ R denotes the vector of desired network
output for the inputxi andn is the number of training data.
The output ofRBFNN is calculated according to

f(xi) =

m∑

j=1

wj · φj(xi) = Φ(xi)W, (4)

φj(xi) = exp(−‖xi − µj‖
2/σ2

j ), (5)

whereW = [w0, w1, . . . , wm]T ∈ R(m+1)×1 represents the
model parameter, andm is the number of neurons of the
hidden layer. In terms of the feature mapping functionΦ(X) =
[1, φ1(X), . . . , φm(X)] ∈ Rn×(m+1) (for simplicity, it is de-
noted asΦ hereafter), both the centersU = [µ1, . . . ,µm]T ∈
Rm×d and the widthsσ = [σ1, . . . , σm]T ∈ Rm×1 can be
easily determined using the method proposed in [23].

A common optimization criterion is the mean square error
between the actual and desired network outputs. Therefore,the
optimal set of weights minimizes the performances measure:

argmin
W

ℓ2(W ) =

n∑

i=1

(yi − f(xi))2 = ‖y − f(X)‖22, (6)

where f(X) = [f(x1), . . . , f(xn)]T ∈ Rn×1 denotes the
prediction outputs of RBFNN.

Least squares algorithm is used in this work, resulting in
the following optimal model parameter

W ∗ = (ΦTΦ)+ΦTy, (7)

where(ΦTΦ)+ denotes the pseudo-inverse ofΦTΦ.

IV. GCNN WITH EQUALITY CONSTRAINTS

In this section, we focus on GCNN with equality constraints
(called GCNN EC model) by using LIF. Note that LIF is a
special method within LIS category that may include several
methods. We first describe a locally imposing function used in
GCNN EC models. Then GCNNEC designs from direct and
derivative constraints off(x) are discussed respectively. For
simplifying presentations, we only consider a single constraint
in the design so that the process steps are clear on each
individual constraint. Multiple sets and combinations of direct
and derivative constraints can be extended directly.

A. Locally Imposing Function

For realizing Step 3 in Section II, we select Cauchy distri-
bution for the LIF. The Cauchy distribution is given by:

f(x;x0, γ) =
1

πγ[1 + (x−x0

γ
)2]
, (8)

wherex0 is the location parameter which defines the peak of
the distribution,γ (> 0) is a scale parameter which describes
the width of the half of the maximum. The Cauchy distribution
is smoothand has aninfinitely differentiableproperty. Other
smooth function can also be used as LIF.

In the context of multi-input variables, we define the LIF
of GCNN EC in a form of:

Ψ(∆; γ) =
1

πγ[1 + (∆
γ
)2]ψnorm

, (9)

where∆(≥ 0) denotes the distance variable fromx to the con-
straint location.ψnorm is a normalized parameter and ensures
a normalization on0 < Ψ ≤ 1. Ψ(∆; γ) is a monotonically
decreasing function with respect to the distance∆. We callγ a
locality parameterbecause it controls the locality property of
the LIF. Whenγ decreases,Ψ becomes sharper in its function
shape. Generally, we preset this parameter as a constant by a
trial and error way. Hence, we dropγ to describeΨ(∆).

B. Equality constraints onf(x)

Suppose the output of the network strictly satisfies a single
equality constraint given by:

f(x) = fC(x), x ∈ C, (10)

where C denotes a constraint set forx, fC can be any
numerical value or function. Note that BVPs with a Dirichlet
form are a special case in Eq. (10) becausefC may be given
on any regions without a limitation on boundary. Facing the
following constrained minimization problem:

min
W

ℓ2(W ) = ‖y − f(X)‖22
s.t. f(x) = fC(x), x ∈ C, (11)

a conventional RBFNN model generally applies a Lagrange
multiplier and transfers it into an unconstrained problem by

min
W,λ

ℓ2(W,λ) = ‖y − f(X)‖22 + λ(f(x ∈ C)− fC(x)),

(12)

whereλ is a new variable determined from the above solution.
Different with Lagrange multiplier method which imposes a
constraint in a global manner on the objective function, we use
LIS to solve a constrained optimization problem. A modified
prediction function is defined in GCNNEC by

fW,C(x) = (1−Ψ(∆))f(x) + Ψ(∆)fC(x), (13)

so that one solves an unconstrained problem in a form of:

min
W

ℓ2(W ) = ‖y − fW,C(X)‖22. (14)



One can observe thatfW,C(x) contains two terms. Both terms
are associated with the smooth LIF in Eq. (9) so thatfW,C(x)
is possible to hold a smoothness property. One important
relation can be proved directly from Eqs. (9) and (13):

fW,C(x) = fC(x), x ∈ C, when ∆ = 0. (15)

The above equation indicates an exact satisfaction on the
constraint for GCNNEC models.

In this work, we still follow the way in presentingµj and
σj to RBF models [9], [23] and determining only weight
parameterswj from solving a linear problem. Its optimal
solution for GCNN EC is given below:

W ∗ =[((1−Ψ) ◦ ΦT )((1−Ψ)T ◦ Φ)]+

[(1−Ψ) ◦ ΦT ](y −Ψ(X) ◦ fC),
(16)

where ◦ denotes the Hadamard product [24],
Ψ = [Ψ(X), . . . ,Ψ(X)]T ∈ R(m+1)×n, Ψ(X) =
[Ψ(x1), · · · ,Ψ(xn)]T and fC = [fC(x1), . . . , fC(xn)]T .
1 is a matrix whose elements are equal to 1 and has the same
size asΨ.

C. Equality constraints on derivative off(x)

In BVPs, the constraints with the derivative off(x) are
Neumann forms. Suppose that the output of a RBFNN satisfies
a known derivative constraint:

∂f(x)
∂xk

= (fC(x))1k, x ∈ C, (17)

where the superscript1 and the subscriptk describe a first
order partial differential equation with respect to thekth
input variable forfC(x). Two cases will occur in designs of
GCNN EC models as shown below.

1) General case: non-integrable to derivative constraints:
A general case is that an explicit form offC(x) cannot be
derived from its given Neumann constraint. A modified loss
function, including two terms, is given by the following form
so that the constraint is approximately satisfied as much as
possible:

min
W

ℓ2(W ) = (1−Ψ(X))T ◦ (y − f(X))T (y − f(X))+

Ψ(X)T ◦((f(x ∈ C))1k−(fC(x))1k)
T ((f(x ∈ C))1k−(fC(x))1k).

(18)

The optimization solution is then given by

W ∗ =[(1−Ψ) ◦ ΦTΦ +Ψ ◦ (Φ1
k)

TΦ1
k]

+

[(1−Ψ) ◦ ΦTy + Ψ ◦ (Φ1
k)

T fC],
(19)

whereΦ1
k = [(Φ(x1))1k, · · · , (Φ(xn))

1
k]

T . The LIS idea behind
the loss function in (18) is not limited to the derivative
constraints and is possible to apply for other types of equality
constraints.

2) Special case: integrable to derivative constraints:This
is a special case because it requires thatfC(x) should be
derived from the given constraints for realizing an explicit

form. In other words, a Neumann constraint is integrable,

fC(x) =
∫ ∂fC(x)

∂xk
dxk = f0

C(x) + c, (20)

so that an integration termf0
C(x) is exactly known in (20). The

above constantc is neglected because GCNNEC includes this
term already. Hence, by substituting (20) into (13), one will
solve a BVP with a Neumann constraint like with a Dirichlet
constraint. However, for distinguishing with the GCNNEC
model in the general case, we denoteGCNN EC I model in
the special case for a Neumann constraint.

V. NUMERICAL EXAMPLES

Numerical examples are shown in this section for compar-
isons between LIS and GIS. When GCNNEC is a model
within LIS, the other models, GCNN + Lagrange, BVC-RBF
[20], RBFNN + Lagrange interpolation [1] and GCNN-LP [9],
are considered in GIS.

A. “Sinc” function with interpolation point constraints

The first example is on interpolation point constraints.
Consider the problem of approximating aSinc = sin(x)/x
function based on the equality constraintsf(0) = 1 and
f(π/2) = 2/π. The function is corrupted by an additive
Gaussian noiseN(0, 0.052). This optimization problem can
be represented as:

min
W

ℓ2(W ) = ‖y− f(X)‖22,

s.t. f(0) = 1,

f(π/2) = 2/π.

(21)

The training data have 30 instances generated uniformly along
x variable at the intervals[−10, 10], and 500 testing data are
randomly generated from the same intervals. Table I shows
the performances of six methods, in which only RBFNN does
not belong to a constraint method. We examine performances
on both constraints and all testing data. One can observe
that among the five constraint methods, RBFNN + Lagrange
multiplier presents an excellent approximation (≈ 0.00) on the
constraints, and the others produce an exact satisfaction (= 0
for an exact zero) on the constraints.

B. Partial differential equation(PDE) with a Dirichlet bound-
ary condition

The boundary value problem [20] is given by

[ ∂2

∂x2

1

+ ∂2

∂x2

2

]f(x1, x2) = e−x1(x1 − 2 + x32 + 6x2)

x1 ∈ [0, 1], x2 ∈ [0, 1],
(22)

with a Dirichlet boundary condition by

f(0, x2) = x32. (23)

The analytic solution is

f(x1, x2) = e−x1(x1 + x32). (24)



TABLE I
RESULTS FOR A’ SINC’ FUNCTION WITH TWO INTERPOLATION-POINT CONSTRAINTS.(Ntrain IS THE NUMBER OF TRAINING DATA, Ntest IS THE NUMBER

OF TESTING DATA, NRBF IS THE NUMBER OFRBF. MSE(MEAN ± STANDARD) MEANS THE AVERAGE AND STANDARD DEVIATION ON THE 100GROUPS

OF TEST DATA. MSE cstr IS THE MSE ON THE CONSTRAINTS,MSE test IS THE MSE ON TESTING DATA. ADDITIVE NOISE ISN(0, 0.052).)

Method Ntrain Ntest NRBF Key parameter(s) MSE cstr(×10−3) MSE test(×10−3)
RBFNN 30 500 11 0.91 ± 0.84 3.81 ± 3.70

RBFNN+Lagrange multiplier 30 500 11 ≈ 0.00 ± 0.00 3.73± 3.78
BVC-RBF [20] 30 500 11 τ1 = τ2 = 2 0 ± 0 3.82 ± 3.73

GCNN+Lagrange interpolation [1] 30 500 11 0 ± 0 3.83 ± 3.74
GCNN-LP [9] 30 500 11 0 ± 0 3.81 ± 3.70

GCNN EC 30 500 11 γ = 0.0001 0 ± 0 3.80 ± 3.71
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Fig. 2. Plots on the boundary(x1 = 0, x2) with the Dirichlet constraint.

The optimization problem with a Dirichlet boundary is:

min
W

ℓ2(W ) = ‖y− f(X)‖22,

s.t. f(0, x2) = x32.
(25)

A Gaussian noiseN(0, 0.12) is added onto the original
function (24). The training data have 121 instances selected
evenly within x1, x2 ∈ [0, 1]. The testing data have 321
instances, where 300 instances are randomly sampled within
x1, x2 ∈ [0, 1] and 21 instances selected evenly in the bound-
ary (0, x2). Because RBFNN+Lagrange multiplier, BVC-
RBF, and GCNN+Lagrange interpolation are applicable for
solving this problem only after transferring a“continuous
constrain” [9] into “point-wise constraints”. For this reason,
we select 5 points evenly according to (23) along the boundary
(0, x2) for them. Table II lists the fitting performances in
the boundary and the testing data. GCNNEC can satisfy
the Dirichlet boundary condition exactly for a continuous
function constrain. The other constraint methods can reach
the satisfaction only on the point-wise constraint location (Fig.
2). Moreover, GCNNEC performs much better than the other
methods in the testing data.

C. PDE with a Neumann boundary condition

In this example, the boundary value problem (22) is given
with a Neumann boundary condition by:

min
W

ℓ2(W ) = ‖y − f(X)‖22,

s.t.
∂f(x1, x2)

∂x2
|x1=0 = 3x22.

(26)

No additive noise is added in this case study.
Generally, RBFNN+Lagrange multiplier, BVC-RBF, and
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Fig. 3. Plots on the boundary(x1 = 0, x2) with the Neumann constraint.

GCNN+Lagrange interpolation methods fail in this case
if without transferring to point-wise constraints. We use
GCNN EC and GCNNEC I to solve this constraint problem
and compare their performances. RBFNN is also given but
without using the constraint. The training data have 121
instances selected evenly withinx1, x2 ∈ [0, 1]. The testing
data have 321 instances, where 300 instances are randomly
sampled withinx1, x2 ∈ [0, 1] and 21 instances are selected
evenly in the boundary (0,x2).

Table III shows the performance in the boundary and the
testing data with a Neumann boundary condition. A specific
examination is made on the constraint boundary. Fig. 3 de-
picts the plots of three methods with the Neumann boundary
condition. Obviously, GCNNEC I can satisfy the constraint
exactly in the boundary because the Neumann constraint in
Eq. (26) is integrable for achieving an explicit expression.
GCNN EC I is the best in solving the problem (26). However,
sometimes, an explicit expression may be unavailable or
impossible so that GCNNEC is also a good choice. Note that
a Neumann constraint is more difficult to be satisfied than a
Dirichlet one. GCNNEC presents a reasonable approximation
except for the two ending ranges in the boundary.

VI. D ISCUSSIONS OF LOCALITY PRINCIPLE AND

COUPLING FORMS

This section is an attempt to discuss locality principle from
a viewpoint of constraint imposing in ANNs and to provide
graphical interpretations about the differences between GIS
and LIS. One typical question likes “how to discover Lagrange
multiplier method to be GIS or LIS?”. To answer this question,
however, the interpretations are coupling-form dependent.



TABLE II
RESULTS FOR APDEEXAMPLE WITH THE DIRICHLET BOUNDARY CONDITION. (Ntrain IS THE NUMBER OF TRAINING DATA, Ntest IS THE NUMBER OF

TESTING DATA, NRBF IS THE NUMBER OFRBF,Npwc IS THE NUMBER OF POINT-WISE CONSTRAINTS ALONG THE BOUNDARY. MSE(MEAN ±

STANDARD) MEANS THE AVERAGE AND STANDARD DEVIATION ON THE 100GROUPS OF TEST DATA. MSE cstr IS THE MSE ON THE CONSTRAINTS,
MSE test IS THE MSE ON TESTING DATA. ADDITIVE NOISE ISN(0, 0.12).)

Method Ntrain Ntest NRBF Npwc Key Parameter(s) MSE cstr MSE test

RBFNN 121 321 10 0 0.0079 ± 0.0043 0.0092 ± 0.0091
RBFNN+Lagrange multiplier 121 321 10 5 0.0002 ± 0.0001 1.8614 ± 4.3791

BVC-RBF [20] 121 321 10 5 τ1 = τ2 = 0.6 0.0019 ± 0.0014 0.0076 ± 0.0087
GCNN EC 121 321 10 0 γ = 0.5 0 ± 0 0.0074± 0.0087

TABLE III
RESULTS FOR APDEEXAMPLE WITH THE NEUMANN BOUNDARY CONDITION. (Ntrain IS THE NUMBER OF TRAINING DATA, Ntest IS THE NUMBER OF

TESTING DATA, NRBF IS THE NUMBER OFRBF,Npwc IS THE NUMBER OF POINT-WISE CONSTRAINTS ALONG THE BOUNDARY. MSE MEANS THE

AVERAGE ON THE 100 GROUPS OF TEST DATA, MSE cstr IS THE MSE ON THE CONSTRAINTS,MSE test IS THE MSE ON TESTING DATA.)

Method Ntrain Ntest NRBF Key parameter MSE cstr MSE test

RBFNN 121 321 10 0.7081 0.0022
GCNN EC 121 321 10 γ = 0.5 0.1693 0.0167

GCNN EC I 121 321 10 γ = 0.5 0 0.0003

TABLE IV
ORIGINAL COUPLING FORM (f0(X) IS A RBF OUPUT).

Methods Coupling of multiplication and superposition
BVC-RBF [20] f(x) = h(x)f0(x) + gs(x)

GCNN+Lagrange interpolation [1] f(x) = R1(x)f0(x) + gs(x)
GCNN EC f(x) = (1 − Ψ(x))f0(x) + gs(x)

TABLE V
ALTERNATIVE COUPLING FORM BY f(X) = f0(X) +Gs(X).

Methods Alternative coupling term forGs

BVC-RBF [20] h(x)f0(x) + g(x) − f0(x)
GCNN+Lagrange interpolation [1] R1(x)f0(x) + R2(x) − f0(x)

GCNN EC Ψ(x)(fC(x) − f0(x))

One can show the original coupling form for the three
methods in Table IV, but not for Lagrange multiplier method
and GCNN-LP. The final prediction outputf(x) contains
two terms, wheref0(x) is a RBF output andgs(x) is a
superposition constraint. For the same methods, an alternative
coupling form can be shown in Table V, where the alter-
native coupling termGs(x) is different with gs(x) in their
expressions. More specific forms of BVC-RBF and GCNN
+ Lagrange interpolation were discussed in [1] and [20],
respectively. The form of GCNNEC is equal to Eq. (13).

For a better understanding about differences among the
given three methods, we set theSinc function as an example,
in which two interpolation point constraints are enforced but
without additive noise. Fig. 4 shows the original coupling
function gs(x), and Fig. 5 shows both RBF outputf0(x)
and alternative coupling functionGs(x) together. We keep
parametersτ1 = τ2 = 2 for BVC-RBF for reason of good
performance on the data. Whenτ1 = τ2 < 1, the performance
becomes poor. Within either of the coupling forms, GCNNEC
presents the best in terms of locality fromgs(x) orGs(x). The
plots confirm that the locality interpretations are coupling-form
dependent.

However, one is unable to derive such explicit forms, either
gs(x) or Gs(x), for Lagrange multiplier method and GCNN-
LP. In order to reach an overall comparison about them, we
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Fig. 5. f0(x) andGs(x) plots of BVC-RBF, GCNN + Lagrange interpolation
and GCNN EC in an alternative coupling form for aSinc function in which
two constraints are located atx = 0 andx = π/2, respectively.

propose a generic coupling form in the following expression:

f(x) = fwc(x) + fm(x), (27)

wherefm(x) is the modification output over the RBF output
fwc(x) without constraints. One can imagine that the given
constraints work as a modification functionfm(x) and impose
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Fig. 4. gs(x) plots of BVC-RBF, GCNN+Lagrange interpolation and GCNNEC in the original coupling form for aSinc function in which two constraints
are located atx = 0 andx = π/2, respectively.

it additively on the original RBF outputfwc(x) to form the
final prediction outputf(x). All constraint methods can be
examined by Eq. (27). However, this examination is basically a
numerical one and requires an extra calculation offwc(x). Fig.
6 shows the plots offm from RBFNN+Lagrange multiplier
and GCNN EC models. One can observe their significant
differences in locality behaviors.
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Fig. 6. fm plots of RBFNN+Lagrange multiplier and GCNNEC in the
generic coupling form for aSincfunction in which two constraints are located
at x = 0 andx = π/2, respectively.

In this work, f(x) and fwc(x) represent two RBF neural
networks with and without constraints, respectively. Because
brain memory is attributed to the changes insynaptic strength
or connectivity[25], we propose the following steps in designs
of the two networks. First, the same number of neurons is
applied so that they share the same connectivity in terms of
neurons (but not in terms of constrains). Second, the same
preset values on the parametersµj andσj are given respec-
tively to the two networks. Step 3, the weight parameterswj

of GCNN EC are gained from solving a linear problem which
guarantees a unique solution. Lagrange multiplier method will
take the weights obtained fromfwc(x) as an initial condition
for updatingwj in f(x). The updating operation is to emulate
a brain memory change. The above steps will enable us
to examine the changes from synaptic strengths (or weight
parameters) between the two networks.

When Figs. 4 to 6 provide a locality interpretation from
a “signal function” sense, another interpretation is explored
from the plots of “weight changes”betweenfwc(x) andf(x).
Because the two networks have the same number of neurons
or weight parameters, we denote∆W to be their weight
changes. Normalized weight changes will be achieved for
∆W/|∆W |max, where |∆W |max is a normalization scalar.
We still take theSinc function for an example. Compar-

isons are made again between RBFNN + Lagrange multiplier
method and GCNNEC. Fig. 6 shows the plots of normal-
ized weight changes of RBFNN + Lagrange multiplier and
GCNN EC. Numerical tests indicate that behavior of locality
property in the plots is dependent to some parameters of
networks. For reaching meaningful plots, we setNRBF = 500,
andNtrain = 1000. The center parametersµj are generated
uniformly alongx variable at the intervals [10, 10] so that the
center interval is about 0.04. The constantσ(= σj) is given
with values of 0.05, 0.10 and 0.15, respectively. Whenσ is
decreased (say, equal to the center interval), the performance
becomes poor for both RBFNN + Lagrange multiplier and
GCNN EC.

From Fig. 6 one can observe that, whenσ = 0.05, both
RBFNN + Lagrange multiplier and GCNNEC show the
locality property on the constraint locations. Whenσ = 0.10
or 0.15, RBFNN + Lagrange multiplier loses the locality
property, but GCNNEC is in a less degree. Numerical tests
imply that GCNN EC holds a locality property better than
RBFNN + Lagrange multiplier.

From the discussions so far, we can ensure the differences
between GIS and LIS, but still cannot answer the question
given in this section. It is an open problem requiring both
theoretical and numerical findings.

VII. F INAL REMARKS

In this work, we study on the constraint imposing scheme of
the GCNN models. We first discuss the geometric differences
between the conventional optimization problems and machine
learning problems. Based on the discussions, a new method
within LIS is proposed for the GCNN models. GCNNEC
transfers equality constraint problems into unconstrained ones
and solves them by a linear approach, so that convexity of
constraints is no more an issue. The present method is able to
process interpolation function constraints that cover thecon-
straint types in BVPs. Numerical study is made by including
the constraints in the forms of Dirichlet and Neumann for
the BVPs. GCNNEC achieves an exact satisfaction of the
equality constraints, with either Dirichlet or Neumann types,
when they are expressed by an explicit form aboutf . The
approximations are obtained if a Neumann constraint is not
integrable for an explicit form aboutf .

A numerical comparison is made for the methods within
GIS and LIS. Graphical interpretations are given to show that
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Fig. 7. Normalized weight changes of RBFNN + Lagrange multiplier and
GCNN EC for aSinc function in which two constraints are located atx = 0
andx = π/2, respectively.

the locality principle in the brain study has a wider meaning
in ANNs. In apart from local properties in CNN [26] and
RBF [23], coupling forms between knowledge and data can be
another locality source for studies. We believe that the locality
principle is one of key steps for ANNs to realize a brain-
inspired machine. The present work indicates a new direction
for advancing ANN technique. When Lagrange multiplier is a
standard method in machine learning, we show that LIS can
be an alternative solution and can performance better in the
given problems. We need to explore LIS and GIS together and
try to understand under which conditions LIS or GIS should
be selected.
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