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Abstract—This work is a further study on the Generalized y=1(x,0)=f(x,0)®f(x,0)
Constraint Neural Network (GCNN) model [I], [2]. Two chal-
lenges are encountered in the study, that is, to embed any tgpof fi(x 0
prior information and to select its imposing schemes. The wik k(x’ k)
focuses on the second challenge and studies a new constraint (Knowledge-driven
imposing scheme for equality constraints. A new method cadld submodel)
locally imposing function (LIF) is proposed to provide a loal X | TTTH AT - y
correction to the GCNN prediction function, which therefore ; *Couplmg
falls within Locally Imposing Scheme (LIS). In comparison, f(x,0)
the conventional Lagrange multiplier method is consideredas - a dri 4
Globally Imposing Scheme (GIS) because its added constrain ( aga— gvlen
term exhibits a global impact to its objective function. Two submodel)
advantages are gained from LIS over GIS. First, LIS enables

constraints to fire locally and explicitly in the domain only o
where they need on the prediction function. Second, constiats ~ F19- 1. Schematic diagram of a KDDM model [10]. [11]. A GCNN deb

can be implemented within a network setting directly. We S formed when the data-driven submodel is AN [1].
attempt to interpret several constraint methods graphicaly from

a viewpoint of the locality principle. Numerical examples onfirm

the advantages of the proposed method. In solving boundary the same model.

value problems with Dirichlet and Neumann constraints, the .
GCNN model with LIF is possible to achieve an exact satisfaiin GCNN models were developed based on the previously

of the constraints. existing modeling approaches, such as the “hybrid neural
network HNN)” model [12], [13]. We chose deneralized

|. INTRODUCTION constraint as the descriptive terms so that a mathematical

e . o meaning is stressedl[1]. The terms of generalized constrain
Artificial neural networks ANNS) have rece_lved significant , oo firstly given by Zadeh in 19905 [14], [15] for describiag
progresses after the proposal of deep learning modelsB]-lyige variety of constraints, such as probabilistic, fuzeygh,

ANNs are formed mainly based on learning from data. Hencg, other forms. We consider that the concepts of genedalize
they are considered afata-drivenapproachl[6] with @lack-  -ntraint provide us a critical step to construct humbke-li

box limitation [7]. While this feature provides a flexiblility machines. Implications behind the concepts are at least two
power to ANNs in modeling, they miss a functioning par&hallenges as follows.

for top-down mechanismsvhich seems to be necessary for N o ]
realizinghuman-likemachines. Furthermore, the ultimate goal 1- How to utilize any type of prior information that holds
of machine learning study is insight, not machine itselfeTh ~ ON€ Or & combination of limitations in modelirig [1], such
current ANNS, including deep learning models, fail to prase @S ill-defined or unstructured prior. o
interpretations about their learning processes as welhas t 2- How to select coupling forms in terms of explicitness [1],
associated physical targets, such as human brains. [9], physical interpretations [11], performances [9].]11
For adding transparency to ANNs, we proposed a gener- 0cality principle [16], and other related issues.
alized constraint neural networkGCNN) approach([[i],[[8], The first challenge above aims to mimic the behavior
[9]. It can also be viewed as knowledge-and-data-drivenof human beings in decision making. Botteductionand
modeling(KDDM ) approach([10],[[11] because two submodinductioninferences are employed in our daily life. The second
els are formed and coupled as shown in Fig. 1. To simplifghallenge attempts to emulate thgnaptic plasticityfunction
discussions later, we refer GCNN and KDDM approaches ¢ human brain. We are still far away from understanding
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mathematically how human brain to select and change tfrem the observation data. Second, the equality consgr@nt
couplings. The two challenges lead to a further difficulty ahe optimizations imply that the solution should be locaatd
stated in[[1]: ‘Confronting the large diversity and unstructuredhe constraints. Otherwise, there exist no feasible soisti
representations of prior knowledge, one would be rathéi-dif For a machine learning problem, the equality constraints
cult to build a rigorous theoretical framework as alreadyndo suggest that an unknown mountain (or prediction function)
in the elegant treatments of Bayesian, or Neuro-fuzzy"onesurface should go through the given form(s) described by
The difficulty implies that we need to study GCNN approachdsnction(s) and/or value(s). If not, an approximation didou
on a class-by-class basis. This work extends our previody st be made in a minimum error sense. Third, machine learning
of GCNN models on a class of equality constraints [2], angroduces a larger variety of constraint types which are not
focuses on the locality principle in the second challendee Tencountered in the conventional optimization problemse Th
main progress of this work is twofold below. main reason is thay;(x) comes from a prior to describe
1. A novel proposal of “Locally Imposing Schemkel$)” the unknown real-system function. Sometimggx) is not

is presented, resulting in an alternative solution difierewell defined, but only shows a “partially known relationship

from “Globally Imposing Scheme@S)”, such as La- (PKR)” [L]. This is why the terms of generalized constraints

grange multiplier method. are used in the machine learning problems. For this reasen, w

2. Numerical examples are shown for a class of equalitgwrite (2) in a new form from[[1] to highlight the meaning

constraints including a derivative form and confirm thef gi(x) in the machine learning problems:

specific advantages of LIS over GIS on the given exam- | . E(y — f(x))?], @)

ples. sit. Rilf) = g;(X) =0, x€ Cy, i =1,2, -
We will limit the study on the regression problems with ) ] ) ) )
equality constraints. The remaining of the paper is orgahis Wher_eRi<f> is the_|th pa_rt|ally knOV\_/n relationship about the
follows. Sectiorill discusses the differences between imachfunction f, andCj; is theith constraint set fox.
learning problems and optimization problems. Based on theBased on the discussions above, we present a new proposal,
discussions, the main idea behind LIS is presented. TRa@mely “Locally Imposing Schemé[S)”, in dealing with the
conventional RBFNN model and its learning are briefly infuality constraints in machine learning problems. Thenmai
troduced in SectiofTll. Sectidi]V demonstrates the prepos/d€@ behind the LIS is realized by the following steps.
model and its learning process. Numerical experiments on tw StéP 1. The modified prediction function, sak(x), is
synthetic data sets are presented in Sedfbn V. Discussi‘ongorm?d by two basic terms. The fl_rst is an original pred|ct|on_
locality principle and coupling forms are given in Sectioh V function from unconstrained learning model and the secend i

Section[ VIl presents final remarks about the work. the constraint functiong;(x). o _
Step 2. When the inpitis located within the constraint set
Il. PROBLEM DISCUSSIONS AND MAIN IDEA C;, one enforced"(x) to satisfy the functiom;(x). Otherwise,

Mathematically, machine learning problems can be equi¥=(x) is approximately formed from all data excepted for those
alent to optimization problems. We will compare them fodata within constraint sets.
reflecting their differences. An optimization problem with Step 3. For removing the jump switching in Step 2, we
equality constraints is expressed in the following fofrm]{17 use “Locally Imposing FunctionL(F )" as a weight on the
min F(x) constraint term an_d t_he complementary weight on the _f@rst
, (1) term so that a continuity property can be held to the modified
st. Gi(x)=0, i=1,2,--- I .
prediction functionF'(x).
where F(x) : R — R, is the objective function to be The idea of the first two steps have been reported from
minimized over the variable, and G;(x) is theith equality the previous studies, particularly in boundary value peois
constraint. In machine learning, its problem having edwali(BVPs) [19]-[21]. They used different methods to realize Step
constraints can be formulated as|[18]: 2, such as polynomial methods [n[19], RBF methods if [20],
min E[(y — £(x))2] and Iengt_h meth_ods in[21]. If equality constraints are gilg
st gi(X) = 0, i = i 9 ... (2) interpolation points, other methods are showh [T], [BL.][22
! ’ T Hu, et al. [1] suggested thané&ural-network-based models
whereE is an expectationf(x) : R — R, is the prediction can be enhanced by integrating them with the conventional
function which can be formed from a composition of radicapproximation tools They showed an example to realize Step
basis functionsRBFs), andg; (x) is theith equality constraint. 2 and apply Lagrange interpolation method. In the following
Eq. (2) presents several differences in comparing with Egp study, an elimination method was used/[ih [9]. All above
(1). For a better understanding, we explain them by imagingwethods, in fact, fall into the GIS category. [n [2], Cao and
3D mountain (or a two-input-single-output model). Firshile Hu applied the LIF method to realize Step 2 and demonstrated
a conventional optimization problem is to search for an-optihat equality function constraints are satisfied compyeeid
mization point on awvell-defined mountaifor objective func- exactly on the given Dirichlet boundary (see Fig 4(e)lih [2])
tion F), a machine learning problem tries to formamknown but the LIF was not smooth in that work.
mountain (or prediction functionf) with a minimum error  We can observe that the LIS is significantly different from



the conventional Lagrange multiplier method that belorgs A. Locally Imposing Function
“Globally Imposing Scheme@IS)” because the Lagrange por realizing Step 3 in Section II, we select Cauchy distri-

multiplier term exhibits a global impact on an objectivg,son for the LIF. The Cauchy distribution is given by:
function. A heuristic justification for the use of the LIS is 1
; (8)

an analogy to the locality principle in the brain functiogiof f(z;z0,7) = -
memory [16]. All constraints can be viewed as memory. The my[1+ (17&)2]

principle provides bottime efficiencyand energy efficiency \yherey, is the location parameter which defines the peak of
which implies that constraints are better to be imposediiiio e gistribution,y (> 0) is a scale parameter which describes
a local means. The LIS in together with the GIS will opefhe width of the half of the maximum. The Cauchy distribution
a new direction to study the coupling forms towalttgin-  js smoothand has arinfinitely differentiableproperty. Other
inspired machines. smooth function can also be used as LIF.

In the context of multi-input variables, we define the LIF

IIl. CONVENTIONAL RBF NEURAL NETWORKS of GCNN_EC in a form of:

Given the training data sek = [xi,...,x,]T and its
desired outputy = [y1,...,y.|", wherex; € R4 is an 1
input vector,y; € R denotes the vector of desired network Y(Asy) = L+ (220 ’ )
output for the inputx; andn is the number of training data. 7 v/ rmerm
The output ofRBFNN is calculated according to whereA (> 0) denotes the distance variable frorto the con-
m straint locationa),,,,, IS @ normalized parameter and ensures
fx) = ij (X)) = (X)W, (4) a normalization or) < ¥ < 1. W¥(A;~) is a monotonically
=1 decreasing function with respect to the distadceNe cally a
di(x) = exp(—|x — Nj|\2/032), (5) locality parameterbecause it controls the Iocah_ty .property of
' the LIF. Wheny decreasesy becomes sharper in its function
where W = [wg,wy,...,wy|T € R™TUX1 represents the shape. Generally, we preset this parameter as a constant by a

model parameter, andh is the number of neurons of thetrial and error way. Hence, we dropto describe¥ (A).
hidden layer. In terms of the feature mapping funciigiX ) = . )
[1,61(X), ..., ém(X)] € RPM+D (for simplicity, it is de- B. Equality constraints orf(x)

noted asb hereafter), both the centets = [u,, ..., u,,]7 € Suppose the output of the network strictly satisfies a single
R™*4 and the widthso = [o4,...,0,]T € R™*! can be equality constraint given by:
easily determined using the method proposed_in [23]. B

A common optimization criterion is the mean square error FX) = fe),x€C, (10)

between the actual and desired network outputs. Therdfwe, where C' denotes a constraint set for, fo can be any
optimal set of weights minimizes the performances measurngumerical value or function. Note that BVPs with a Dirichlet

n form are a special case in E.[10) becayisemay be given
argmmi/nfg(W) = Z(yi —fx)*=y— f(X)|3, (8) on any regions without a limitation on boundary. Facing the
i=1 following constrained minimization problem:

where f(X) = [f(X1),...,f(X,)]T € R"*! denotes the

: T 2
prediction outputs of RBFNN. mml,n’ZQ(W) = [ly = F(Xl2

Least squares algorithm is used in this work, resulting in st f(X) = fo(x),x € C, (11)
the following optimal model parameter a conventional RBFNN model generally applies a Lagrange
W = (@7 3) "o y @) multiplier and transfers it into an unconstrained problem b
where (®7®)* denotes the pseudo-inversedf ¢. %if\lfg(W, ) =y = F(X)|2+AMf(x € C) = fe (X)),

(12)

In this section, we focus on GCNN with equality constraintg_here/\ s anew variable dete_rmined from the gboye solution.
(called GCNN_EC model) by using LIF. Note that LIF is a |ﬁeren_t V\_"th Lagrange multiplier method_ which IMPOses a
special method within LIS category that may include sever nstraint in a global manner on the ijectlve function, we u
methods. We first describe a locally imposing function used S t.o _solve a gongtralngd op_t|m|zat|on problem. A modified
GCNN_EC models. Then GCNNEC designs from direct and prediction function is defined in GCNNEC by

d_eriva_lti\_/e constraint§ of (x) are discus;ed res_pectively. For fwe(X) = (1 = T(A)F(X) + T(A)fo(X), (13)
simplifying presentations, we only consider a single caist ) )

in the design so that the process steps are clear on eSerthat one solves an unconstrained problem in a form of:
individual constraint. Multiple sets and combinations o&dt ) )

and derivative constraints can be extended directly. min £2(W) = ly = fw.c (X)]2- (14)

IV. GCNN WITH EQUALITY CONSTRAINTS



One can observe thdiy, ¢ (x) contains two terms. Both termsform. In other words, a Neumann constraint is integrable,
are associated with the smooth LIF in Eg. (9) so thaic () Ofe(x
is possible to hold a smoothness property. One irrgportant fe(x) = fgcTi)dx’“ = fe(x) +e (20)
relation can be proved directly from Eqgl (9) ahdl(13): s that an integration teriff. (x) is exactly known in[{20). The
_ _ above constantis neglected because GCNEC includes this
JweX) = Jo(x),x € C; when A =0. (19) term already. Hence, by substitutifg(20) infal(13), ond wil
The above equation indicates an exact satisfaction on #wve a BVP with a Neumann constraint like with a Dirichlet
constraint for GCNNEC models. constraint. However, for distinguishing with the GCNBRC
In this work, we still follow the way in presenting; and model in the general case, we denG€NN_EC_I model in
o; to RBF models[[], [[28] and determining only weighthe special case for a Neumann constraint.
parametersw; from solving a linear problem. Its optimal
solution for GCNN EC is given below:

W =[(1- )0 dT)(1—¥)" o ®)]*

V. NUMERICAL EXAMPLES

(16) Numerical examples are shown in this section for compar-

(A= w)oT|(y = ¥(X) e fo), isons between LIS and GIS. When GCNEC is a model
where o denotes the Hadamard product[_J[24]within LIS, the other models, GCNN + Lagrange, BVC-RBF
U = [U(X),...,¥X)T e R Dxn g(X) = [20], RBFNN + Lagrange interpolatiohl[1] and GCNN-LE [9],
(X)), -, ¥(x,)]T and fc = [fo(X1),...,fc(x,)]T. are considered in GIS.
1is a matrix whose elements are equal to 1 and has the same

size asv. A. “Sinc” function with interpolation point constraints

The first example is on interpolation point constraints.
Consider the problem of approximating&inc = sin(z)/x

In BVPs, the constraints with the derivative ¢fx) are function based on the equality constrainf§)) = 1 and
Neumann forms. Suppose that the output of a RBFNN satisfié§"/2) = 2/7. The function is corrupted by an additive

C. Equality constraints on derivative gf(x)

a known derivative constraint: Gaussian noiseV (0, 0.052). This optimization problem can
2 (X) be represented as:
= ! 17 :
oz, WX e ) min2(W) = [ly = £(X)]3
where the superscript and the subscript describe a first sit. f(0) =1, (21)
order partial differential equation with respect to thth F(r)2) = 2/7
input variable forfo(x). Two cases will occur in designs of '
GCNN_EC models as shown below. The training data have 30 instances generated uniformhgalo

1) General case: non-integrable to derivative constraints © Variable at the intervals-10, 10], and 500 testing data are
A general case is that an explicit form ¢f(x) cannot be randomly generated from the same intervals. Téble | shows

derived from its given Neumann constraint. A modified lose performances of six_methods, in which or_lly RBFNN does
function, including two terms, is given by the following for not belong to a constraint method. We examine performances

so that the constraint is approximately satisfied as much ¥ Poth constraints and all testing data. One can observe
possible: that among the five constraint methods, RBFNN + Lagrange

multiplier presents an excellent approximatien.00) on the
min lo(W) = (1= (X)) o (y— F(X))T(y — fF(X))+ constraints, and the others produce an exact satisfactidh (
w

W(X)To((F(x € C)L—(Fe (DT (F(x € CNE—(falx)l). O N exact zero) on the constraints.

(18) B. Partial differential equatiorf®DE) with a Dirichlet bound-
The optimization solution is then given by ary condition
W*=[(1-0)odT® 4+ Vo (0)) D} (19) The boundary value problern [20] is given by

(A=W)o 2Ty +To (B})"fc], [8%2% + ai;g]f(:vl,xz) =e " (z) — 2+ 25 + 6x2)

where®! = [(®(x1))}, -+, (®(X,)):]T. The LIS idea behind 1 € [0,1], 22 € [0,1],
the loss function in[{118) is not limited to the derivatiquith a Dirichlet boundary condition by
constraints and is possible to apply for other types of etyual
constraints. 10, 29) = 3. (23)

2) Special case: integrable to derivative constrainthis
is a special case because it requires tfiatx) should be
derived from the given constraints for realizing an explici fxy,x2) = e (21 + 23). (24)

(22)

The analytic solution is



TABLE |
RESULTS FOR A’SINC’ FUNCTION WITH TWO INTERPOLATION-POINT CONSTRAINTS (N qin IS THE NUMBER OF TRAINING DATA, Ntest IS THE NUMBER
OF TESTING DATA, Ngpr IS THE NUMBER OFRBF. MSE(MEAN + STANDARD) MEANS THE AVERAGE AND STANDARD DEVIATION ON THE100GROUPS
OF TEST DATA. M SE_cstr IS THE MSE ON THE CONSTRAINTS M SE_test IS THE MSE ON TESTING DATA. ADDITIVE NOISE IS N (0, 0.052).)

Method Nirain | Niest | Nrpr | Key parameter(s)] MSE_cstr(x10°) | MSE_test(x10 °)
RBFNN 30 500 11 0.91 +0.84 3.81 +3.70
RBFNN-+Lagrange multiplier 30 500 11 =~ 0.00 £ 0.00 3.73+3.78
BVC-RBF [20] 30 500 11 1 =Ty =2 0+0 3.82+3.73
GCNN-+Lagrange interpolation [[1] 30 500 11 0+0 3.83+3.74
GCNN-LP []] 30 500 11 0+0 3.81 £3.70
GCNN_EC 30 500 11 ~ = 0.0001 0+0 3.80 +£3.71
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Fig. 2. Plots on the boundary:1 = 0, z2) with the Dirichlet constraint. Fig. 3. Plots on the boundarye1 = 0, z2) with the Neumann constraint.

The optimization problem with a Dirichlet boundary is: GCNN+Lagrange interpolation methods fail in this case

min (W) = |ly — £F(X)|3, if without transferring to point-wise constraints. We use
W 5 (25) GCNN_EC and GCNNEC._| to solve this constraint problem
st f(0,22) = z3. and compare their performances. RBFNN is also given but

A Gaussian noiseV(0,0.12) is added onto the original Without using the constraint. The training data have 121
function [23). The training data have 121 instances salect@stances selected evenly within, x> € [0, 1]. The testing
evenly within 1,2, € [0,1]. The testing data have 321data have 321 instances, where 300 instances are randomly
instances, where 300 instances are randomly sampled with@npled withinz,, 2> € [0,1] and 21 instances are selected
x1, 2 € [0,1] and 21 instances selected evenly in the boun@venly in the boundary (@3).
ary (0, x3). Because RBFNN+Lagrange multiplier, BVC- Table[ll shows the performance in the boundary and the
RBF, and GCNN+Lagrange interpolation are applicable féesting data with a Neumann boundary condition. A specific
solving this problem only after transferring “@ontinuous €xamination is made on the constraint boundary. Eig. 3 de-
constrain” [9] into “point-wise constraints” For this reason, Picts the plots of three methods with the Neumann boundary
we select 5 points evenly according ffio](23) along the boqnda.iondition. Obviously, GCNNEC | can satisfy the constraint
(0, x2) for them. Table[dl lists the fitting performances inéxactly in the boundary because the Neumann constraint in
the boundary and the testing data. GCNRC can satisfy Ed. [28) is integrable for achieving an explicit expression
the Dirichlet boundary condition exactly for a continuou§CNN_EC I is the best in solving the problef {26). However,
function constrain. The other constraint methods can reagmetimes, an explicit expression may be unavailable or
the satisfaction only on the point-wise constraint loca(jBig. impossible so that GCNNEC is also a good choice. Note that
[2). Moreover, GCNNEC performs much better than the othe® Neumann constraint is more difficult to be satisfied than a
methods in the testing data. Dirichlet one. GCNNEC presents a reasonable approximation

_ . except for the two ending ranges in the boundary.
C. PDE with a Neumann boundary condition

In this example, the boundary value probldml(22) is given  VI. DISCUSSIONS OF LOCALITY PRINCIPLE AND

with a Neumann boundary condition by: COUPLING FORMS
min l(W) = |ly — f(X)|2, This section is an attempt to discuss locality principlefro
(26) @ viewpoint of constraint imposing in ANNs and to provide
st M|ml:0 = 322 graphical interpretations about the differences betweéd G
dia and LIS. One typical question likesibw to discover Lagrange

No additive noise is added in this case studynultiplier method to be GIS or LIS?To answer this question,
Generally, RBFNN+Lagrange multiplier, BVC-RBF, anchowever, the interpretations are coupling-form dependent



TABLE Il
RESULTS FOR APDEEXAMPLE WITH THE DIRICHLET BOUNDARY CONDITION. (N¢yqin 1S THE NUMBER OF TRAINING DATA, N¢est IS THE NUMBER OF
TESTING DATA, NrBF IS THE NUMBER OFRBF, Npyc 1S THE NUMBER OF POINFWISE CONSTRAINTS ALONG THE BOUNDARY MSE(MEAN =+
STANDARD) MEANS THE AVERAGE AND STANDARD DEVIATION ON THE 100GROUPS OF TEST DATAM S E_cstr IS THE MSE ON THE CONSTRAINTS
M SE_test 1S THE MSE ON TESTING DATA. ADDITIVE NOISE IS N(0,0.12).)

Method Nirain Niest NrBF Npwe Key Parameter(s) MSE_cstr MSE_test
RBFNN 121 321 10 0 0.0079 £ 0.0043 0.0092 4+ 0.0091
RBFNN+Lagrange multiplier 121 321 10 5 0.0002 + 0.0001 1.8614 + 4.3791
BVC-RBF [20] 121 321 10 5 71 =72 =0.6 0.0019 4+ 0.0014 0.0076 4+ 0.0087
GCNN_EC 121 321 10 0 v =0.5 0+0 0.0074-+ 0.0087

TABLE Il
RESULTS FOR APDEEXAMPLE WITH THE NEUMANN BOUNDARY CONDITION. (N¢yqin 1S THE NUMBER OF TRAINING DATA, N¢est 1S THE NUMBER OF
TESTING DATA, NrpF IS THE NUMBER OFRBF, Npwe IS THE NUMBER OF POINFWISE CONSTRAINTS ALONG THE BOUNDARY MSE MEANS THE
AVERAGE ON THE 100 GROUPS OF TEST DATAM S E_cstr IS THE MSE ON THE CONSTRAINTS M SE_test IS THE MSE ON TESTING DATA.)

Method Nirain Niest NgrBF Key parameter| MSE_cstr MSE_test
RBFNN 121 321 10 0.7081 0.0022
GCNN_EC 121 321 10 v =0.5 0.1693 0.0167
GCNN_EC._| 121 321 10 v =0.5 0 0.0003
TABLE IV N 12

ORIGINAL COUPLING FORM (fo(X) IS A RBFOUPUT). 12 i

0.8 0.8
Methods Coupling of multiplication and superpositio ___ 06 —~ 08
BVC-RBF [20] FO) = h(X) fo(X) + g=(X) < 04 ~ 04
GCNN+Lagrange interpolation 1] FX) = Ri(X) fo(X) + gs(X) = 02 (©00.0481) O o2
GCNN_EC T = T =T (X)) foX) 99 R 0
_02 (1.5708,-0.0155) _0.2
TABLE V Vo a2 0 2 4 6 8 64 2 0 2 4 6 8
ALTERNATIVE COUPLING FORM BY f(X) = fo(X) 4+ Gs(X). ¢ ¢
_ _ (@) fo(z) of BVC-RBF [20] (b) Gs(z) of BVC-RBF [20]
Methods Alternative coupling term foiG ¢
BVC-RBF [20] h(X) fo(x) + g(x) = fo(X)
GCNN+Lagrange interpolatioh [1] R1 (X) fo(X) + Rz (X) — fo(X) B 12 0.17148%)
GCNN_EC V(X)) (fe () = foX) O:
__ 08
Z 04
" 02
One can show the original coupling form for the three © 0-0.1484)
methods in Table 1V, but not for Lagrange multiplier method (remnaned o
and GCNN-LP. The final prediction outpuf(x) contains AR Teezgza o
two terms, wherefy(x) is a RBF output andgs(x) iS a (c) fo(z) of GCNN + Lagrange in{d) Gs(z) of GCNN + Lagrange in-
superposition constraint. For the same methods, an aliesnaterPoiation [1] terpolation []
coupling form can be shown in Table V, where the alter oo
native coupling termG(x) is different with g,(x) in their 1 00001 0,0.9957) 0019 ¥0.000L
expressions. More specific forms of BVC-RBF and GCNN o8 0.03
+ Lagrange interpolation were discussed in [1] and] [20]= | Ol
respectively. The form of GCNNEC is equal to Eq[{13). = 03 O o004
For a better understanding about differences among tt 9 o
given three methods, we set thénc function as an example, .o . | Y i R |
in which two interpolation point constraints are enforced b -’f -T
without additive noise. Fig. 4 shows the original coupling (&) fo(z) of GCNN_EC (f) Gs(z) of GENN_EC

function gs(:v), and Fig. 5 shows both RBF Outpl,fb(x) Fig. 5. fo(z) andGS(:c) plots of BVC-RBF, GCNN + Lagrange interpolation
and alternative coupling functiot¥s(z) together. We keep 3;3 gﬁggﬁ% 'QrZ’}oi';fZéagYi SO:r?(ljlr::cngo:;gorre?;ecgtlij\?ecls?n i vien
parameters; = 7o = 2 for BVC-RBF for reason of good
performance on the data. When= 7, < 1, the performance
becomes poor. Within either of the coupling forms, GCNEC ) ) ) ) )
presents the best in terms of locality fran{z) or G;(z). The Propose a generic coupling form in the following expression
plots confirm that the locality interpretations are cougifiorm FOX) = fuweX) + fmn(X), 27)
dependent.

However, one is unable to derive such explicit forms, eitherhere f,,(x) is the modification output over the RBF output
gs(X) or G4(x), for Lagrange multiplier method and GCNN-f,.(x) without constraints. One can imagine that the given
LP. In order to reach an overall comparison about them, wenstraints work as a modification functigp,(x) and impose



2 2 2

r1:12:2 y=0.0001
15 15 15
3 1 1) 3 1 ,1) 3 1 0,1)
3 05 172,2/T0) 2 0d 2,2/m) 3 05 IW/Z,Z/H}
0 0 0
5 6 4 2 0 2 4 6 8 %6 4 2 0 2 4 6 8 5 6 4 2 0 2 4 6 8
x x x
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Fig. 4. gs(z) plots of BVC-RBF, GCNN+Lagrange interpolation and GCNEC in the original coupling form for &incfunction in which two constraints
are located air = 0 andx = 7 /2, respectively.

it additively on the original RBF outpuf,,.(x) to form the isons are made again between RBFNN + Lagrange multiplier
final prediction outputf(x). All constraint methods can bemethod and GCNNEC. Fig. 6 shows the plots of normal-
examined by Eq[{27). However, this examination is basicall ized weight changes of RBFNN + Lagrange multiplier and
numerical one and requires an extra calculatiofiQfix). Fig. GCNN_EC. Numerical tests indicate that behavior of locality
6 shows the plots off,,, from RBFNN+Lagrange multiplier property in the plots is dependent to some parameters of
and GCNNEC models. One can observe their significantetworks. For reaching meaningful plots, we gtz = 500,

differences in locality behaviors. and Ny.qin = 1000. The center parameteys; are generated
uniformly alongx variable at the intervals [10, 10] so that the
i Fyry R Ip— center interval is about 0.04. The constatit= o;) is given
g 1270080 o0l 739701 with values of 0.05, 0.10 and 0.15, respectively. Whers
= = ]“’*"“"55) decreased (say, equal to the center interval), the perfurena
R R becomes poor for both RBFNN + Lagrange multiplier and
-0.01 (1.5708,-0.0110 -0.01 (1.5703,70.01101 GCN N—EC
From Fig. 6 one can observe that, when= 0.05, both
a2 gz 4 68 CHe a2 g2 4 6 8 RBFNN + Lagrange multiplier and GCNNEC show the
(a) RBFNN+Lagrange multiplier (b) GCNN_EC locality property on the constraint locations. When= 0.10

Fig. 6. f,m plots of RBFNN+Lagrange multiplier and GCNEC in the ©OF 0.15, RBFENN + Lag.range multiplier loses the_ locality
generic coupling form for &incfunction in which two constraints are located property, but GCNNEC is in a less degree. Numerical tests

atz =0 andz = /2, respectively. imply that GCNN EC holds a locality property better than
RBFNN + Lagrange multiplier.

In thl'(s W(_)Lk’ f((;() a?wd Jwe(X) represent two _RB|F neural From the discussions so far, we can ensure the differences
networks with and without constraints, respectively. BESER powyeen GIS and LIS, but still cannot answer the question

brain memory is attributed to the changes'ynaptic §treng_th iven in this section. It is an open problem requiring both

or connectivity|25], we propose the following steps in des'g”%ﬂeoretical and numerical findings.

of the two networks. First, the same number of neurons Is

applied so that they share the same connectivity in terms of VII. FINAL REMARKS

neurons (but not in terms of constrains). Second, the samén this work, we study on the constraint imposing scheme of

preset values on the parametgrs ando; are given respec- the GCNN models. We first discuss the geometric differences

tively to the two networks. Step 3, the weight parameteys between the conventional optimization problems and machin

of GCNN_EC are gained from solving a linear problem whichearning problems. Based on the discussions, a new method

guarantees a unique solution. Lagrange multiplier methild wwithin LIS is proposed for the GCNN models. GCNEC

take the weights obtained fromf),.(X) as an initial condition transfers equality constraint problems into unconstihimees

for updatingw; in f(x). The updating operation is to emulateand solves them by a linear approach, so that convexity of

a brain memory change. The above steps will enable esnstraints is no more an issue. The present method is able to

to examine the changes from synaptic strengths (or weigitbcess interpolation function constraints that coverdbe-

parameters) between the two networks. straint types in BVPs. Numerical study is made by including
When Figs. 4 to 6 provide a locality interpretation fromhe constraints in the forms of Dirichlet and Neumann for

a “signal function” sense, another interpretation is explorethe BVPs. GCNNEC achieves an exact satisfaction of the

from the plots of Weight changesbetweenf,,.(x) and f(x). equality constraints, with either Dirichlet or Neumann egp

Because the two networks have the same number of neuraen they are expressed by an explicit form abgutThe

or weight parameters, we denot®l/ to be their weight approximations are obtained if a Neumann constraint is not

changes. Normalized weight changes will be achieved fimtegrable for an explicit form abouft.

AW/|AW |4z, Where |AW |4, iS @ normalization scalar. A numerical comparison is made for the methods within

We still take the Sinc function for an example. Compar-GIS and LIS. Graphical interpretations are given to show tha
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Fig. 7. Normalized weight changes of RBFNN + Lagrange miigtipand
GCNN_EC for aSincfunction in which two constraints are locatedaat= 0  [14]

andz = 7 /2, respectively.

the locality principle in the brain study has a wider meanin[é5
in ANNSs. In apart from local properties in CNN_[26] and(16]
RBF [23], coupling forms between knowledge and data can Bg]
another locality source for studies. We believe that thallbc
principle is one of key steps for ANNs to realize a braini8]
inspired machine. The present work indicates a new dinecti
for advancing ANN technique. When Lagrange multiplier is a
standard method in machine learning, we show that LIS can
be an alternative solution and can performance better in f?e
given problems. We need to explore LIS and GIS together and
try to understand under which conditions LIS or GIS shoul@l]
be selected.
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