“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”



An output-based knowledge transfer approach and
its application in bladder cancer prediction

Guanjin Wang'-?, Guangquan Zhang', Kup-Sze Choi?, Kin-Man Lam?, and Jie Lu'

ICentre for Artificial Intelligence, School of Software, Faculty of Engineering and Information Technology,
University of Technology Sydney, Broadway, NSW, 2007, Australia
Email: Guanjin.Wang@student.uts.edu.au, Jie.Lu, Guangquan.Zhang @uts.edu.au
2Centre for Smart Health, School of Nursing,
The Hong Kong Polytechnic University, Hong Kong, China
Email: thomasks.choi@polyu.edu.hk
3Department of Surgery, Tseung Kwan O Hospital, Hong Kong, China
Email: lkm154@ha.org.hk

Abstract—Many medical applications face a situation that
the on-hand data cannot fully fit an existing predictive model
or on-line tool, since these models or tools only use the most
common predictors and the other valuable features collected in
the current scenario are not considered altogether. On the other
hand, the training data in the current scenario is not sufficient to
learn a predictive model effectively yet. In order to overcome
these problems and construct an efficient classifier, for these
real situations in medical fields, in this work we present an
approach based on the least squares support vector machine
(LS-SVM), which utilizes a transfer learning framework to
make maximum use of the data and guarantee its enhanced
generalization capability. The proposed approach is capable of
effectively learning a target domain with limited samples by
relying on the probabilistic outputs from the other previously
learned model using a heterogeneous method in the source
domain. Moreover, it autonomously and quickly decides how
much output knowledge to transfer from source domain to the
target one using a fast leave-one-out cross validation strategy.
This approach is applied on a real-world clinical dataset to
predict 5-year mortality of bladder cancer patients after radical
cystectomy, and the experimental results indicate that the
proposed method can achieve better performances compared
to traditional machine learning methods, consistently showing
the potential of the proposed method under the circumstances
with insufficient data.

Index Terms—transfer learning, machine learning, support
vector machine, cancer prediction

I. INTRODUCTION

In medical fields, it is very common that clinical assess-
ments from different hospitals or pathologists are inconsistent
(up to 30% in many cases) [1]. Therefore, in some cases the
existing predictive softwares or on-line tools are constructed
based on a smaller set of features than those found in real
world datasets. Even though some existing models use the
most universal and highly reproducible features such as age,
gender, tumour stage, etc., it is important to note that as time
passes the importance or relevance of these clinical measures
might change, and thus the predictive model needs to adapt
to different feature sets accordingly.

Another big issue in many medical applications is a lack

of data. If we want to construct a predictive model on a
specific feature sets instead of using existing models with
fixed features, the performance might deteriorate a lot due
to insufficient training samples in the current domain. In
particular, the process of collecting labelled data in the real
world may perhaps be time consuming and/or expensive. For
example, patients do not wish their medical records to be
exposed to others, because this might cause them to become
depressed, affect their employment and insurance coverages,
etc. Additionally, because the training sample size is small,
it is necessary to employ cross-validation as an unbiased
estimation of the classification errors for the trained model.
However, how to greatly reduce the high computational
complexity of the cross-validation procedure triggers another
issue worthy to be studied.

In order to solve the above issues, transfer learning is
considered such that the knowledge from a related but dif-
ferent domain (source domain) can be leveraged to construct
a predictive model on the current domain of interest (target
domain) with few data.

There are two types of transfer learning when source and
target domains are different but aim to achieve the same
task. a). The feature space between domains are the same,
but the data distributions of the inputs are different. b). The
feature spaces between domains are different, which is also
known as heterogeneous transfer learning. Apparently our
problem fits in the latter situation. For example, suppose
our task is to diagnose a specific disease into a ’yes’ or
'no’ class, given that we could only obtain a limited amount
of patient records from a local hospital. Moreover, suppose
that there is an on-line diagnosis tool of the same disease
which is based on a subset of the feature space in the dataset
obtained from the local hospital. Comparatively the on-line
tool has been constructed by many more training examples
with fewer features than these of the dataset obtained from
the local hospital. In this case, we can model the classification
task using few labelled data from the local hospital as the
current domain, and the existing on-line predictive model as



the knowledge of the source domain. We ask: is it possible
to use the auxiliary knowledge from the source domain
model to help improve the classification performance using
a heterogeneous method on the diagnosis of local patients in
the target domain?

Ideally the subset of the robust features are shared in both
source and target domains, and an extra subset of the unique
features are contained in the target domain. In this way, the
source and target data form an inverted pyramid dataset, as
shown in Fig. 1. Due to the obvious commonality between
source and target data, the outputs from predictive models
in both domains should remain similar to a certain extent.
Therefore the output-based transfer learning across domains
is feasible to guide a better classification performance in the
target domain. In this work, we propose a novel output-based
transfer least square support vector machine (LS-SVM) [2]
from the transfer learning perspective, which can effectively
leverage the probabilistic output knowledge from the existing
predictive model built using a heterogeneous method to the
target domain for classification. Moreover, This approach
also has the ability to autonomously and quickly determine
how much output knowledge to transfer from source domain
to target one using the proposed fast leave-one-out cross
validation strategy. Our main contributions are:

(1) A novel output-based transfer LS-SVM classifier is
proposed for classification on few labelled data, by the means
of leveraging knowledge of the probabilistic output from the
existing predictive model built by a heterogeneous method.

(2) The proposed approach can autonomously and quickly
determine the influence level on the target domain model
caused by the probabilistic outputs from the existing predic-
tive model in the source domain, by using a fast leave-one-out
cross validation strategy.

(3) The proposed approach under the framework of the
LS-SVM can directly handle the probabilistic outputs from a
heterogeneous method, which well matches the real situations
in medical fields.

(4) Without knowing the details of the existing model in
the source domain, we can still achieve transfer learning by
leveraging output knowledge from the existing model to help
improve generalization performance on the target domain.
This is very helpful in real world scenarios where the data
and its modelling details are private.

The paper is organized as follows. The related work is
introduced in Section II. In Section III the proposed output-
based transfer LS-SVM classifier is presented. In particular,
a fast leave-one-out cross validation strategy for the choice
of parameter is developed as well. In Section V, we give the
experimental results on the bladder cancer dataset from the
real world. Finally, the conclusions and future work are given
in Section VI

II. RELATED WORK

In transfer learning, there is a very important problem to
solve, which is what to transfer [3]. It focuses on which part
of knowledge or how much knowledge is planned to leverage

across domains. Based on this, transfer learning approaches
in literature can be categorized into four types.

The first category is instance transfer, which assumes that
certain amount of data in the source domain can be useful
for learning in the target domain, via instance re-weighting
and importance sampling techniques. For example, in [4],
a nonparametric method was proposed to directily obtain
resampling weights with no distribution estimation. Xia et
al. presented another novel method to re-weight the training
instance using in-target-domain probability by positive and
unsupervised learning [5].

The second category is feature representation transfer,
which aims to learn an appropriate common feature rep-
resentation for the target domain such that the difference
between the source and target domains and the classification
error is decreased. The knowledge to transfer across domains
is embedded into the common feature representation. For
example, in [6], a framework is proposed for common feature
and kernel selection in multiple SVMs trained on different
but related datasets. Another feature representation method
transfer component analysis (TCA) was discovered in [7]
such that the distance between domains can be reduced in a
latent space for domain adaptation. Duan et al. [8] proposed a
method which is able to augment the heterogeneous features
from the source and target domains through utilizing two
novel feature mapping functions. After that, the SVMs can
be used to incorporate with new generated feature represen-
tations for classification cross domains with different feature
spaces. Zuo et al. developed a method in [9], which uses
Stacked Denoising Autoencoder (SDA) to extract multiple
feature spaces and the predictive model can be constructed
based on every feature space. Also, two fuzzy sets are defined
to analyse the variation of the accuracies in these feature
spaces in the target task.

The third category is relational knowledge transfer, which
assumes that the relationship among the data in the source
and target domain is similar to a certain extent. The knowl-
edge to transfer is the relationship among the data. In this
context, statistical relational learning techniques are used to
solve problems. For example, in [10], Mihalkova et al. pro-
posed Markov logic networks (MLN) based transfer system
which maps the predicates in the source MLN to the target
domain, and then edits the mapping structure to improve its
performance.

The last category is parameter transfer, which assumes
that the source and target domains share some parameters or
priors of the models. The knowledge to transfer is embedded
into the shared parameters or priors. A novel model was
proposed in [11] which aims to learn a shared covariance
function on input dependent features and a "free-form"
covariance matrix among tasks. Schwaighofer et al. [12]
presented a method under a hierarchical Bayesian framework
to learn a common prior for mean and covariance across
domains. In [13], Gao et al. proposed a locally weighted
ensemble framework to leverage knowledge from multiple
models for transfer learning. The weights are dynamically
determined based on every model’s predictive ability on



each testing sample. In [14] [15], a knowledge-leverage-
based Takagi-Sugeno-Kang fuzzy system (KL-TSK-FS) and
an advanced version were proposed for parameter learning of
the TSK-FS model on the target domain by utilizing existing
knowledge in the source domain.

Among existing transfer learning approaches, the
parameter-transfer learning is most related to the proposed
output-based transfer LS-SVM classifier here. In general,
most approaches aim to find the shared parameters/hyper-
parameters of the models. In the proposed classifier, since
the existing model in the source domain is unknown, we
put our focus on the obtained outputs from it, and aim to
learn a weighting parameter on the outputs of the target
domain influenced by the predicted outputs of the existing
model. The basic assumption behind is that the outputs
from the models in both domains should be similar to
some extent. This is because that in this study, we only
consider the inverted pyramid dataset in which a subset
of features are shared in the feature spaces of both source
and target domains, such that there is a certain similarity
between them. Furthermore we can assume that the outputs
from the ideal classifier on the target domain should
keep a certain degree of consistency with those from the
existing model on the source domain. On the other hand,
we also find that there is an extra subset of the unique
features only in the target domain in the inverted pyramid
dtaset. Therefore, the problem in this study also involves
transferring knowledge cross different feature spaces, which
is referred as heterogeneous transfer learning [3].

III. OUTPUT-BASED TRANSFER LS-SVM CLASSIFIER
A. Inverted pyramid dataset

In this work, we denote the data in the target do-
main as Dr = {(z1,y1),..,(®@N,yn)}, Where x; =
(2%, 2%, ...,2%) € Xp CRYand y; € Yr = {-1,1}. X7 is
the input dataset and Y 7 is the corresponding class label set.
Each sample «; contains d features, i.e., f1,fo,..., f4. Since
the existing model in the source domain only contains a sub-
set of the feature space in the target domain, in order to fit the
existing model, we project D to the data Dg only with the
shared feature subset. Dg = {(x},v1), ..., (®'y,yn)}, where
x; = (z},25,..,2%) € Xg C R? and y; € Yg = [0,1].
X g is the input dataset in which each sample x; contains d
features, i.e., fi,f2,.... (d/ < d), and Y g is the set of the
probabilistic outputs obtained from the existing model.

We want to find a decision function F' : X7 — Y 7, such
that it can find the matching y for any new incoming sample
x. Using a diagram to present data, if we stack Dp onto
Dg, it shapes like an inverted pyramid. Therefore, we call
the adopted dataset in the proposed approach the inverted
pyramid dataset and demonstrated them in Fig. 1.

B. Framework of the proposed classifier

The framework of the proposed output-based transfer LS-
SVM classifier is illustrated in Fig. 2. There is an existing
predictive model on the source domain which has the proba-
bilistic outputs for inputs. We first obtain the probabilistic
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outputs of Dg in the inverted pyramid dataset using the
existing predictive model and then the proposed classifier
not only makes full use of the data from Dt in the inverted
pyramid dataset in the learning procedure, but also leverages
the output knowledge from the existing model to help clas-
sification on the target domain.

C. Handle probabilistic outputs from the existing model

Most existing predictive models or on-line tools in med-
ical fields produce probabilistic outputs by using statistical
methods. Considering that the classification on the target
domain is achieved using a heterogeneous method and that
the representation of the output is different, the proposed
classifier is designed to directly handle the probabilistic
output learning from the existing model into the target model.

First we put the data from the source domain Dg into
the existing predictive model and obtain the corresponding
probabilistic outputs p; (0 < p; < 1, ¢ = 1,2,...,N).
Then we can regard p; and 1 — p; as the probability of x;
being classified into positive and negative class respectively.
We set a threshold 0 to 0.5 such that x; is classified into



positive class if its output probability is greater than 0.5. For
example, suppose that the sample x; gets the probabilistic
output 0.65 from an existing predictive model. This means
the probability of x; being classified into the positive class
and the negative class is 0.65 and 0.35 (1 — 0.65 = 0.35),
respectively. Based on the threshold 6, we classify x; into the
positive class (0.65 — 0.5 = 0.15 > 0), rather than negative
class (0.35 — 0.5 = —0.15 < 0). In other words, since the
sign of (2p; — 1) reflects which class @; belongs to, it can
be used to maintain the consistency between the outputs
of the existing model and another heterogeneous method,
i.e., LS-SVM. These processed probabilistic outputs are the
knowledge we want to explore and effectively leverage onto
the target domain for classification.

D. Output-based transfer LS-SVM classifier on the target
domain

After handling the probabilistic outputs from the existing
predictive model, we can construct a model on the target
domain in which the signs of the classification outputs and
those of the processed probabilistic outputs from the existing
source model keep the same as much as possible.

According to LS-SVM framework, the input x; can be
classified in terms of the decision function:

> (0 positive class
< 0 negative class

wlo(z;) + b{

Let us recall LS-SVM uses the constraint, y; = w’ ¢(x;) +
b + &;, therefore, in order to keep the signs of both y; and
(2p; — 1) (i = 1,2..., N) the same as much as possible, we
should make ZZL(% —&)(2p; — 1) as large as possible.

Moreover, we use a weighting parameter p to reflect the
influence level of the processed probabilistic outputs from
the existing predictive model onto the predicted outputs from
the target domain. p is treated as the learning parameter, and
selected by the fast leave-one-out cross-validation strategy
which will be discussed in the following section. Therefore,
the objective function based on the LS-SVM framework
becomes

mlil fw + — Zf —uz ) (2p; — 1) 0

s.t Yi =w 90( L)+b+£lv7':172aaN

After simple derivations, we can get the following equiv-
alent formulation

2
ml? 7w +5 Z gz + PYal 2pz 1)) (2)

st yi=w' (wi) +b+&,i=1,2,..,N

where 5 represents the influence level of the probabilistic
outputs from the existing predictive model onto the target
domain. We can observe that if we set p to 0 in Eq. (2), it is
the standard LS-SVM objective function. Obviously, Eq. (2)
is a QP problem [16].

The Lagrangian J of Eq. (2) is

J = w2+ 21 W&+ (2171 - 1))2 + vazl ai(yi —w 99('7% —-b-&) (3)

where @ = (a1, Q9,...,ay) € RY is the vector of all
Largrangian multipliers. With respect to w, &;, b, oy, we
have
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Combining the Eq. (4) and Eq. (§) with Eq. (7), We can get
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Using the kernel trick, we replace p(x;)p(x;) by K (x;, x;),

and further write the linear equation in Eq. (8) in matrix form

K+ 1A 1] [« y+ =M
e
where A is a matrix in which each diagonal entry is
one and all other entries are zero, y is the output vec-
tor of all the samples in the training dataset, and M =
T
(2p1 —1,2pp — 1,...,2pN — 1) .
Finally, the model parameters can be calculated simply by
using matrix inversion:
ARk

b 0 (10)

where P = V™! and V is the first matrix on the left in Eq.
(9). Once we obtain y, a and b can be calculated accordingly
from Eq. (10).

E. Decision Function

Combined with Eq. (4), the decision function for the new
sample x; becomes

F(x) = w p(w) + b

N
= ZaiK(mi7 ) +b
i=1

1)



I'V. FAST LEAVE-ONE-OUT CROSS VALIDATION STRATEGY
FOR PARAMETER TUNING

From the last section, we know that the classification
performance of the proposed classifier depends on the value
of the parameter u. Usually, the traditional leave-one-out
cross-validation method has been widely recognized as an
unbiased estimator to choose the values for the parameters
in various models. However, the procedure is computationally
expensive and time-consuming at the same time. In this
section, we introduce a fast version of the leave-one-out
cross-validation strategy to find the optimal value of p in
Eq. (10).

We decompose V into block presentation with the isolation
of the first row and column as follows:

V= K +75A 1 _ V11 V{
1 0 Vi V(,l)
We denote av(_;) and b(_;) as the model parameters during

the ¢-th iteration of the leave-one-out cross validation. In the
first iteration, we have:

I RLRICRRERY
[l% 1)} e T

where P(_q) = V(il) and y(_1) = [y2,¥3, ..., yn,0]T. We
denote the predicted label of the i-th sample excluded from

the training dataset by ¢;, so that the predicted label of the
first training sample becomes

12)

13)

_ (-1)
n=vi [b( 1)} 2C

T
= Vi (y(*l) * 20M< 1>> 20
Considering the last N equations in the system of Eq. (9),

> M (-1
(14)
My

T
we can get [v Vi) [0, 8" = (yy+ M),
and Eq. (14) can be further written as
1 =viPyy i Viy] o, an, b - %M(—n -
= V{P(_l)vlal + V;T [az, s AN, b}T — %M(_l)

In Eq. (9), the first equation of the system is y; +
%M(—l) = V1101 + V’{ [Olg, az,: -+ N, b]T Combined
with Eq. (15), we can get §; = y1 — aq(v11 — vlTP(_l)vl).
Finally, by using P = V™! and the block matrix inversion
lemma, we can obtain

wt —u~ v P_

P= _ o ! 16
P(,l) +u IP(,l)V?VlP(,I) —u 1P(,1)VT (16)
where u = vy — vlTP(_l)vl. Since the system of linear

equations in Eq. (9) is not sensitive to permutations of the
ordering of the equ-ations, we get

—a; /Py

P[yT,O], {a”T,b”} =

P [MT,O}, and o = o’ + %a”, then we can get

Ui = Yi (17)
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Algorithm 1: Projected Sub-gradient Descent Algorithm

Input: o, a”
Initialize: g <— O and t < 1
Repeat

ylfyl_ aL - 2C S 171727
del{y1y1>0}l—12 W N

B = \/{dzyz Py,
If w > D then p <
End if

p < maz(p, 0)
t—t+1

Until convergence
Output: p

[Tell2

It can be seen from Eq. (18) that o and i has a linear
relationship, which indicates that we can obtain the learning
model if p is determined. The optimal p is supposed to
keep the same sign of g; and y; for all the samples in
the training dataset. However, this might bring many local
minima issues due to its non-convex formulation. Thus, we
adopt the following loss function, which is similar to the
hinge loss:

. . o — La)
@i i) = [1 = Gyl = |y =52 (19)
(%3 +
where ||+ = max{0,z}. This is a convex upper bound

to the leave-one-out misclassification loss, and it prefers the
solutions in which g; has an absolute value equal or bigger
than 1 and the same sign of y;. Finally, the objective function
is

(20)

N
Zl(ﬂuyi)
st 0<pu<D

where D is a constant. This optimization process can be
implemented by a projected sub-gradient descent algorithm
and the pseudo-code is given in Algorithm 1.

A. Computational complexity

Compared with the traditional cross validation, the pro-
posed fast leave-one-out cross validation strategy features in
its fast computational ability. Its computational cost contains
two parts, which can be represented as O(N?3 + N). The
first part calculates the matrix P by the inverse related
to the training dataset on the target domain, therefore the
corresponding computational complexity becomes O(N3).
Another part includes the computational complexity of each
iteration in the Algorithm 1 for optimizing Eq. (20), which
can be represented as O(N).

In terms of the traditional cross-validation, if we use
the grid search strategy, from [uq, pa, ..., ] for p in the
proposed classifier in Eq. (10), the whole time complexity
would become TO(N3x N) = TO(N*), which is extremely
computationally expensive than O(N?® + N) occupied by the
proposed fast cross-validation strategy.



V. EXPERIMENTAL RESULTS
A. The clinical dataset and the existing predictive model

In the experiments, a real clinical dataset was adopted
in this study. The data was collected in a urology unit
in Hong Kong from 2003 to 2011, which contain clinical
records of 117 bladder cancer patients after radical cystec-
tomy [17], [18]. 99 of the patients were male. The mean
age of patients were 68 years old (SD=10 years). There is
no case losing follow-up. The mean follow-up time was 2
years and 7 months (SD=29 months). The 30-day mortality,
5-year cancer-specific mortality, other-cause mortality, and
the overall mortality rates were 3%, 33%, 22% and 55%
respectively. In this study, we only focus on 5-year mortality
of patients. 71 cases were undertaken open radical cystectory.
96 Patient had ileal conduit diversion. Other data include
tumour stage and grade, preoperative serum albumin level and
lymph node stage. The original dataset has eight records with
missing values, which were removed during data processing.
More details about the adopted dataset can be found in Table
L.

The existing predictive model for predicting 5-year overall
mortality on bladder cancer patients can be found in Can-
cerNomograms.com [19]. It was created on 11,260 bladder
cancer patients treated with radical cystectomy between 1988
and 2006 within 17 Surveillance, Epidemiology, and End
Results registries in the United Statesby [20]. Patients were
stratified into 20 strata based on the patient age and tumour
stage when undertaking radical cystectomy. The smoothed
Poison regression model was applied to gain the probability
of mortality rate at 5 years after radical cystectomy. On the
on-line user interface on the website, the user first provide
the "tumour stage’, ’lymph node stage’ and ’age at surgery’.
After clicking ’show result’ button, it will give the likelihood
of overall survival after five years.

It can be observed that only a subset of the clinical
dataset with the features ’age at operation’, 'tumour stage’
and ’lymph node stage’ can be fit into the on-line predictive
tool and therefore the requirements of the inverted pyramid
dataset adopted in this work are satisfied.

B. Experimental Design

In this study, the main purpose of the experiment is
to evaluate the performance of the proposed output-based
transfer LS-SVM classifier to predict 5-year mortality of
bladder cancer patients after radical cystectomy using the
inverted pyramid dataset, compared with those obtained
by using the traditional machine learning methods on the
original dataset. The comparative methods include standard
LS-SVM [2], standard SVM [21], back-propagation neural
network (BPNN) [22], K nearest neighbouring (KNN)
algorithm [23].

For the proposed classifier, firstly the subset of the clinical
dataset with the features ’age at operation’, 'tumour stage’
and ’lymph node stage’ were fed into the existing on-line
tool and the corresponding probabilistic outputs of patient
records were obtained. After that, the proposed classifier

TABLE I: The clinical dataset adopted in this work

Values
1 (female)
2 (male)
Normalized to [0, 1]
1 (open surgery)
2 (laparoscopic surgery)
3 (robotic surgery)
Normalized to [0,1]
1 (T1)
2 (T2)
3 (T3)
4 (T4)
0 (NO)
1 (N1)
2 (N2)
3 (N3)
1 (Stage I)
2 (Stage 1I)
3 (Stage III)
4 (Stage 1V)
Normalized to [0,1]
1 (Grade 1)
2 (Grade 2)
3 (Grade 3)
1 (ideal conduit)
2 (neo bladder)
1 (dead)
0 (alive)

Features

Gender

Age at operation

Surgery Type

Preoperative serum albumin level

Tumor stage

Lymph node stage

Overall cancer stage

Follow up period

Grade

Type of diversion

S-year overall mortality

TABLE II: Parameter settings of the proposed and compara-
tive methods

Proposed

Models . LS-SVM SVM BPNN KNN
classifier
number of
Parameter C=150 C=150 C=200 hidden neurons=15 K=18
settings vy =2e—2 vy =2e—2 v =2e —2 learning rate=0.05
momentum=0.9

was applied on the whole clinical dataset as well as the
probabilistic outputs obtained from the last step. The com-
parative methods were only applied on the whole dataset for
classification. In order to make our comparison fair, we use
the grid search in terms of classification accuracy to find
out the optimal parameters during the training process. We
select the polynomial kernel for kernel based methods in the
experiments [17]. We set up the trade-off parameter C' and
the degree parameter v by searching C' € {150,200, 250}
and v € {2e — 5,2e — 4,2e — 3,2e — 2,2e — 1,1} for the
proposed classifier, LS-SVM and SVM. Finally, C' = 150
and v = 2e — 2 were chosen for the proposed classifier and
the LS-SVM due to the outstanding performance. For the
standard SVM, C = 200 was chosen. For BPNN, the number
of hidden neurons, the momentum and the learning rate were
selected from {3,5,7,9,1,13,15,17,19, 21, 23, 25, 27,29},
{0,0.2,0.5,0.9} and {0.01,0.05,0.09} respectively. Hidden
neurons = 15, learning rate = 0.05 and momentum = 0.9
were chosen in the end. For KNN algorithm the value of the
neighbouring parameter k was selected from {10, 12, 15, 18,
20} experimentally and K = 18 was finally determined with
the best performance. The parameter settings are summarised
in the Table. II. All the experiments are implemented using
64 bit MATLAB on a computer with Intel Core 15-6300 2.40
GHz CPU and 8.00GB RAM.



C. Performance evaluation

10-fold cross validation strategy was used in the
experiments for performance evaluation, which ensures that
every sample from the dataset has a chance to be in the
training and testing sets. Here, the dataset was randomly
divided into ten subsets. The model was built using nine
subsets and tested on the remaining one. This process was
repeated 10 times, and the mean and standard deviation
of accuracy in the 10-fold cross validation procedure were
calculated.

D. Classification performances

In this experiment, we compare the performance of the
proposed approach and other five traditional machine learning
methods on the prediction of 5-year mortality of bladder
cancer patients after radical cystectomy. From the experi-
mental results presented in Table III, we can observe that the
predictive models using BPNN and KNN obtain compara-
tively low performances, with a mean classification accuracy
of 0.6758 and 0.7061 respectively. The standard LS-SVM
and SVM exhibit better performances than BPNN and KNN.
Their mean accuracies are 0.7424 and 0.7485 respectively.
Our proposed approach achieved the highest classification
performance accuracy of 0.7697. Also, its performance stood
out at sensitivity (0.7848), specificity (0.7579) and precision
(0.7805) compared with the remaining methods. Thus it
can be seen that by leveraging knowledge from the addi-
tional domain we can readily improve the traditional LS-
LVM algorithm. The experiments indicate that the explored
knowledge from the probabilistic outputs using the existing
on-line model can benefit the model construction on the
on-hand clinical dataset. Therefore, by using the proposed
classifier, we are able to construct the classifier by utilizing
the probabilistic output knowledge from the existing on-line
tool, and even achieve comparatively better classification per-
formance than those using other traditional methods without
leveraging knowledge from the other domain. It is shown that
the classification improvement through using the knowledge
from the other domain has a great potential for improving
traditional methods from different measurement indices.

TABLE III: Performance of the proposed classifier and
comparative methods

a set of valuable features from the current scenario are not
entirely involved in those models or tools. Yet the on-hand
medical data is not sufficient to learn predictive models.
Therefore, in order to overcome these issues and construct
a classifier on this kind of data, we propose a novel LS-
SVM classifier which leverages probabilistic outputs from
the existing model from a perspective of transfer learning
to make maximum use of the data and guarantee the en-
hanced generalization capability. The experimental results
show that our proposed approach has a better result than
the existing solutions, with an accuracy of 0.7697 compared
to the reported accuracies of comparative machine learning
methods, such as LS-SVM, SVM, BPNN and KNN. More-
over, because of our proposed approach’s fast leave-one-out
cross validation strategy, the weighting parameter p can be
determined autonomously and quickly and accordingly the
classifier can be achieved within a reasonable time such
that it has the potential for practical applications. Due to
the improved accuracy and ability to work readily with
the existing statistical predictive softwares or on-line tools
currently in use within medical fields via exploring their
probabilistic outputs, it is clear to see that this work has
a great potential for improving prediction and prognosis
within the medical industry. Most importantly, this study has
shown to work with a real world dataset, proving its potential
feasibility to be implemented into a real world clinical setting.

In near future, more investigations are required to ensure
the robustness of the proposed approach. Currently we only
apply the proposed method on the bladder caner prognosis.
In future, we plan to apply the proposed method on different
real world applications. Moreover, because we only consider
one source domain in this study, we have actually imposed a
limitation on its potential. In future work it would be worth
investigating how the inclusion of multiple existing models
could improve the accuracy of the target domain prediction.
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VI. CONCLUSIONS AND FUTURE WORK

Nowadays, medical data in many real-world applications
cannot fit an existing predictive model or on-line tool, since
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