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Abstract—Multi-view high-dimensional data become increas-
ingly popular in the big data era. Feature selection is a useful
technique for alleviating the curse of dimensionality in multi-view
learning. In this paper, we study unsupervised feature selection
for multi-view data, as class labels are usually expensive to obtain.
Traditional feature selection methods are mostly designed for
single-view data and cannot fully exploit the rich information
from multi-view data. Existing multi-view feature selection meth-
ods are usually based on noisy cluster labels which might not
preserve sufficient information from multi-view data. To better
utilize multi-view information, we propose a method, CDMA-
FS, to select features for each view by performing alignment
on a cross diffused matrix. We formulate it as a constrained
optimization problem and solve it using Quasi-Newton based
method. Experiments results on four real-world datasets show
that the proposed method is more effective than the state-of-the-
art methods in multi-view setting.

I. INTRODUCTION

Data obtained from different sources or feature subsets
usually provide complementary information for machine learn-
ing tasks, and conventionally they are named as multi-view
data. We can observe multi-view data in a wide range of
application domains (Figure 1). For example, news about the
same event can often be reported in different languages and by
different agencies. In the video domain, in addition to features
extracted from visual signals, videos are often equipped with
textual descriptions and related tags. In medical science, many
different diagnosis tools have been developed to obtain a
large number of measurements from various laboratory tests,
including clinical, imaging, immunologic, serologic features.

Capability for simultaneous consideration of data coming
from multiple views/sources is important for many learning
tasks, which is referred to as multi-view learning. Multiple
views together depict an enriched picture about the entities of
interest and thereby provide an effective way of heterogeneous
data fusion. How to effectively incorporate the abundant infor-
mation from multiple views is critical for different application
domains [7] [17]. It has been shown that incorporating infor-
mation from multiples views can improve the performance of
various machine learning tasks. For example, co-regularized
spectral clustering [7], by enforcing consensus learning on
latent factors, outperforms single-view clustering significantly.

The curse of dimensionality is an inevitable problem in the
era of big data, which is also one of the major challenges
in many multi-view learning scenarios. For example, the

vocabulary of news articles can contain more than 100, 000
words in each language. Also, the user generated content
in social media (such as blog websites) tends to be highly
noisy. Such high-dimensional noisy data can hamper the
performance and efficiency of many machine learning/data
mining tasks. Feature selection is potentially a useful technique
for alleviating such issue. Traditional feature selection methods
mainly focus on a single view which could be insufficient
considering the existence of other views being available. It
is desirable to utilize information from other complementary
views, when selecting features for each view.

Since class labels are usually expensive to obtain, unsu-
pervised feature selection usually has wider applicability than
its supervised counterpart. The key challenge of unsupervised
multi-view feature selection is twofold: (1) how to effectively
represent the fused information from multiple views, and (2)
how to effectively exploit the fused information representation
to select high-quality features. State-of-the-art unsupervised
multi-view feature selection approaches [17] [13] fuse infor-
mation by generating intermediate cluster labels. However,
summarizing the information for each instance with a cluster
label tends to lose too much information, since the cluster la-
bels are usually noisy and inaccurate. In this paper, we propose
a new method, CDMA-FS (Cross Diffused Matrix Alignment
based Feature Selection), to address the challenges of multi-
view feature selection in unsupervised setting. The advantages
of our method compared to state-of-the-art approaches [17]
[13] can be summarized as follows.

• We employ a cross diffusion-based approach to learn a
consensus similarity graph from multiple views, which
retains more information than the cluster labels (Figure
2).

• Rather than relying on cluster-label guided sparse regres-
sion, we directly exploit the information from the cross-
diffused matrix by matrix alignment.

• Existing approaches typically have a few parameters
which are difficult to set in unsupervised setting. This
makes them less practical for real-world applications. In
contrast, we provide guidelines for setting the parameter
in the proposed method.

• Our objective function is not based on linear regression
and hence can evaluate the non-linear usefulness of
features.
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Fig. 1: Examples of multi-view data
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alignment

Fig. 2: Comparison of CDMA-FS framework with existing
multi-view feature selection methods. Lines between black
dots represent the similarity relationship between data in-
stances.

The rest of paper is organized as follows. In section II,

we review related work on unsupervised feature selection on
single-view or multi-view data. In section III ∼ V, we present
the approach of CDMA-FS by aligning with cross-diffusd
matrix. Experimental results are discussed in section VI and
we conclude our work in section VII.

II. RELATED WORK

Earlier unsupervised feature selection methods [6] [27]
usually assign scores to each feature based on certain heuristics
and neglect the correlation among features. However, such
heuristic based methods usually ignore the correlation among
the features and redundancy may exist in the selected features.
In recent years, different methods [26] [12] [24] [23] have been
proposed to evaluate feature quality jointly. Linear projection
based methods [26] [8] [4] [19] with sparsity-inducing L2,1

norm have become prevalent among others. Compared to
the heuristic-based methods [6] [27], the major advantage
of L2,1-based approaches is that they can evaluate features
jointly. Different L2,1 norm-based methods usually differ in
the ways they generate pseudo labels and the loss functions
on the projection. Unsupervised Discriminative Feature Se-
lection (UDFS) [26] introduces pseudo-label based regression
to better capture the information from the local structure.
Non-negative Discriminative Feature Selection (NDFS) [8]
derives the cluster/pseudo labels from non-negative spectral
analysis. Robust Unsupervised Feature Selection (RUFS) [12]
and Embedded Unsupervised Feature Selection (EUFS) [19]
generate pseudo labels from non-negative matrix factorization.
Robust Spectral Feature Selection (RSFS) [16] employs local
kernel regression for the cluster indicators and Huber loss for
the projection. These methods are only able to evaluate the.
To address this issue, Stochastic Neighbor-preserving Feature
Selection (SNFS) [25] and Nonlinear Joint Feature Selection
(NJFS) [22] are proposed, which can evaluate the non-linear
usefulness of features.



Recently, several pseudo label-based methods have been
extended to multi-view setting [17] [13] [15] via cluster
consensus learning. In these approaches, pseudo-labels derived
from certain clustering algorithms are required to be the
same across different views in order to incorporate multi-view
information. For example, adaptive Unsupervised Multi-view
Feature Selection (AUMFS) [5] rely on spectral clustering on
the combined similarity graphs obtained from different views.
Multi-View Feature Selection (MVFS) [17] and MVUFS [13]
can be seen as extention of NDFS [8] and RUFS [12] to multi-
view feature selection by enforcing consensus on the cluster
indicators from different views, respectively. However, they
rely on the cluster labels to guide feature selection, and the
noisy cluster labels may lead to suboptimal feature selection
results. Also, they evaluate features based on linear regression
and hence cannot select high-quality features if they are non-
linearly correlated with the class labels.

III. FUSING DIFFERENT VIEWS BY CROSS DIFFUSION

We denote n data samples with m views as {X(v)|v =

1, . . . ,m}, X(v) = [x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
n ] and the number of

features in the v-th view as D(v). So x
(v)
i ∈ RD(v)

and x
(v)
ip

denotes the value of p-th (p = 1, . . . , D(v)) feature of x(v)
i .

The proposed CDMA-FS framework is a two-step approach.
First, we fuse different kernels into one robust similarity
matrix through cross diffusion. Second, we perform matrix
alignment for the features from each view so that the kernel
constructed from the selected features can best align with the
fused matrix (Figure 2). In this manner, feature selection on
each view can benefit from the consensus information fused
from multiple views.

With the features from the v-th view, one can construct a
kernel/similarity matrix for this view. There are different types
of similarity matrices:
• Gaussian Kernel Weighting: Wij = e−(xi−xj)

2/σ2

• Dot-product Kernel Weighting: Wij = xTi · xj
• 0-1 Weighting: Wij = 1 if and only if xi is within xj’s

k Nearest Neighbors.
A similarity matrix can then be used to define the transition

probability as follows.

P(v)
ij =

W
(v)
ij∑n

k=1W
(v)
ik

(1)

where
∑n
j=1 P

(v)
ij = 1 (∀i = 1, . . . , n) and we let P(v)

ii = 0

for convenience. For a probability vector u (i.e., uT1 = 1),
uTP(v) is a Markov random walk of u w.r.t. P(v). P(v)u can
be viewed as a local averaging operation with W(v) measuring
the locality. It can also be interpreted as a generalization of
Parzen window estimators to functions on the local manifold
[18]. Both uTP(v) and P(v)u can be viewed as a diffusion
process.

A. Cross Diffusion

Cross diffusion [18] aims to exploit mutual enhancement of
different views inspired by co-training [1]. The main idea of

cross diffusion is to perform random walk using the transition
probability from different views in an alternating manner. In
the case of m = 2, the cross diffusion process can be defined
as follows.

P
(1)
t+1 = P(1) ·P(2)

t · (P(1))T (2)

P
(2)
t+1 = P(2) ·P(1)

t · (P(2))T (3)

where P
(1)
t and P

(2)
t are the status matrices at the t-th iteration

for view 1 and view 2, respectively. For the initial values,
we set P

(1)
1 = P(1) and P

(2)
1 = P(2). Since the distances

between data points are usually unreliable in high-dimensional
space, it is usually preferable to use the k nearest neighbors
as P(1) and P(2). Under mild conditions that P(1) and P(2)

are irreducible and aperiodic, the convergence of this process
can be proved using Perron-Frobenius Theorem [11]. The final
status matrix can be computed as the average of status matrices
from two views: P∗ = (P

(1)
e +P

(2)
e )/2, where e is the number

of iterations at which the cross diffusion terminates. We refer
to this final status matrix P∗ as cross diffused matrix.

Let us denote the connected components in the cross-
diffused matrix as {θ1, θ2, . . . , θQ}, where Q is the total
number of connected components. We also denote the ground-
truth class label of x as c(x). We define the purity of the q-th
connected component as the percentage of majority class of
instances. If purity(θq) ≥ 1 − ε for all 1 ≤ q ≤ Q, we say
that P is an ε-good graph. At the (2t+1)-th iteration, P(1)

2t+1

and P
(2)
2t+1 can be written as the following.

P
(1)
2t+1 ∝ (P(1)P(2))t ·P(2) · ((P(2))T (P(1))T )t (4)

P
(2)
2t+1 ∝ (P(2)P(1))t ·P(1) · ((P(1))T (P(2))T )t (5)

In order to effectively guide subsequent feature selection,
it is desirable that the connected components in P

(1)
2t+1 and

P
(2)
2t+1 obtained from the cross-diffusion process have large

purity. The following theorem provides guarantee on the purity
of components in the cross-diffused matrix [18].

Theorem 1: If the K-nearest-neighbors is good to measure
local affinity [20], P(1)

2t+1 and P
(2)
2t+1 are ε-good graphs. The

number of connected components in graph P
(1)
2t+1 is equal to

that of graph P
(2)
2t+1, which is no larger than that in graphs

P(1) and P(2).
Moreover, it is usually helpful to add regularization at each

iteration of the diffusion process to make the probability matrix
more robust.

P
(1)
t+1 = P(1) ·P(2)

t · (P(1))T + αI (6)

P
(2)
t+1 = P(2) ·P(1)

t · (P(2))T + αI (7)

where I is an identity matrix and α is the parameter that
controls the regularization. We remark that CDMA-FS can per-
form reasonably well for a wide range of α (e.g., 10−4 ∼ 10).



B. Extension to more than two views

Similar to the case of m = 2, P
(v)
t+1 for m > 2 can be

calculated as follows.

P
(v)
t+1 = P(v) · 1

m− 1

∑
i 6=v

P
(i)
t · (P(v))T (8)

The final status matrix is the average of m matrices:

P∗ =
1

m

m∑
v=1

P(v)
e (9)

Since the transition probability might be not reliable for non-
nearest neighbors, we create a kNN graph G from P∗ after
obtaining P∗. In the following section, we present how to use
G to guide the feature selection for each view.

IV. ALIGNING WITH CROSS-DIFFUSED MATRIX

Our goal is to select d(v) (d(v) � D(v)) high-quality
features for each view. We denote the selection indicator vector
as s(v) ∈ {0, 1}D(v)

, where s(v)p = 1 indicates that the p-th
feature is selected and s(v)p = 0 otherwise.

To directly exploit the information from the cross-diffused
matrix for feature selection in each view, we propose to
perform matrix alignment towards the cross-diffused matrix.
We assume that a kernel matrix can be constructed from each
view based on the selected features diag(s)X(v) with Gaussian
kernels (i.e., Radial Basis Function):

K
(v)
ij = exp

(
− 1

σ2
‖diag(s(v))x(v)

i − diag(s(v))x(v)
j ‖

2

)
(10)

The intuitive idea of CDMA-FS is to make the kernel
constructed from selected features imitate the cross-diffused
matrix G. We achieve this by employing the matrix alignment
technique [3] [21] as follows.

Definition 1: Matrix Alignment For two symmetric matri-
ces K1 ∈ Rn×n and K2 ∈ Rn×n, the alignment between K1

and K2 is defined as

ρ(K1,K2) =
Tr(K1K2)

||K1||F · ||K2||F
(11)

where Tr(·) is the trace of a matrix.
Matrix alignment can be viewed as calculating the cosine

similarity between two vectorized matrices. However, the
normalization term ||K1||F · ||K2||F makes the optimization
problem more difficult to solve. In this paper, we employ the
unnormalized version of matrix alignment as in [3], which can
be considered as the inner product between two vectorized
matrices.

Definition 2: Unnormalized Matrix Alignment For two
symmetric matrices K1 ∈ Rn×n and K2 ∈ Rn×n, the
alignment between K1 and K2 is defined as

ρ(K1,K2) = Tr(K1K2) (12)

It is usually helpful to center the matrix for better matrix
alignment performance as in observed in [2]. For a symmetric

matrix K, centering K can be achieved by HKH, where the
centering matrix H = I− 1

n11
T .

Definition 3: Centered Matrix Alignment For two real
matrices K1 ∈ Rn×n and K2 ∈ Rn×n, the centered alignment
between K1 and K2 is defined as

ρ(K1,K2) =Tr(HK1HHK2H)

=Tr(HK1HK2)

where the second equation can be obtained by noting HH =
H and Tr(AB) = Tr(BA) for arbitrary matrices A,B ∈
Rn×n.

After a high-quality cross-diffused matrix is obtained, we
select features for each view under the guidance of this matrix.
To achieve this, we aim to maximize the correlation between
the cross-diffused matrix and the kernel matrix computed from
selected features. To select d(v) features for the v-th view, we
formulate it as a constrained optimization problem and find
s(v) to minimize the following objective function:

min
s(v)

f = −Tr(HGHK(v))

s.t.
D(v)∑
p=1

s(v)p = d(v)

s(v)p ∈ {0, 1},∀p = 1, . . . , D(v)

(13)

Discussion Traditional sparse regression based methods [17]
[13] rely on generating intermediate cluster labels and rank
features by their linear regression coefficients. In contrast,
CDMA-FS framework utilizes the cross-diffused matrix,
which preserves more information than cluster labels. Also,
the connected components in the cross diffused matrix tend
to have good purity as shown in Theorem 1, which means
the connected data points are likely from the same class.
The objective, through matrix alignment, aims to select the
features that make connected instances close and unconnected
instances far apart. By optimizing the objective above, we
directly infer the selection vector s which can achieve the
following desirable effects: features that make data points from
the same class similar would be rewarded and features that
make data points from different classes similar would shrink
sp to zero. Hence, different classes would be more separable
in the space of selected features.

V. OPTIMIZATION

A. Gradient Derivation with Relaxed Constraint

The ‘0/1’ integer programming problem in Eq (13) is
computationally intensive to optimize. We relax the ‘0/1’
constraint on s

(v)
p (p = 1, . . . , D(v)) to real values in range

of [0, 1] to make the optimization tractable as in [22]. We
further rewrite the summation constraint

∑D(v)

p=1 s
(v)
p = d(v) in

the form of Lagrange multiplier:

min
s(v)

f = −Tr(HGHK(v)) + λ||s(v)||1

s.t. 0 ≤ s(v)p ≤ 1,∀p = 1, . . . , D(v)
(14)



where || · ||1 denotes the l1 norm on vector (·) and λ controls
the sparsity of s(v). Note that in our case ||s(v)||1 =

∑D
p=1 sp

since we have non-negative constraints on s(v).
We can derive the following gradient w.r.t. the objective

function, since K(v) (v = 1, . . . ,m) is a symmetric matrix.

∂f

∂s
(v)
p

= −
n∑

i,j=1

((HGH)ij ·
∂K

(v)
ij

∂s
(v)
p

) + λ

=

n∑
i,j=1

(((HGH)�K(v))ij

(
x
(v)
ip − x

(v)
jp

)2
)
2sp
σ2

+ λ

(15)

where � is element-wise product. To solve this constrained
optimization problem efficiently, we use Projected Quasi-
Newton Method as shown in the next subsection.

B. Projected Quasi-Newton Method

Traditional Newton method optimizes the following second-
order approximation at the t-th iteration.

qt(s) = f(st)+(s−st)T∇f(st)+
1

2
(s−st)TBt(s−st) (16)

where Bt = ∇2f(st) is the Hessian matrix. Newton method
enjoys good convergence rate but the Hessian matrix requires
O(D2) storage and it is time-consuming to compute. So Quasi-
Newton methods (e.g., L-BFGS [9]) use a positive definite
approximation to the Hessian matrix∇2f(st). For example, L-
BFGS [9] uses the gradients in previous iterations to compute
an approximate Hessian matrix.

Bt+1 = Bt −
Btutu

T
t Bt

uTt Btut
+

yty
T
t

yTt ut
(17)

where ut = st+1 − st and yt = ∇f(st+1)−∇f(st).
To address the constraints on s in Eq (14), projected

Newton method can be used to solve the following constrained
quadratic approximation:

min
s

qt(s)

s.t. s ∈ C
(18)

In our case, C is the [0, 1] box constraint on s(v). A projection
operator for this constraint can be defined as follows.

[Proj[0,1](s
(v))]p = min(1,max(0, s(v)p )), ∀p = 1, 2, . . . , D(v)

(19)
To make the optimization more efficient, we use a variant of
the L-BFGS method which employs spectral projected gradi-
ent method as subroutine to solve the constrained problem in
Eq (18). The optimization method [14] is two-level approach:
at the outer level, L-BFGS updates are used to construct a
sequence of quadratic approximations (with constraints) to
the problem; at the inner level, a spectral projected gradient
method optimizes the constrained subproblem approximately
to generate a feasible direction. The number of iterations
in this algorithm remains linear in dimensionality of feature
vector, but with a higher constant factor than the L-BFGS
method. Nevertheless, the method can lead to significant gain

when the cost of the projection is much lower than evaluating
the function, which is the case in our problem setting.

Although we could use spectral projected gradient method
to exactly solve problem Eq (18), it is expensive to do so in
practice. Therefore, we terminate the spectral gradient descent
subroutine before the exact solution is found, since our goal is
only to obtain a feasible descent direction for L-BFGS. One
might be concerned about the early termination of the spectral
gradient descent subroutine, but in [14] it has been shown that
the spectral gradient descent subroutine, even when terminated
early, can give a descent direction, if we initialize it with st and
we perform at least one spectral gradient descent iteration. In
the implementation, we can parametrize the maximum number
of the spectral gradient descent iterations by tp, the cost of one
iteration is O(mtpD) for the inexact Newton method, given
that our projection operation requires O(D) time and L-BFGS
stores m most recent gradients. The projected Quasi-Newton
algorithm is shown in Algorithm 1.

Algorithm 1 Solve CDMA-FS with Projected Quasi-Newton
Algorithm

Initialize: s0 ← 1, t = 0.
while not converged do

Compute the gradient by Eq (15)
Compute the approximate Hessian
Solve Eq (18) for s∗t using projected spectral gradient

algorithm.
dt = s∗t − st
Perform line search on the direction of dt to satisfy the

Armijo condition.
t = t+ 1

end while
Select the features with corresponding entry in s equal to
1.

VI. PARAMETER SELECTION

Existing multi-view feature selection methods typically have
2 ∼ 3 regularization parameters and it is difficult to choose
appropriate values for these parameters when class labels
are not available. In the original papers of these psuedo-
label approaches [26] [12] [16], only the best performance
is reported, the parameters of which are tuned using all the
class labels. However, such way of setting parameters violates
the assumption of no supervision. In practice, it is impossible
to know the best parameter values and this makes them less
useful for real world applications.

For CDMA-FS, we provide guidelines for choosing the
value of parameter λ. Let us denote the number of features
with s

(v)
p = 1 as N

(v)
1 , which is influenced by the value

of λ. By noting that N (v)
1 is a monotonically non-increasing

function of λ, we can choose the value of λ for each view that
makes N (v)

1 equal to (or within a small range of) the feature
size one wants to retain.



TABLE I: Statistics of datasets

Statistics Reuters BBC Sport BlogCatalog CNN
# of instances 1575 544 1000 2107

# of features view1 view2 view1 view2 view1 view2 view1 view2
3791 2862 3183 3203 5390 2003 6262 996

# of classes 6 5 5 7

VII. EXPERIMENTS

In this section, we compare the proposed method with state-
of-the-art baseline methods on four real world datasets.

A. Datasets

We use four publicly available real-world datasets in our
experiments.
• Reuters Multilingual dataset 1: News articles in English

and German on six topics. Each language can be consid-
ered a view for the same article.

• BBC Sport dataset 2: BBC news articles from 5 topics:
athletics, cricket, football, rugby, tennis. Paragraphs in
the news articles are used to construct two views.

• CNN dataset 3: It consists of news articles from CNN
with two views: news text and images in the news.

• Blogcatalog dataset 4: A subset of blog posts from Blog-
catalog website in the categories of {Autos, Software,
Crafts, Football, Career&Jobs}. Two views are the text in
posts and the tags associated with the posts, respectively.

The statistics of four real-world datasets is summarized in
Table I.

B. Baselines

We compare CDMA-FS with using all features and five
other unsupervised feature selection methods as follows:
• All Features: It uses all original features without selection

for evaluation.
• LS: Laplacian Score [6] selects the features that preserve

the local manifold structure.
• UDFS: Unsupervised Discriminative Feature Selection

[26] is a pseudo-label based approach with L2,1 regu-
larization to exploit the local structure.

• RSFS: Robust Spectral Feature Selection [16] selects fea-
tures by robust spectral analysis framework with sparse
regression.

• MVFS: Multi-view Feature Selection [17] is unsupervised
feature selection for multi-view data based on pseudo
labels, which are generated as the consensus of spectral
clustering on two views.

• MVUFS: Multi-view Unsupervised Feature Selection
[13] generates pseudo-labels by Non-negative Matrix
Factorization and local kernel learning.

1https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+
Multilingual,+Multiview+Text+Categorization+Test+collection

2http://mlg.ucd.ie/datasets/segment.html
3https://sites.google.com/site/qianmingjie/home/datasets/cnn-and-fox-news
4http://dmml.asu.edu/users/xufei/datasets.html

C. Experiment setup

In this section, we evaluate the quality of selected features
by their clustering performance. We use the the popular co-
regularized spectral clustering [7] for clustering multi-view
data 5. We set their σ as the median of pairwise Euclidean
distances between data points and λ = 0.1 as suggested in the
paper. KMeans is then used on these latent factors. We repeat
the KMeans experiment for 20 times (since it is initilization)
and report the average performance. We vary the number of
features d in the range of {100, 200, 300, 400}. For each
feature size d, we choose appropriate λ in our method via
binary search to let the number of selected features (with score
sp = 1) within d± 10.

Following the typical experimental setting for unsupervised
feature selection [26] [8] [25], we use Accuracy and Nor-
malized Mutual Information (NMI) to evaluate the result of
clustering. Accuracy is defined as follows.

Accuracy =
1

n

n∑
i=1

I(ci = map(pi)) (20)

where pi is the clustering result of instance i and ci is its
real class label. map(·) is a mapping function that maps
each cluster label to a ground-truth label using Kuhn-Munkres
Algorithm [10].

Normalized Mutual Information (NMI) is another popular
metric for evaluating clustering performance. Let C be the
set of clusters from the ground truth and C ′ obtained from
a clustering algorithm. Their mutual information MI(C,C ′)
can be defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) log

p(ci, c
′
j)

p(ci)p(c′j)
(21)

where p(ci) and p(c′j) are the probabilities that a random
instance from the data set belongs to ci and c′j , respectively,
and p(ci, c′j) is the joint probability that the instance belongs
to the cluster ci and c′j at the same time. In our experiments,
we use the normalized mutual information as in previous work
[8] [16].

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
(22)

where H(C) and H(C ′) are the entropy of C and C ′. Higher
value of and Accuracy and NMI indicates better quality of
clustering.

5We use the code at http://www.umiacs.umd.edu/∼abhishek/code
coregspectral.zip

https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
http://mlg.ucd.ie/datasets/segment.html
https://sites.google.com/site/qianmingjie/home/datasets/cnn-and-fox-news
http://dmml.asu.edu/users/xufei/datasets.html
http://www.umiacs.umd.edu/~abhishek/code_coregspectral.zip
http://www.umiacs.umd.edu/~abhishek/code_coregspectral.zip


TABLE II: Clustering accuracy on four datasets. For the baselines that need parameter tuning, best/median performance is
reported.

Method BBC Sport Reuters
# features 100 200 300 400 100 200 300 400
All Features 0.5960 0.6545
LS 0.4034 0.3885 0.3756 0.4112 0.3792 0.4587 0.5446 0.5900
UDFS 0.4565/0.4504 0.5232/0.5228 0.5549/0.5107 0.5525/0.5164 0.4320/0.4225 0.4921/0.4436 0.5926/0.4630 0.5918/0.5421
RSFS 0.6054/0.5388 0.6515/0.5709 0.6713/0.6041 0.6634/0.6085 0.5688/0.4558 0.5757/0.4529 0.6546/0.5271 0.6259/0.5332
MVFS 0.5996/0.5480 0.6572/0.5662 0.6148/0.5966 0.6118/0.6015 0.5302/0.4284 0.5561/0.4505 0.5592/0.5447 0.5950/0.5299
MVUFS 0.6253/0.4338 0.6181/0.5258 0.6242/0.6089 0.6542/0.6181 0.5998/0.3677 0.6476/0.4782 0.6397/0.5339 0.6182/0.5619
CDMA-FS 0.7341 0.7403 0.7472 0.7494 0.5465 0.6015 0.6322 0.6428
Method BlogCatalog CNN
# features 100 200 300 400 100 200 300 400
All Features 0.5979 0.3005
LS 0.3947 0.3975 0.4112 0.4550 0.2435 0.2419 0.2573 0.3238
UDFS 0.5219/0.4153 0.6173/0.6022 0.6561/0.6556 0.6489/0.6459 0.4095/0.4084 0.4019/0.3956 0.4171/0.3921 0.3962/0.3772
RSFS 0.6388/0.4995 0.6504/0.5733 0.6657/0.5917 0.6513/0.6014 0.3647/0.2692 0.4131/0.3140 0.4112/0.3608 0.4243/0.3596
MVFS 0.5409/0.5139 0.6027/0.5690 0.6107/0.5778 0.6457/0.6056 0.3578/0.2639 0.4204/0.3511 0.3902/0.3697 0.4213/0.3637
MVUFS 0.6157/0.4901 0.6693/0.6157 0.6565/0.5514 0.6496/0.5521 0.4524/0.3227 0.4899/0.3520 0.4879/0.3402 0.4649/0.3566
CDMA-FS 0.6029 0.6746 0.6704 0.6851 0.5347 0.4989 0.4771 0.4783

TABLE III: Clustering NMI on four datasets. For the baselines that need parameter tuning, best/median performance is reported.

Method BBC Sport Reuters
# features 100 200 300 400 100 200 300 400
All Features 0.4434 0.4846
LS 0.0724 0.0775 0.0702 0.1099 0.1960 0.2689 0.3486 0.3989
UDFS 0.2279/0.1968 0.3453/0.2994 0.3453/0.2939 0.3386/0.2861 0.2203/0.2187 0.2829/0.2639 0.4023/0.2834 0.4046/0.3677
RSFS 0.3543/0.3141 0.4340/0.3900 0.5162/0.4151 0.5076/0.4166 0.4079/0.2429 0.4329/0.2963 0.4539/0.3648 0.4666/0.4134
MVFS 0.3383/0.3133 0.4288/0.3899 0.4276/0.4155 0.4371/0.4157 0.3594/0.2267 0.3986/0.2787 0.4256/0.3855 0.4427/0.4180
MVUFS 0.4374/0.2062 0.4255/0.3171 0.4273/0.4032 0.4443/0.4236 0.4260/0.1866 0.4887/0.3346 0.4816/0.3570 0.4681/0.4000
CDMA-FS 0.5774 0.6659 0.6693 0.6738 0.3823 0.4532 0.4801 0.4858
Method BlogCatalog CNN
# features 100 200 300 400 100 200 300 400
All Features 0.4782 0.0957
LS 0.2252 0.2458 0.2400 0.2819 0.0513 0.0557 0.0667 0.1280
UDFS 0.3223/0.1978 0.4123/0.3580 0.4501/0.4309 0.4753/0.4328 0.2122/0.1897 0.1852/0.1846 0.1920/0.1831 0.1868/0.1784
RSFS 0.4260/0.3090 0.4551/0.3564 0.4715/0.4064 0.4746/0.4408 0.1537/0.0690 0.1862/0.0984 0.1853/0.1430 0.2048/0.1383
MVFS 0.3432/0.3181 0.3971/0.3543 0.4274/0.4041 0.4764/0.4424 0.1517/0.0739 0.2051/0.1391 0.1558/0.1444 0.2034/0.1391
MVUFS 0.4237/0.2910 0.4747/0.4347 0.4643/0.3997 0.4504/0.3998 0.2242/0.1170 0.2824/0.1340 0.2917/0.1423 0.2670/0.1645
CDMA-FS 0.4176 0.4650 0.4866 0.5105 0.3244 0.3244 0.3049 0.2910

We set k = 5 for the kNN neighbor size in the baseline
methods and our approach following previous convention [8].
For the number of pseudo-classes in UDFS, RSFS, MVFS and
MVUFS, we use the ground-truth number of classes. Also,
we perform grid search in the range of {0.1, 1, 10} for the
regularization parameters in these baseline methods. Besides
their best performance, we also report the median performance
for them. For CDMA-FS proposed in this paper, we use ‘0/1’
weighting in the W and we fix σ2 = 1 and α = 0.01 for all the
datasets after normalizing each data point to unit length. We
set the maximum number of iterations for the cross-diffusion
process as 20.

D. Results

The clustering accuracy and NMI on four datasets are
shown in Table II and III. It can be observed that feature
selection is a useful technique for improving the multi-view
clustering performance. For example, compared with using
all the features, CDMA-FS with 400 features improves the
accuracy on BBCSport and BlogCatalog datasets by 26%
and 15%, respectively. When comparing with other feature
selection methods, we can observe that CDMA-FS performs

favorably or comparable to the best performance of baseline
methods, the parameters of which are tuned using all the class
labels. Considering that in practice one cannot know the best
parameters for these baseline methods (since we assume no
supervision), their median performance is a better reflection
of these methods’ practical power, which is far inferior to
CDMA-FS.

E. Parameter Sensitivity

In this subsection, we study how the regularization α in the
cross diffusion process affects the quality of selected features.
The performance w.r.t different α on BlogCatalog and CNN is
shown in Figure 3. We can observe that the performance is not
very sensitive to α, and CDMA-FS can perform reasonably
well when α > 10−5. In contrast, the baseline methods in
Table II and III tend to be more sensitive w.r.t. the parameter
values, as the their median performance differs significantly
with best performance.

VIII. CONCLUSION

High-dimensional multi-view data pose challenges for many
machine learning tasks. While feature selection methods can
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Fig. 3: NMI w.r.t different values of α

be useful for alleviating the curse of dimensionality, existing
approaches either cannot exploit information from multiple
views simultaneously or rely on cluster labels for this task.
In this paper, we aim to preserve more accurate information
from multi-view data by learning a cross-diffused matrix and
directly utilize the information by matrix alignment. Exper-
imental results show that CDMA-FS is able to select high-
quality features on real-world datasets and outperforms the
baseline methods significantly.
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