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EISLAB, Luleå University of Technology, Sweden

Abstract—Sparse signal representations based on linear com-
binations of learned atoms have been used to obtain state-of-
the-art results in several practical signal processing applications.
Approximation methods are needed to process high-dimensional
signals in this way because the problem to calculate optimal
atoms for sparse coding is NP-hard. Here we study greedy
algorithms for unsupervised learning of dictionaries of shift-
invariant atoms and propose a new method where each atom is
selected with the same probability on average, which corresponds
to the homeostatic regulation of a recurrent convolutional neural
network. Equiprobable selection can be used with several greedy
algorithms for dictionary learning to ensure that all atoms
adapt during training and that no particular atom is more
likely to take part in the linear combination on average. We
demonstrate via simulation experiments that dictionary learning
with equiprobable selection results in higher entropy of the sparse
representation and lower reconstruction and denoising errors,
both in the case of ordinary matching pursuit and orthogonal
matching pursuit with shift-invariant dictionaries. Furthermore,
we show that the computational costs of the matching pursuits
are lower with equiprobable selection, leading to faster and more
accurate dictionary learning algorithms.

I. INTRODUCTION

Sensors like cameras, microphones and accelerometers typ-
ically generate redundant information because the resulting
data have an underlying structure. That is why most observed
phenomena can be accurately approximated with mathematical
relationships in the form of physical laws, and also why such
data can be compressed using algorithms that identifies and
approximates patterns. Redundancies in the data make the pro-
cesses of communicating, analyzing and storing information
inefficient, thus constraining the domain of feasible applica-
tions. The problem to identify the structure of signals and
thereby derive succinct representations that are both compact
and informative is a computational challenge, which limits the
efficacy of sensor systems.

Sparse representation models [1], [2], [3], [4] and related
machine learning algorithms [5], [6] have proven remarkably
successful at extracting useful information from complex high-
dimensional signals, for example in the context of denoising
[7], under-determined source separation [8], [9], compressed
sensing [10], super-resolution sensing [11], and classification
[12]. In a sparse model, the signal is typically described as
a linear combination of elementary functions called atoms,
which can either be predefined (if an appropriate generative
model for the signal class is known) or learned from a training

signal. The goal is to select or learn the atoms so that the model
residual is minimum for a certain sparsity of the representa-
tion, or to maximize the sparsity for a certain tolerance on the
model residual. Atoms typically have unit norm and the set
of atoms defines a dictionary, which can be subject to further
constraints like temporal or spatial translation invariance.

Fourier and wavelet analysis are two examples where pre-
defined dictionaries are used. Models based on predefined
dictionaries have enabled derivation of closed-form mathe-
matical results and fast algorithms that are widely used, but
such approaches are simplistic compared to the complexity
of the underlying natural phenomena. The dictionary learning
approach is based on the hypothesis that complex signals can
be more accurately modeled by extracting environmentally
matched atoms from the signal. However, the dictionary learn-
ing problem is NP-hard and it is also hard to find approximate
solutions near the optimal sparsity level [13].

The development of dictionary learning methods was stim-
ulated by results presented in the mid ’90s by Olshausen
and Field [14], [15], which demonstrate that atoms similar
to the receptive fields of cells in visual cortex can be learned
from natural images by imposing a few general optimization
conditions, including sparsity and statistical independence of
atoms. This demonstrates that some aspects of the low-level
functions in the visual system can be explained by a few
general computational principles, and that elementary struc-
tures of such complex signals can be automatically uncovered
from examples. Since that time several probabilistic dictionary
learning and sparse coding methods have been developed
[2], [5], aiming for a dictionary that either maximizes the
likelihood of the data, as for example in [16], or the posterior
probability of the dictionary, as in [17]. Recent develop-
ments include extensions of dictionary learning methods to
distributed systems [18] and low-power hardware [19].

There is a knowledge gap between receptive field models
and the observed function of neural networks in biological
sensory systems. For instance, neurons demonstrate a form
of homeostatic adaptation of the functional properties of the
network to the ongoing changes in the statistical structure of
the sensory input [20], [21], [22], which may be related to
optimal encoding [23] of the input by dynamic adaptation of
the receptive fields. Furthermore, there is a notion that home-
ostatic mechanisms serve to maintain the dynamics of cortical
networks at a critical point [24], [25] where the dynamic
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range and information processing capacity are optimal [26],
[27]. Can we learn something new about dictionary learning
by incorporating and studying such homeostatic regulation
mechanisms?

In this paper we focus on greedy algorithms for dictionary
learning, where the approximation error is reduced iteratively
by sparse decomposition of the signal followed by gradient
optimization of the atoms in the dictionary. Our aim is to
study a basic implementation of homeostatic regulation where
all atoms are enforced to occur with the same probability on
average, which in terms of neurons and receptive fields mean
that neurons fire with the same average probability.

The starting point is the dictionary learning method intro-
duced by Smith and Lewicki [28], where the sparse code is
generated with Matching Pursuit (MP) [29], [30] and the shift-
invariant dictionary is updated with probabilistic gradient as-
cent on the likelihood of the data [16]. In principle this model
corresponds to a particular type of recurrent convolutional
neural network with max pooling (cf. Fig. 5 in [15]), which
we extend here with a homeostatic regularization mechanism.
Typically a subset of the atoms are selected in the MP for one
particular signal, while some atoms are rarely selected and do
not take significant part in the gradient-based dictionary update
process. We implement homeostatic regulation by enforcing
equiprobable atom selection in the MP, which implies that
each atom is equally likely to occur in the linear combination
on average, see Figure 1. In addition to MP we consider
dictionary learning with Orthogonal MP (OMP) [30], [31],
which in the case of shift-invariant dictionaries is applicable
to high-dimensional signals in the form of local OMP [32].

We study the effects of equiprobable selection on the learned
dictionary and sparse representation of music and birdsong.
With equiprobable selection all atoms adapt to the training
signal, see Figure 2. Our main finding is that the entropy
and reconstruction accuracy are higher for equiprobable sparse
representations, and that the computational cost is reduced by
the equiprobability constraint. Equiprobable selection can be
generalized to other greedy dictionary learning methods and
these results motivate further investigations of dictionary learn-
ing models incorporating more realistic homeostatic regulation
mechanisms observed by neuroscientists.
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Figure 1. Two equally sparse representations of 0.15 seconds of 44.1 kHz
rock music obtained with two different matching pursuit algorithms and
learned dictionaries. Discs represent onsets of atoms and disc sizes are
proportional to the atom coefficients. The panel on the (left-hand) right-hand
side is obtained with (non-equiprobable) equiprobable MP. With equiprobable
MP all atoms adapt to the signal and contributes to the sparse representation.
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Figure 2. Dictionaries of 32 atoms learned from 44.1 kHz rock music
using the dictionary learning methods described below, which are based on
four different matching pursuit algorithms (MP, OMP, E–MP and E–OMP).
Initially the four dictionaries are identical and include atoms that are sampled
from a Gaussian distribution with zero mean.

II. DICTIONARY LEARNING METHOD

The signal, x(t), is modelled as a linear superposition of
waveforms, ϕi, with compact support and additive noise

x(t) =

M∑
i=1

Ni∑
j=1

ai,jϕi(t− τi,j) + ε(t). (1)

The functions ϕi are shift-invariant atoms that represent el-
ementary waveforms of the signal and M is the number of
different atoms in the model. The variable ε(t) represents the
model residual, including noise. The variable Ni refers to the
number of instances of atom ϕi, and the temporal position and
amplitude of the j-th instance of atom ϕi are denoted by τi,j
and ai,j , respectively. The set of M atoms defines a dictionary

Φ = {ϕ1, · · · , ϕM} , (2)

which we want to adapt to the signal. In principle x(t) and
ϕi can be multidimensional, but here we limit the numerical
experiments to scalar signals.

Eq. (1) defines a sparse approximation of x(t) if the number
of terms are few compared to the number of samples of x(t)
and ε(t) is small compared to x(t), which requires that the
dictionary Φ is adapted to the signal. Thus, the dictionary
learning problem is to calculate a set of ϕi that minimizes ε(t)
under `0 regularization of the coefficient matrix. This problem
is NP-hard [13] and cannot be solved explicitly. Instead, a
greedy algorithm that reduces the approximation error in a



two-step iteration process is used [33]: A) Encoding step;
optimize the sparse representation of the signal x(t) with MP
or OMP and a constant dictionary Φ. B) Learning step; update
the dictionary Φ using the sparse representation and model
residual so that the approximation error is reduced.

The encoding step is by itself an iterative process that
terminates at some predefined sparsity or tolerance on the
model residual. Each iteration of the encoding process includes
two steps:
A1) Atom selection – Find the atom ϕi and offset τi,j that

maximizes the cross-correlation with the model residual,
rk(t), and calculate the corresponding ai,j .

A2) Residual update – Update the residual by subtracting the
contribution from the selected atom, rk+1(t) = rk(t) −
ai,jϕi(t− τi,j) with r0(t) = x(t).

The accuracy of the resulting signal approximation depends
on the complex interplay between the atom selection rule and
the dictionary learning process.

MP optimizes the parameters τi,j and ai,j of the most
recently selected atom, while local OMP [32] re-optimizes
all ai,j for selected atoms with overlapping support in each
iteration (OMP compensates for the interference between atom
instances). In the following we consider both MP and OMP
when introducing homeostatic regulation. Our implementation
of MP and OMP are based on efficient computational methods
like those described in [32] and [34].

The atom selection rule defined above is optimal for sparse
decomposition of a signal with a constant dictionary [30], but
it does not imply optimal dictionary learning. For example,
if some atoms are more frequently selected than others the
entropy of the resulting sparse representation is expected to be
suboptimal, potentially leading to information loss and lower
reconstruction accuracy. Furthermore, atoms that are rarely
selected mainly contribute to the model complexity. Therefore,
we introduce a modified atom selection rule that regulates the
average probability for each atom to be selected:
A∗

1) Equiprobable atom selection – Find the atom ϕi and
offset τi,j that maximizes the cross-correlation with the
model residual, rk(t), under the constraint P (ϕi) < p
and calculate the corresponding ai,j .

The atom selection constraint P (ϕi) < p can be applied to
both MP and OMP for dictionary learning purposes. The con-
strained matching pursuit terminates when no atom is selected,
at which point all atoms occur with the same probability p.
We refer to the resulting “equiprobable” MP and OMP as
E–MP and E–OMP, respectively. MP and OMP are defined
by steps A1, A2 and B above, while E–MP and E–OMP
are defined by A∗

1, A2 and B. The resulting four matching
pursuits are summarized in Table I and Algorithm 1, which
is a straightforward extension of the local OMP algorithm
presented in [32] to equiprobable atom selection.

The function P (ϕi,Φk) is the probability for each shift-
invariant atom to be selected, which is defined here by the rel-
ative number of occurrences of each atom in the subdictionary
Φk of selected atoms and offsets. For E–MP and E–OMP the

Algorithm 1 Matching pursuit
1: function match(Φ, x, p)
2: r0 = x
3: a0 = 0
4: τ0 = 0
5: Φ0 = ∅
6: for k = 1 to I do
7: {ϕk, tk} = argmaxϕi,τi,j 〈rk−1,Φ〉

subject to constraint
8: Φk = Φk−1 ∪ ϕk
9: Ψk = neighborhood

10: χk = (Ψ∗
kΨk)−1Ψ∗

krk−1

11: ak = ak−1 + χk
12: τk = τk−1 + tk
13: rk = rk−1 −Ψkχk
14: end for
15: return {aI , τI , rI}
16: end function

total number of iterations, I , is defined so that P (ϕi,ΦI) ≡ p
for each shift-invariant atom, ϕi, which implies that each
atom is included in the sparse approximation with the same
probability, p, on average. For MP and OMP the total number
of iterations, I , is defined to be equivalent to the number of E–
MP and E–OMP iterations. Thus, the resulting MP, OMP, E–
MP and E–OMP approximations are equally sparse and can be
compared in terms of reconstruction error, denoising error etc.
With MP and OMP the shift–invariant atoms typically occur
with different probabilities, resulting in a learned dictionary
where only a subset of the atoms adapt to the training signal.

The dictionary learning problem is to infer the set of atomic
waveforms, ϕi, in the dictionary, Φ, so that the matching
pursuit results in a sparse representation with low residual.
A computationally feasible formulation of this problem can
be obtained by rewriting Eq. (1) in probabilistic form

p(x|Φ) =

∫
p(x|a,Φ)p(a)da (3)

≈ p(x|â,Φ)p(â), (4)

where â is the maximum a posteriori (MAP) estimation of a,

â = arg max
a

p(a|x,Φ) = arg max
a

p(x|a,Φ)p(a), (5)

that is generated by the matching pursuit [16], [28], [29].
Furthermore, we assume that the noise term, ε(t), in Eq. (1)
is Gaussian. Thus, the data likelihood, p(x|a,Φ), is also

Table I
LIST OF MATCHING PURSUITS DEFINED BY ALGORITHM 1.

METHOD constraint neighborhood
MP ϕi ∈ Φ ϕk

OMP ϕi ∈ Φ Φk

E–MP ϕi ∈ Φ, P (ϕi,Φk) < p ϕk

E–OMP ϕi ∈ Φ, P (ϕi,Φk) < p Φk



Gaussian and takes the form

p(x|a,Φ) ≈ exp

(
−‖x− aΦ‖2

2σ2
ε

)
, (6)

where

‖x− aΦ‖2 = ‖x−
M∑
i=1

Ni∑
j=1

ai,jϕi(t− τi,j)‖2, (7)

and σ2
ε is the variance of the noise. Note that x, a and Φ

are matrices in these probabilistic expressions, and that the
dictionary, Φ, includes all possible shifts of each atom ϕi.

Under these assumptions the atoms can be optimized by
performing gradient ascent on the approximate log data prob-
ability [28]. It follows from Eq. (4) that

∂

∂ϕi
log(p(x|Φ)) =

∂

∂ϕi
[log(p(x|â,Φ)) + log(p(â))] . (8)

By taking the derivative and substituting the likelihood term
with Eq. (6) this becomes

∂

∂ϕi
log(p(x|Φ))

=
−1

2σ2
ε

∂

∂ϕi
‖x−

M∑
i=1

Ni∑
j=1

ai,jϕi(t− τi,j)‖2 (9)

=
1

σ2
ε

∑
j

ai,j [rI ]τi,j . (10)

The factor [rI ]τi,j represents the model residual coinciding
with atom ϕi at temporal position τi,j . In other words, the
shape of each atom is adapted with a weighted average of
the residual elements coinciding with the matches identified
by the matching pursuit. This is a form of nonlinear Hebbian
learning because the atoms are adapted to patterns in the signal
that they correlate with.

In order to use the gradient for dictionary learning we
introduce a relative steplength parameter, η, and define the
gradient ascent update of atom ϕi as

ϕi → ϕi +
η

σ2
ε

∑
j

ai,j [rI ]τi,j . (11)

This implies that the dictionary adaptation rate depends on
the activation rate of atoms. We zero-pad all atoms with ten
elements and grow each tail in length with ten additional
elements if the RMS of the tail exceeds 0.1 of the atom RMS.
The resulting dictionary learning method is summarized in
Algorithm 2.

The function randdict(M) generates a random dictio-
nary of M normalized atoms, where each atom includes fifty
elements sampled from a Gaussian distribution with zero mean
and two vanishing tails that are ten elements long. Thus,
the M different atoms are seventy elements long initially.
The extnorm(ϕ) function extends the length of an atom
ϕ with ten vanishing elements whenever the RMS of a tail
exceeds the predefined threshold mentioned above, and it
also normalizes the atom. Training data is fetched with the
getdata() function, which allows block-based processing of

Algorithm 2 Dictionary learning
1: function dlearn(M,p, η)
2: n = 0
3: r0 = 0
4: Φ(0) = randdict(M)
5: while xn+1 = getdata(n, rn) is not empty do
6: n = n+ 1
7: {an, τn, rn} = match(Φ(n−1), xn, p)
8: for each ξi in an do
9: δi = η ξi[rn]τn/var(rn)

10: ϕ
(n)
i = extnorm(ϕ

(n−1)
i + δi), ϕ

(n)
i ∈ Φ(n)

11: end for
12: end while
13: return Φ(n)

14: end function

sampled signals using overlapping window functions and part
of the former residual, ri−1, of the matching pursuit.

III. RESULTS

We investigate the effects of equiprobable atom selection on
the learned dictionary and sparse approximation accuracy with
numerical experiments using two different signals. One signal
is a 155 seconds long 44.1 kHz rock music track with lyrics
[35] and the second signal is a 26 seconds long 48 kHz record-
ing of Zebra Finch song phrases [36]. The dictionary learning
method is defined by Eq. (11) with steplength η = 10−6.
We do not observe significant improvements in the resulting
model accuracy using other values of η and our qualitative
analysis does not depend on finetuning of this hyperparameter.
The getdata() function is defined so that each block of
data (xn in Algorithm 2) is five seconds long sampled from
one random location in the data set. The progression of the
dictionary learning protocol is thereby quantified in terms of
time rather than epochs.

A. Model accuracy and rate of convergence

In the first experiment we study the signal-to-noise ratio
(SNR) of the sparse approximation of rock music with an av-
erage atom selection probability of p = 0.05, see Figure 3. The
resulting dictionaries of 32 atoms are displayed in Figure 2.
Equiprobable selection reduces the initial dictionary learning
rate, but it also leads to an improved convergence time and
accuracy of the sparse model. For example, the accuracy of
the E–MP-based approximation exceeds that of the OMP-
based approximation after about 1000 seconds of learning.
This is remarkable considering that the computational cost of
E–MP is lower than both MP and OMP (further details below).
With 64 atoms a longer learning time is needed to reach a
comparable SNR, but after about 2000 seconds of learning
the SNR exceeds that of models with 32 atoms. Note that
atoms are shift invariant. Thus, the number of possible sparse
representations of a five-second long window is astronomical
even if there are only a few atoms in the dictionary.
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with a dictionary of 32 (64) learned atoms.
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Dictionaries are learned from 1500 seconds of rock music with an average
event probability of 0.05 (dashed line).

B. Effect of varying atom selection probability

Next we study the sensitivity of the model to variations in
the average atom selection probability, p. Using dictionaries
learned from 1500 seconds of rock music we calculate the
SNR of the sparse approximation of rock music for different
values of p, see Figure 4. This result demonstrates that the
models based on dictionaries learned with E–MP and E–OMP
degrades gracefully when the sparsity of the model changes.

10
−2

10
−1

10
0

4

6

8

10

12

14

16

Noise level, σ
n
/σ

s

S
N

R
 [

d
B

]

 

 

MP

OMP

E−MP

E−OMP

Figure 5. Reconstruction SNR versus the relative standard deviation of
additive Gaussian noise, σn/σs, for a track of 44.1 kHz rock music with
standard deviation σs.

The learned dictionaries generalize to such varying conditions
and are not “overfitted” to one particular value of p. Thus,
equiprobable atom selection/activation can be feasible also
with low-power computing substrates like neuromorphic chips
where the average value of p cannot be precisely defined due
to device mismatch and noise.

C. Denoising

Sparse approximations of signals based on learned dic-
tionaries are useful for solving denoising problems because
atoms represent repeating additive structure, not noise-like
components of the signal which mostly end up in the model
residual, ε(t). We investigate the denoising capability of E–
MP- and E–OMP-based models by adding Gaussian noise to
the rock music signal and comparing the SNR of the model
for different noise levels with p = 0.05, see Figure 5. The
noise level is quantified in terms of the ratio of the standard
deviation of additive Gaussian noise, σn, to the standard
deviation of the signal, σs. As expected the OMP-based model
produces denoising results that are far better than MP, at least
for moderate levels of noise, σn/σs ≤ 0.1. The denoising
accuracy obtained with E–MP and E–OMP is comparable to
that of OMP for moderate levels of noise, σn/σs ≤ 0.1, and
it is superior to OMP for high levels of noise σn/σs > 0.1.
This is another remarkable consequence of equiprobable atom
selection, which indicates that the selection constraint prevents
overfitting of noise-like signal components.

D. Computational cost

Next we investigate the computational cost of the four
different dictionary learning methods. The experiments are
done using one 2.3 GHz Intel Core i7 processor core and a



C++ implementation of the algorithms executed in Matlab.
We calculate the average core time per signal sample and
iteration of the matching pursuit, see Figure 6. This definition
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Figure 6. Processing time versus the window length for dictionaries with
32 atoms using one 2.3 GHz Intel Core i7 processor core.

implies that the displayed processing time should be multiplied
with the number of samples squared times the average atom
selection probability, p, to get the actual computing time.
We find that equiprobable selection is beneficial in terms
of computational cost. In particular, MP is more costly than
E–MP, and OMP is more costly than E–OMP. Furthermore,
with a window length of 200 kilosamples the processing time
of E–OMP is comparable to that of MP-based dictionary
learning. Note that these results are obtained with the efficient
implementations of MP and local OMP introduced above,
which is the reason why the computational cost per sample
decreases with the window length. This is not the case for
straightforward implementations of the algorithms, which are
significantly more costly.

E. Entropy of sparse representation

Sparse representation with matching pursuit and a learned
dictionary is a form of lossy compression where a signal is
approximated using prior information encoded in the learned
atoms. Next we study the information entropy of the sparse
representations generated by the matching pursuits introduced
above and the corresponding learned dictionaries. The number
of selected atoms per second depends on the signal being
processed and the method and dictionary used.

The top–25 most frequently MP/OMP-selected atoms ob-
tained using the learned dictionaries are illustrated in Figure 7
for both rock music and birdsong. Illustrated in the figure are
also the constant rate of atom selection events for E–MP and
E–OMP with an average selection probability of p = 0.05.
For MP and OMP some atoms are typically more likely to be
selected than others, while some atoms may not be selected

Table II
ENTROPY IN BITS PER ATOM SELECTED BY THE DIFFERENT ALGORITHMS.

SIGNAL NO ATOMS MP OMP E-MP E-OMP
Birdsong 32 3.5 3.6 5.0 5.0
Music 32 3.5 4.1 5.0 5.0
Music 64 4.7 5.2 6.0 6.0

and learned at all. In contrast to that the average probability
for selecting each atom is constant for E–MP and E–OMP. For
example, for the equiprobable pursuits 0.05× 48000/32 = 75
events per second are expected for each atom on average.
Thus, the entropy of the sequence of selected atom numbers
is expected to be higher for E–MP and E–OMP than for the
conventional matching pursuits, which is part of the motivation
of this study outlined in the Introduction.

We calculate the Shannon entropy, −
∑
i pilog2(pi), of

the atom number sequence generated by the four matching
pursuits and the two different signals, see Table II. We find
numerically that OMP events have higher entropy than MP
events for the signals considered here, and that E–MP and
E–OMP have a maximum entropy of log2(M) as expected.
For example, with a dictionary of 32 atoms the entropy is
log2(32) = 5 bits per selected atom with E–MP and E–OMP.
For comparison, the entropy is 3.5 (4.1) bits per selected atom
for MP (OMP) in the case of rock music, and 3.5 (3.6) bits
per selected atom for birdsong.

The distribution of atom coefficients, am,i, also depend on
the method used and the signal being processed. Histograms of
the atom coefficients calculated for rock music with 32 learned
atoms are illustrated in Figure 8. An explicit calculation of the
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Table III
COEFFICIENT ENTROPIES RELATIVE TO THE OMP COEFFICIENT ENTROPY.

BINS OMP E-OMP MP E-MP
16 1 1.04 1.07 1.10
32 1 1.02 1.06 1.08
64 1 1.00 1.04 1.05

Shannon entropy of the event coefficients is not meaningful
due to the continuous (floating point) nature of these numbers.
However, we calculate the entropies of multiple histograms
with different bin counts (16, 32 and 64) and note a systematic
difference between the four models, see Table III. Quantized
OMP coefficients have the lowest entropy, followed by E–
OMP, MP and E–MP in order of increasing entropy. The
maximum difference is 10% when comparing the coefficient
entropies of E–MP and OMP with 16 bins (about 4-bits of
precision), which can be compared to the difference of about
20% in Table II. Thus, by adding the entropies of atom indices
and coefficients we conclude that E–MP has the highest event
entropy followed by E–OMP for the signals considered here.

In these numerical experiments the average atom selection
probability is a constant with value 0.05, which implies that on
average there is one selected atom in the sparse approximation
for every 20 samples of the signal. This implies that the
Shannon information of the sparse approximations generated
by the different matching pursuits are directly proportional to
the entropy per event. Therefore, for the signals considered
here the sparse approximations calculated with equiprobable
selection have higher Shannon information, in line with the
higher reconstruction accuracy obtained with these methods
in the former subsections.

IV. DISCUSSION

We extend a well-known dictionary learning and sparse
representation model [28] with a basic homeostatic regulation
mechanism. The extension is motivated by the observation
that the information entropy of such sparse representations is

sub-optimal by construction, and partially also by the central
role of homeostatic regulation in cortical networks and spiking
neural network models of sensory areas, see for example [37],
[38].

The sparse representations are generated with Matching
Pursuit (MP) [30], Local Orthogonal MP (OMP) [32] and
the homeostatic extensions Equiprobable MP (E–MP) and
Equiprobable OMP (E–OMP) introduced here. Dictionaries of
shift-invariant atoms are learned using probabilistic gradient
ascent for two different signals (rock music and Zebra Finch
song phrases). With dictionary learning based on E–MP- and
E–OMP we obtain an improved rate of convergence and sparse
representation SNR (Figure 3), improved denoising results
(Figure 5), a lower computational cost (Figure 6) and higher
information entropy of the sparse representation (Table II and
Table III).

Note that E–MP and E–OMP only make sense in a dictio-
nary learning setting where the atoms are adapted to the signal,
otherwise the regular OMP/MP methods should be used.
Furthermore, dictionary learning with equiprobable selection is
only sensible with complex signals when the number of shift-
invariant atoms in the dictionary is lower than the number
of independent and uniqe signal components, which typically
is the case in practical applications. Otherwise the preferred
solution is to learn one atom for each independent component,
which in general is not expected with equiprobable selection.

The low coefficient entropy of E–OMP in combination with
maximum atom selection entropy is an interesting property
of E–OMP-based dictionary learning that could improve the
accuracy of dictionary learnimg implementations with quan-
tized coefficients. Furthermore, with E–MP and E–OMP atoms
are enforced to occur with the same probability on average
and all atoms adapt to the training signal, which is not the
case with MP/OMP. In principle the equiprobable selection
mechanism resembles a dropout [39] mechanism where the
probability of dropout dynamically depends on the selection
rate of each atom. We study the sensitivity of the method to
variations in the average selection probability, p, and find that
the learned dictionaries are useful with other values of p and
that the model degrades gracefully for lower values of p. Thus,
low-power neuromorphic implementations of the proposed
equiprobable selection and dictionary learning methods could
be feasible regardless of uncertainties associated with for
example device mismatch and noise.

In summary, our main finding is that the accuracy and
learning rate of a well-known dictionary learning method are
improved by the equiprobable atom selection constraint intro-
duced here, and that the computational cost of the resulting
E–MP and E–OMP methods are lower than of MP and local
OMP, respectively. Equiprobable selection can be applied to
other greedy methods for dictionary learning and there are also
opportunities to further develop the basic homeostatic regu-
lation mechanism outlined here in search for more efficient
approaches to address this NP-hard problem.
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