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Abstract—Machine learning techniques have been actively
pursued in the last years, mainly due to the great number of
applications that make use of some sort of intelligent mechanism
for decision-making processes. In this context, we shall highlight
pruning strategies, which provide heuristics to select from a
collection of classifiers the ones that can really improve recogni-
tion rates when working together. In this paper, we present an
ensemble pruning approach of Optimum-Path Forest classifiers
based on metaheuristics, as well as we introduced the concept of
quaternions in ensemble pruning strategies. Experimental results
over synthetic and real datasets showed the effectiveness and
efficiency of the proposed approach for classification problems.

I. INTRODUCTION

The use of multiple classifiers has become an area of great
interest in pattern recognition, being highly motivated due to
the likeliness in including other classifiers during the decision
process as a good approach to improve the generalization
ability of the ensemble. Also, the strategy of polling the
decisions of classifiers that are complementary to each other
can improve the classification accuracy of an ensemble with
respect to the individual learners.

Different methods to combine classifiers have been pro-
posed, such as voting [1], weighted voting [2] and methods
based on Dempster-Shafer theory of evidence [3]. Some au-
thors model the combination of classifiers as an optimization
problem [4], where the weights of the confidence levels for
each classifier are determined by evolutionary optimization
techniques [5].

However, combining a large number of classifiers requires
a considerable memory at the price of a slower classification
phase. One way to speed up such process is the selection
of a subset of the classifiers from the original ensemble.
Such approach, also known as ensemble pruning, has provided
several benefits in different approaches [6], [7]. Usually, large
ensembles of classifiers may comprise both high and low pre-
dictive performance models [8]. Pruning these low predictive
models for a given classification problem while maintaining
the high predictive ones may contribute to improve the overall
predictive performance of the whole ensemble. In general, en-
semble pruning selects a subset of the models, thus providing
efficiency by reducing the ensemble size prior to combine the
model.
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It is worth noting to highlight that finding the optimal
sub-ensemble is a hard problem, whose solution is com-
putationally expensive [9]. Therefore, an interesting way of
dealing with such problem is to model ensemble pruning as
a metaheuristic-driven optimization task, such as by means of
Genetic Programming [6]. In general, is expected that Genetic
Programming may provide a near-optimal ensemble selection
with a significant reduction of the number of classifiers.
A number of works also employed metaheuristics to prune
ensembles of classifiers as well [10], [11], [12], with very
suitable results.

Some years ago, Papa et al. [13], [14], [15] introduced
the Optimum-Path Forest (OPF) classifier, which is a graph-
based pattern recognition technique that uses a generaliza-
tion of Dijkstra algorithm for multiple sources and path-cost
functions. The OPF classifier has demonstrated interesting
results in terms of efficiency and effectiveness, being some
of them comparable to the ones obtained by Support Vector
Machines, but usually faster for training, since OPF [13], [14]
is parameterless and its training step takes (m?), where m
stands for the training set size.

However, the reader can refer to a very few works that deal
with the problem of combining ensembles of OPF classifiers.
Ponti and Papa [16], for instance, showed the training step of
the OPF classifier can be more efficient and effective when
using combination of disjoint training subsets. Furthermore,
Ponti et al. [17] proposed the combination of OPF classifiers
using Markov Random Fields as a decision graph, as well as
Game Theory to compute the final decision, i.e., each classifier
is seen as player and each classifier decision (class label) is
seen as a strategy. Moreover, to the best of our knowledge,
we have not observed any work that attempted at pruning
ensembles of OPF-based classifiers.

Therefore, the main contributions of this work are twofold:
(i) to investigate the use of ensemble pruning methods based
on metaheuristic techniques considering the OPF classifier,
as well as (ii) to evaluate the effectiveness and efficiency of
ensemble pruning when modeled as an optimization task in
a quaternion-driven space. In this work, we evaluated five
different optimization algorithms for ensemble pruning, say
that Particle Swarm Optimization (PSO) [18], Harmony Search
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(HS) [19], Quaternion-based Harmony Search (QHS) [20],
Cuckoo Search (CS) [21] and Firefly Algorithm (FFA) [22].

The remainder of the paper is organized as follows. Sec-
tions II and III present the OPF and quaternion-based represen-
tation background theories, respectively. Section IV discusses
the proposed approach for ensemble pruning, and Section V
describes the methodology and the experimental results. Fi-
nally, conclusions and future works are stated in Section VI.

II. OPTIMUM-PATH FOREST

In this section, the theoretical foundation of the naive OPF
is briefly presented. Let D = D; U D3 be a A-labeled dataset,
such that D; and D, stand for the training and test sets,
respectively. Let S C D; be a set of prototypes of all classes
(i.e., key samples that best represent the classes). Let (D1, A)
be a complete graph whose nodes are the samples in D,
and any pair of samples defines an arc in A = Dy x D;.
Additionally, let 75 be a path (i.e. a sequence of adjacent and
distinct samples) in (D1, A) with terminus at sample s € D;.
The OPF algorithm employs the path-cost function fp,.x, as
follows:

0 ifseS
fmax((s)) = { +oo otherwise,

fmax('ns . <57t>) - max{fmax(ﬂ—s)y d(S,t)}, (1)

where d(s,t) stands for the distance between nodes s and ¢.
Therefore, fiax(ms) computes the maximum distance among
adjacent samples in 74, when 75 is not a trivial path. In short,
the OPF algorithm tries to minimize fiax (), Vt € Dy.

In regard to the training phase, the optimum set of proto-
types, say that S*, can be found by exploiting the theoretical
relation between the minimum-spanning tree and the optimum-
path tree for fi,.x [23]. Essentially, the training step consists
in finding both S* and an OPF classifier rooted at S*. By
computing a minimum spanning tree (MST) in the complete
graph (D1, A), one obtain a connected acyclic graph whose
nodes are all samples of D, and the arcs are undirected and
weighted by the distances d among adjacent samples. After
that, a competition process among samples in S takes place,
which try to conquer samples in S using f,,q. (Equation 1).

In regard to the classification phase, for any sample ¢ €
Do, we consider all arcs connecting ¢ with samples s € D,
as though t were part of the training graph. Considering all
possible paths from S* to ¢, we find the optimum path P*(¢)
from S* and label ¢ with the class A\(R(t)) of its most strongly
connected prototype R(¢) € S*. This path can be identified
incrementally, by evaluating the optimum cost C(t) as follows:

C(t) = vrsrglrjll{maux{C’(s),d(s,t)}}. (2)

Let the node s* € D; be the one that satisfies Equation 2
(i.e., the predecessor P(t) in the optimum path P*(t)). Given
that L(s*) = A(R(t)), the classification simply assigns L(s*)
as the class of ¢. An error occurs when L(s*) # A(t).

III. QUATERNION ALGEBRA

A quaternion q is composed of real and complex numbers,
ie., ¢ = xg + x11 + xoj + x3k, where g, x1, 20,23 € R
and ¢, j, k are imaginary numbers following the next set of
equations:

and
ik=—j, i?=j=k>=1. )

Roughly speaking, a quaternion ¢ is represented in a 4-
dimensional space over the real numbers, i.e., R4, Actually,
we can consider the real numbers only, since most applications
do not consider the imaginary part, as the one addressed in
this work.

Given two quaternions q; = g + x1? + x2j + x3k and
G2 = Yo + Y17 + y2j + ysk, the quaternion algebra defines a
set of main operations [24]. The addition, for instance, can be
defined by:

@1+ g2 = (2o + x4 + 225 + 23k) + (Yo + y1i + y2g + y3k)
(%)
= (zo+yo) + (@1 +y1)i + (z2 + y2)7 + (23 + y3)k,

while the subtraction is defined as follows:

@1 — 2 = (2o + x4 + 225 + 23k) — (Yo + y1i + y2j + y3k)

= (zo —yo) + (1 —y1)i + (x2 — y2)j + (23 — y3)k.
(6)

Another important operation is the norm, which maps a
given quaternion to a real-valued number, as follows:

N(q1) = N(xo + x1i + x2j + w3k)

=/xd + 23 + a3 + 23. @)

Finally, Fister et al. [25] introduced two other operations,
qrand and qzero. The former initializes a given quaternion
with values drawn from a Gaussian distribution, and it can be
defined as follows:

grand() = {z; = N(0,1)]i € {0,1,2,3}}. (8)

The latter function initialized a quaternion with zero values,
as follows:

gzero() = {x; = 0]i € {0,1,2,3}}. ©)

Although there are other operations, we defined only the ones
employed in this work.
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IV. ENSEMBLE PRUNING AS A METAHEURISTIC-BASED
OPTIMIZATION

In this section, we describe the proposed approach to
prune ensembles based on metaheuristic techniques. The OPF
classifier uses the abstract output method when classifying
samples, i.e., the output of the classifier is a single label.
Xu et al. [26] defined an interesting approach to combine
the outputs of L classifiers in an ensemble depending on
the information obtained from the individual members. Such
approach considers that each classifier assigns a class label
to every sample in the dataset. Therefore, the ensemble of
classifiers generates a collection of L possible outputs to each
sample to be classified.

Consider an ensemble of L OPFs in a bagging approach,
i.e. the classifiers are aggregated by using different boot-
strapped samples of the original training data. Let M =
{My,Ms,...,Mp} be a set of L classifiers, and Q =
{wi,wa,...,wk} be a set of K class labels. Each classifier
takes an n-dimensional input vector and associates it to a class
label, ie., M; : R" — Q, i = 1,2,..., L. Therefore, for any
sample to be classified, the ensemble of classifiers generates a
collection W, = [¢,(My),...,1¥.(My)] of possible outputs,
where 1), (M;) stands for the output of classifier M; consid-
ering sample z.

However, instead of considering the outputs of all classifiers,
the idea of ensemble pruning is to select a subset M’ € M
such that the recognition rate over a validating set is maxi-
mized. Let D, C Dy be a Vahdatlng set, and D1 = Dl\D be

an L-folded training set such that Dy = D} UD? U UDl .
The main idea is to train each classifier M/ over Dl, and then
classify D,, using the majority voting. In short, the idea is to
turn “on” or “off” each classifier in M to build M’, and then
classify D,. The task to consider or not a given classifier is
performed by the metaheuristic optimization technique, which
essentially aims at learning what classifier will be turned
“on” or “off”. Therefore, such choice will be guided by the
maximum accuracy over D,,.

In order to decide whether we are going to select a given
classifier or not, we associate a weight w; € [0,1] to each
classifier, which is further selected to compose M’ if w; > T,
being 7 an adaptive threshold [27] updated as follows:

T=p—0, (10)

where p is the mean weight, and o is calculated by:

Yw; < p, (11)

where m is the number of classifiers whose weight is smaller
than p. Notice the above equation considers a classifier M;
whose weight w; is smaller than p only.

In short, the main idea is to model each possible solution
of the search space as a set of weights, and the optimization
technique problem aims at finding the best values for such
weights that maximize the OPF accuracy over D,,. Figure 1

illustrates the above situation, and Algorithm 1 implements
the proposed approach for ensemble pruning.

Ensemble pruning of Optimum-Path Forest Classifiers

Training phase Metaheuristic-based Optimization

Generating

Models Adaptive
threshold 5
PR Evaluation
w, €o,11,
i=1, 2, . , L
Meta-heuristic . .
D —— Validating
Classifier set

Training Select —»

set

Classification phase

Output
classification

Majority voting
Testing
set

Fig. 1. Ensemble pruning process.

Algorithm 1: Ensemble pruning

Input: A labeled training set D, a labeled validating set
D,, and a set M of L OPF classifiers.
Output: A subset M’ of classifiers.

/* Training phase */
for i =1 to L do

Take a bootstrap dataset D{ from Dq;
| Build a classifier M; using the training set Dj;

AW N =

wm

/* Metaheuristic-based optimization process */
6 for ecach iteration do

7 Wz[wl,wg,-~~,wL
Optimization;

8 fori=1to L do

9 if w; > 7 then
3N

| + Perform Quaternion-based

L M/<—Mi;

11 U(M'’) + Classify D, using M’;
12 | accuracy < Majority voting of W(M’) over D,;

3 return M’

i

A. Optimizing with Quaternions

Usually, it is expected that optimization with quaternions
may produce smoother fitness landscapes, thus designing
surfaces with less local optima [25], [20]. The idea is to
model each real-valued decision variable to be optimized (i.e.
each classifier’s weight in the ensemble) as being another real-
valued variable, but now in R*, since a quaternion comprises
four real variables, as discussed in Section III. Therefore, we
have a tensor Ty 1, in the optimization space for each possible

986



solution, since we have a 4-dimensional quaternion for each
one of the L classifiers.

We use the norm of each quaternion (Equation 7) to map it
to a real-valued variable aiming at performing standard opti-
mization. However, it is important to highlight we play with
the values in the quaternion space, for further mapping them
to standard Euclidean space. This means we are interested
in finding good representations in the quaternion space first.
Figure 2 illustrates the above situation.

norm ()
norm ()
norm ()

norm ()

Fig. 2. Quaternion-based encoding process.

V. METHODOLOGY AND EXPERIMENTAL RESULTS

The proposed metaheuristic-based ensemble pruning ap-
proach concerning OPF classifiers is compared against stan-
dard OPF over 6 real and synthetic benchmark classification

datasets'?3, whose main characteristics are presented in Ta-
ble I*.
TABLE 1
DESCRIPTION OF THE DATASETS.
Dataset # samples  # features  # classes
Pima-Indians-Diabetes 768 8 2
Statlog-Australian 690 14 2
Statlog-Heart 270 13 2
Syntheticl 500 2 2
Synthetic2 1,000 2 2
UCI-Breast-Cancer 683 10 2

In order to obtain statistically meaningful results, three
different ranges of training, validating and testing data were
used: (i) in a first stage, each dataset was partitioned into
three subsets, say that training (50%), initial validating (10%)
and testing sets (40%), hereinafter denoted as 50:10:40; (ii)
in a second stage, the datasets were partitioned as 45:20:35;
and (iii) in the last stage, the datasets were partitioned as
40:30:30. For each range, training, validating and testing sets
were selected randomly and the process was repeated 20 times
(cross-validation)®.

Uhttp://mldata.org

Zhttp://archive.ics.uci.edu/ml

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

4The experiments were conducted on a computer with a Pentium Intel Core
i5® 3.2Ghz processor, 4 GB of memory RAM and Linux Ubuntu Desktop
LTS 64 bits 14.04.1 as the operational system

5Notice the percentages have been empirically chosen, being more intuitive
to provide a larger validating set for ensemble pruning learning

In order to allow a fair comparison, we trained standard OPF
over Dy U D, considering the aforementioned three stages.
In addition, the mean accuracy and computational load (in
seconds) are also computed for each technique. Notice the idea
of using different percentages for Dy, D, and D, is motivated
to assess the effectiveness of the proposed approach under
distinct scenarios. The final results were evaluated through the
Wilcoxon signed-rank test with significance of 0.05 [28]. For
the sake of implementation purposes, we used the open-source
libraries LibOPF® and LibOPT’.

In order to evaluate the influence of different ensembles,
we performed a comparison with ensembles comprising 3, 5,
7 and 9 classifiers. Furthermore, in regard to the metaheuristic
optimization, we opted to employ the following techniques:

o Harmony Search (HS): 5 harmonies with 20 iterations,
HMCR =0.7, PAR =0.7 and 3 = 10. Variables HMCR and
PAR, which stand for “Harmony Memory Considering
Rate” and “Pitch Adjusting Rate”, are used to guide HS
onto the search space, as well as to avoid traps from local
optima.

o Quaternion-based Harmony Search (QHS) : an improved
variant of HS based on quaternions [20]. Such variant has
the very same input configuration used in HS.

o Particle Swarm Optimization (PSO): 5 particles with 20
iterations, ¢; = 1.4, co = 0.6 and £ = 0.7. Variables c;
and co are used to weight the importance of a possible
solution being far or close to the local and global opti-
mum, respectively. Variable ¢ stands for the well-known
“inertia weight”, which is used as a step size towards
better solutions.

o Firefly Algorithm (FFA): population size of 5 with 20
iterations, v = 0.3 and p = 1.0. The variables v and p
are used to control the randomness and the attractiveness,
respectively.

o Cuckoo Search (CS): 5 particles with 20 iterations, and
pa = 0.25. Variable p, is used to control the elitism and
the balance of the randomization and local search. In
this case, few parameters in CS make an algorithm less
complex and thus potentially more generic.

Table II presents the mean accuracies and standard devia-
tion over all datasets, being the recognition rates computed
according to Papa et al. [13]. The values in bold stand
for the most accurate techniques according of the Wilcoxon
signed-rank test. We can observe the proposed OPF ensemble
pruning has obtained the best results in almost all datasets.
Consider “Synthetic2” dataset (Figure 3), which comprises
a high level of overlapping among samples from different
classes. In this case, ensemble pruning was considerably more
effective. Therefore, the use of multiple classifiers may be
more effective when applied to more complex problems.

Table III presents the mean F-measure results concerning the
very same group of datasets using 9 classifiers. In this case, all
the pruning-based approaches shown the similar behavior. The

Ohttps://github.com/jppbsi/LibOPF.git
"https://github.com/jppbsi/LibOPT.git
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TABLE II
MEAN ACCURACY RESULTS.

Dataset Approach Ensemble of Ensemble of Ensemble of Ensemble of
3 OPF 5 OPF 7 OPF 9 OPF

Pima-Indians-Diabetes  OPF(pqsciine) 65.50 £ 2.08 65.50 £ 2.08 65.50 £ 2.08 65.50 £+ 2.08
OPFcs 66.87 £2.78 68.81+246 68.70+3.30 67.65+2.84

OPFrr A 63.50 £ 6.01 68.14 +5.23 66.33+5.96 65.95+6.00

OPFps 66.90 £ 2.61 68.73+£2.44 68.39+3.23 68.26 £ 2.52

OPFpso 67.33+£3.39 69.30+£2.72 68.09+3.08 67.72+341

OPFg s 66.90 £2.77  67.07 £ 3.21 67.67 £ 2.96 66.88 4 2.78

Statlog-Australian OPF (yasetine)y  77.96 £2.04 77.96 £ 2.04 77.96 £ 2.04 77.96 + 2.04
PFcs 77.02+£3.21 80.65+£252 82.02+1.83 83.57+1.79

OPFpFpa 75.59 £6.19 78.38£7.38 81.66+t4.67 80.38+7.57

OPFrrs 78.20£3.00 81.71+193 82.82+230 83.52+2.65

OPFpso 76.64 £ 3.06 81.18 £2.28 82.40+2.20 83.86+2.16

OPFgpus 75.94+£295 81.28+1.65 81.88+224 82.39+2.68

Statlog-Heart OPF (pascline) 74.94 £1.91 74.94 £1.91 74.94 £1.91 74.94 £1.91
OPFcs 78.78 £2.85 77.66+1.63 80.12+3.55 81.10+3.50

OPFrr A 70.89 £6.71 79.48 £4.57 80.30+1.59 80.64 £ 3.32

OPFps 76.18£2.39 80.91+240 80.32+281 80.91+218

OPFpso 73.85+£299 79.76 £2.78 80.05+1.43 81.14+2.28

OPFgpus 76.97 £ 4.21 77.48 £2.73 79.53 £3.81 80.25 1 3.82

Syntheticl OPF (pqsetine)y  53.98 £2.89  53.98 £2.89 53.98 £2.89 53.98 £ 2.89
OPFc g 53.86 £3.62 55.84+261 5580+340 56.31+3.02

OPFppa 54.79 +£2.55 55.76 £3.76 56.04+3.56 54.71£2.93

OPFprs 52.97+4.37 55.83+3.21 56.33+3.90 55.78+£3.22

OPFpso 53.38 £4.47 54.79+2.60 5578+4.26 56.29+2.71

OPFgpus 53.51£3.18 55.52+3.16 55.16+3.79 55.23 £+ 3.69

Synthetic2 OPF (paseline) 71.65 £ 2.05 71.65 £ 2.05 71.65 £ 2.05 71.65 £ 2.05
OPFcs 71.89+£2.89 7589+203 T77.25+219 77.47+2.60

OPFrFra 71.04£590 7569+3.61 7531+£531 77.39+3.34

OPFps 73.29£243 76.31+237 7703+£191 T7T7.87+1.81

OPFpso 73.35£2.45 76.33+242 77.04+£209 78.15+1.68

OPFgpus 71.92+£2.50 75.67+£265 76.56+2.29 76.87£2.37

UCI-Breast-Cancer OPF (pqsetine)y 94.42+£1.05 9442 +1.05 94.42 £1.05 94.42 £1.05
OPFc g 92.33 £2.95 94.85 £ 1.63 95.50 = 1.49 95.57 £ 1.31

OPFrfpa 88.11 £14.48 9218 £6.60 93.66+6.29 92.73+6.71

OPFps 9410 £2.68 9542+1.20 96.17+1.19 96.09+0.97

OPFpso 91.76 £ 3.36 94.944+1.22 96.23+1.07 95.70+0.87

OPFgpms 91.14 £+ 3.16 94.89 £1.87  95.05 + 2.09 95.55 + 1.64

values in bold stand for the most accurate techniques according
of the Wilcoxon signed-rank test.

1.5

1.0

0.5

0.0

-0.5 0‘.0 0‘5 l‘.O 1‘.5 2‘0 25
Fig. 3. “Synthetic2” dataset.

In order to provide a robust statistical analysis, we per-
formed the non-parametric Friedman test, which is used to
rank the algorithms for each dataset separately. In case of
Friedman test provides meaningful results to reject the null-
hypothesis (hg: all techniques are equivalent), we can perform

a post-hoc test further. For this purpose, we conducted the
Nemenyi test, proposed by Nemenyi [29] and described by
Demsar [30], which allows us to verify whether there is a
critical difference (CD) among techniques or not. The results
of the Nemenyi test can be represented in a simple diagram,
in which the average ranks of the methods are plotted on the
horizontal axis, where the lower the average rank is, the better
the technique is. Moreover, the groups with no significant
difference are then connected with a horizontal line.

Figure 4 depicts the statistical analysis considering the
accuracy results for ensemble pruning using 9 classifiers.
As one can observe, the pruning-based approaches can be
considered the most accurate ones by Nemenyi test. Such
point reflects the OPF ensemble pruning using metaheuristic
techniques achieved the best accuracy rates in the majority of
datasets. Furthermore, the HS approach can be considered the
most accurate technique. However, the statistical test did not
point out a CD between HS, PSO and CS metaheuristics in
the first group, which means they performed similarly.

Figure 5 depicts the statistical analysis considering the F-
Measure results for ensemble pruning using 9 classifiers. In
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TABLE III

MEAN F-MEASURE.

Dataset OPF(baseline) OPFcs OPFrpa OPFys OPFpso OPFQHS
Pima-Indians-Diabetes  0.5371 =0.04 05812 £0.04  0.5833 £0.04 0.5942 +0.04 0.5712+0.05 0.5978 + 0.04
Statlog-Australian 0.8087+0.02 0.8603 +£0.02 0.8608 +£0.02 0.8617+0.01 0.8616=+0.01 0.8578£0.02
Statlog-Heart 0.7350 £ 0.05 0.7939+£0.04 0.7910+0.04 0.7873+0.04 0.7921+0.04 0.7793 + 0.04
Syntheticl 0.5284 +0.03 0.5607 +0.06 0.5651 +0.05 0.5622+0.05 0.5697+0.04 0.5675=+0.05
Synthetic2 0.7183+0.02 0.7846 +£0.02 0.7780+0.02 0.7821+0.02 0.7800=£0.02 0.7723 £0.02
UCI-Breast-Cancer 0.9643 +0.01 0.9722+0.01 0.9735+0.01 0.9734+0.01 0.9719+0.01 0.9727£0.01
CD=0.3974 a larger training set - D1 UD,, - in standard OPF requires more
GH s 4 3 2 1 computational effort).
‘ ‘ — In regard to the testing phase, Table V presents the mean
= computational load in seconds, and Figure 6b shows the
OPFC;:Z 8§E1@:O Nemenyi test concerning all compared techniques. As we
OPF sy OPFes can observe, the HS and FFA approaches have been the

Fig. 4. Comparison of standard OPF against OPF ensemble pruning using
metaheuristic techniques with the Nemenyi test in regarding the accuracy
results. Groups of techniques that are not significantly different (at p=0.05)
are connected.

this case, all pruning-based approaches belong in the same
group (most accurate) according to the Nemenyi test.

CD=0.3974
i
6 5 4 3 2 1

fastest ones, since both techniques pruned more classifiers
with respect to the original ensemble, i.e., fewer classifiers
for testing phase. It is worth noting that QHS approach has
demonstrated interesting results in the statistical test (Figure 4)
according to the recognition accuracies, but being among the
fastest ones for training+validating. Also, QHS was around
1.525 times faster than standard OPF considering the testing
phase.

CD=0.3974
i

1
JE o
OPF

OPF J +— OPF 115 OPF p50
OPFgus OPF 4 OPF £a OPF s
OPF pso OPF g
(a)
Fig. 5. Comparison of standard OPF against OPF ensemble pruning using
metaheuristic techniques with the Nemenyi test in regarding the F-measure
results. Groups of techniques that are not significantly different (at p=0.05) CD=&3974

are connected.

Table IV shows the mean computational load of all com-
pared techniques with respect to the training step for ensemble
pruning using 9 classifiers. The values in bold stand for the
most accurate techniques according concerning the Wilcoxon
signed-rank test. For all metaheuristic technique (i.e., CS, FFA,
HS, PSO, QHS), the training time includes the training phase
+ validating step to finding the optimal sub-ensemble. The
QHS has been considered the fastest one in almost of datasets.
Figure 6a depicts the computational load (seconds) considering
the training time (training+validating) with the Nemenyi test
for ensemble pruning using 9 classifiers. The group considered
the fastest one in the training+validating phase consists of
standard OPF and OPF pruning using QHS, wherewith there
is no CD between them. On average, the OPF pruning using
QHS has been about 1.351 times faster than standard OPF in
training+validating phase, since QHS approach has shown a
rapid convergence against other metaheuristic techniques, and
faster for training compared to the traditional approach (notice

6 5 4 3 2 1

OPF J
OPF 5

OPFoms

(b)

Fig. 6. Nemenyi statistical test regarding the computational load for: (a)
training (training+validating) and (b) testing phases. Groups that are not
significantly different (at p = 0.05) are connected to each other.

VI. CONCLUSIONS

In this work, we introduced the idea of ensemble prun-
ing considering the OPF classifier, as well as a quaternion-
based representation. Roughly speaking, the idea is to build
a reduced ensemble of OPF classifiers using metaheuristic-
based optimization algorithms, such as HS, PSO, CS, FFA
and QHS. Experiments over real and synthetic datasets showed
the robustness of the proposed approach, which obtained the
best results in almost all datasets. The proposed approach has
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TABLE IV

WITH RESPECT TO THE TRAINING TIME (TRAINING + VALIDATING).

Dataset OPF(baseline) OPFcs OPFrpa OPFpys OPFpso OPFgms

Pima-Indians-Diabetes  0.0193 +0.00 1.9026 £ 0.65 0.1855 £+ 0.07 0.0466 4+ 0.01 0.1906 4+ 0.07 0.0111 £ 0.00
Statlog-Australian 0.0178 £ 0.00 1.5261 £0.50 0.1434 £0.05 0.0391 £0.01 0.1514 4+ 0.05 0.0111 £ 0.00
Statlog-Heart 0.0040 + 0.00 0.2626 +£0.08 0.0291 +0.01 0.0088 +0.00 0.0279 +0.01 0.0101 £ 0.00
Syntheticl 0.0053 £0.00 0.7897 +£0.29 0.0760 +0.03 0.0212+0.01 0.0823 £0.03 0.0102 4 0.00
Synthetic2 0.0244 £0.00 2.4892+0.79 0.2710£0.10 0.0622 +£0.02 0.2684 +0.09 0.0115 £ 0.00
UCI-Breast-Cancer 0.0170 +£0.00 1.0168 £0.37 0.1032+0.03 0.0289 +0.01 0.1039 +0.03 0.0110 £ 0.00

TABLE V

WITH RESPECT TO THE TESTING TIME.

Dataset

OPF(baseline) OPFcgs

OPFrra

OPFps OPFpso OPFgrms

Pima-Indians-Diabetes 0.00589 £ 0.001 0.00470 + 0.001 0.00270 + 0.001 0.00275 + 0.001 0.00312 + 0.001
0.00465 £ 0.001 0.00380 £ 0.001 0.00222 £ 0.001 0.00234 £+ 0.001 0.00243 £ 0.001
0.00116 £ 0.000 0.00064 4 0.000 0.00045 £ 0.000 0.00038 + 0.000 0.00044 £ 0.000
0.00242 £ 0.000 0.00190 £ 0.000 0.00107 £ 0.001 0.00124 £ 0.000 0.00137 +£ 0.000
0.00782 £ 0.001 0.00625 £ 0.002 0.00452 £ 0.001 0.00424 £ 0.001 0.00450 &£ 0.001
0.00325 £ 0.001 0.00250 4 0.001 0.00148 4+ 0.001 0.00156 + 0.000 0.00165 £ 0.000

Statlog-Australian
Statlog-Heart
Syntheticl
Synthetic2
UCI-Breast-Cancer

0.00392 £ 0.001
0.00312 £ 0.001
0.00053 £ 0.000
0.00159 £ 0.000
0.00530 £ 0.001
0.00207 £ 0.001

demonstrated to improve standard OPF classification results,
as well as QHS has shown to hold the best trade-off between
effectiveness and efficiency.
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