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Abstract—As an attractive area of application in the sphere
of cultural heritage, in recent years automatic analysis of ancient
coins has been attracting an increasing amount of research
attention from the computer vision community. Recent work
has demonstrated that the existing state of the art performs
extremely poorly when applied on images acquired in realistic
conditions. One of the reasons behind this lies in the (often
implicit) assumptions made by many of the proposed algorithms —
a lack of background clutter, and a uniform scale, orientation, and
translation of coins across different images. These assumptions
are not satisfied by default and before any further progress in the
realm of more complex analysis is made, a robust method capable
of preprocessing and normalizing images of coins acquired ‘in
the wild’ is needed. In this paper we introduce an algorithm
capable of localizing and accurately segmenting out a coin from
a cluttered image acquired by an amateur collector. Specifically,
we propose a two stage approach which first uses a simple shape
hypothesis to localize the coin roughly and then arrives at the
final, accurate result by refining this initial estimate using a
statistical model learnt from large amounts of data. Our results on
data collected ‘in the wild’ demonstrate excellent accuracy even
when the proposed algorithm is applied on highly challenging
images.

I. INTRODUCTION

Numismatics is an academic discipline that is concerned
with the study of currency [1]. In a more colloquial sense,
the term is also used to describe the hobby of collecting
various forms of money, such as coins, banknotes, or tokens.
Indeed, from the very inception of the first forms of money, its
collecting and analysis has attracted the fascination of many
enthusiasts.

The study of ancient coins, the most popular of which
are Ancient Greek and Ancient Roman coins, is particularly
interesting from a computer vision perspective for two key
reasons. Firstly, automatic methods can offer genuine practical
benefit both to experts as well as amateur enthusiasts [2].
Potential uses include the identification of coins, study of
style across time or geographical regions, identification of
forgeries, automatic monitoring of websites for stolen items,
etc. Secondly, various problems which fall under the scope of
interest of ancient numismatists, present a breadth of technical

challenges. These include challenges in feature extraction and
representation, joint modelling of appearance and geometry,
retrieval and matching, and numerous others. These challenges
are not only interesting in their own right but also offer
translational potential.

Recent work, and the first thorough and systematic eval-
vation of the current state of the art [3], has highlighted
a series of methodological limitations of previous work on
computer vision based analysis of ancient coins. One of the
most important of these is the assumption of overly controlled
conditions used to image coins — coins are assumed to be well
localized, canonically oriented and scaled, and the background
uniform and clear of clutter. As illustrated in Figure 1, this
assumption is very much at odds with the type of data
encountered in practice. Hence, in the present work our aim is
as follows: given a pair of potentially cluttered input images
of a coin’s obverse and reverse, we wish to localize the coin
and accurately delineate its boundary.

A. Terminology

Considering the interdisciplinary nature of the present
paper, it is important to explain the relevant numismatic
terminology so that the specific task at hand and its challenges
can be clearly understood. A succinct summary is presented
next.

Firstly, when referring to a coin, the reference is made to a
specific physical object i.e. a specimen. This is to be contrasted
with a coin type. A coin type is a more abstract concept which
is characterized by the semantic features shown on both sides
of the coin (the obverse i.e. the “front”, and the reverse i.e.
the “back”). Multiple coins of the same type have the same
visual elements e.g. the head or bust of a particular emperor
with specific clothing (e.g. drapery or cuirass, crowned or
laureate) and legends (textual inscriptions), a particular reverse
motif etc. Notice that although the visual elements on coins
of the same type are semantically the same, their depictions
may differ somewhat. The reason lies in the fact that the
same coin type was minted using dies created by different
engravers. For example, observe in Figure 3 which shows three



(a) Data typical of that used in previous work
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(b) Coin images ‘in the wild’ (from our RIC-eBay corpus)

Fig. 1. Comparison of images of ancient coins typical of (a) previous work, and of (b) real-world interest. The former can be seen to show high quality coins,
photographed in focus, well localized, canonically oriented and scaled, and with the background uniform and clear of clutter. In contrast, the latter exhibit
variable positioning, scale, and orientation, extensive background clutter, and often unfavourable lighting.

specimens of the same type, that the spatial arrangements of
the legend (by definition the same in all cases) is different
between the very fine example in Figure 3(b) and the extra fine
example in Figure 3(c). In the former case the break (space)
in the legend is AEQVITA-SAVG, and in the latter AEQVI-
TASAVG. Nevertheless the type is the same.

1) Condition grades: An important consideration in the
analysis of a coin is its condition. Succinctly put the condition
describes the degree of preservation of a coin, or equivalently
the amount of damage it suffered since it was minted. The
usual grading scale adopted in ancient numismatics includes
the following main grades: (i) poor, (ii) fair, (iii) good, (iv) very
good, (v) fine, (vi) very fine, and (vii) extremely fine. Virtually
universally (i.e. save for extremely rare coin types) only the
last three are considered of interest to collectors, that is fine
(F), very fine (VF), and extremely fine (EF or XF). Note that
less frequently used transitional grades can be derived from
the main seven by qualifiers e.g. near or almost fine (nF, aF),
better than fine (F+) etc.

An ancient coin in a fine condition displays all the main
visual elements of the type, as illustrated with an example in
Figure 3(a). A very fine coin also has more subtle elements pre-
served such as clothing creases as exemplified in Figure 3(b).
An extremely fine condition coin is in approximately the same
condition in which it was when it was minted, showing the
entirety of the original detail, as can be seen in Figure 3(c).

2) Miscellaneous: In order to appreciate the challenge of
the task at hand, it is important to recognize a number of
factors other than the condition which affect the appearance
of a coin. These include die centring, surface metal changes
(due to oxidation or other chemical reactions), and die wear.

Die centring refers to the degree to which the centre of
the die coincides with the centre of the actual piece of metal
against which it is struck to create the coin. A coin with
poor centring may have salient design elements missing e.g. a
part of the legend. An example of a somewhat poorly centred
obverse can be seen in Figure 3(c).

Depending on the presence of different substances in a
coin’s environment (soil, air, etc.), the surface metal can
change its colour and tone as it reacts with chemicals it is
exposed to. Observe the difference in the tone of the coins in
Figure 3.

Finally, it is worth noting that the appearance of a coin
can be affected by die wear. Just as coins experience physical
damage when handled and used, repeated use of a die in the
minting process effects damage on the die. To a non-trained
eye a coin minted with a worn die can seem identical to a worn
coin minted with an intact die. However, a reasonably skilled
(but not necessarily expert) numismatist can readily make a
distinction, as subtler patterns of damage in the two cases are
quite unlike one another. In addition, close inspection and the
presence of oxidation or particles in ridges can be used for
conclusive verification.



B. Previous work

To appreciate the motivation behind the present work it is
crucial to understand the state of the art of computer vision
based ancient coin analysis at the present time, and specifically
the (often implicit) assumptions that the proposed methods are
highly reliant on. Herein we summarize the relevant body of
work.

Most early and some more recent attempts at the use of
computer vision for coin analysis have concentrated on modern
coins [4], [5], [6]. This is understandable considering that
modern coins are machine produced and as such pose less
of a challenge than ancient coins. Modern coins do not exhibit
variation due to centring issues, shape, different depictions
of semantically identical elements, etc. From the point of
view of computer vision, two modern coins at the time of
production are identical. This far more restricted problem
setting allows for visual analysis to be conducted using holistic
representations such as raw appearance [7] or edges [8], and
off-the-shelf learning methods such as principal component
analysis [7] or conventional neural networks [9]. However
such approaches offer little promise in the context of ancient
numismatics.

The existing work on computer vision based ancient coin
analysis can be categorized by the specific problem addressed
as well as by the technical methodology. As regards the former
categorization, some prior work focuses on coin instance
recognition i.e. the recognition of a specific coin rather than
a coin type. This problem is of limited practical interest, its
use being limited to such tasks as the identification of stolen
coins or the detection of repeated entries in digital collections.
Other works focus on coin type recognition, which is a far
more difficult problem [10], [11], [12]. Most of these methods
are local feature based, employing local feature descriptors
such as SIFT [13] or SURF [14]. The reported performance
of these methods has been rather disappointing and a major
factor appears to be the loss of spatial, geometric relationship
in the aforementioned representations [15], [16]. In an effort
to overcome this limitation, a number of approaches which
divide a coin into segments have been described [17]. These
methods implicitly assume that coins have perfect centring,
are registered accurately, and are nearly circular in shape.
None of these assumptions are realistic. The sole method
which does not make this set of assumptions builds meta-
features which combine local appearance descriptors with their
geometric relationships [12]. Though much more successful
than the alternatives, the performance of this method is still
insufficiently good for most practical applications.

All of the aforementioned work shares the same limi-
tation of little use of domain knowledge. In particular, the
general layout of the key elements of Roman imperial coins
is generally fixed, save for few rare exceptions. Hence it
makes sense to try to use this knowledge in analysis. The
few attempts in the existing literature generally focus on the
coin legend [2]. In broad terms this appears sensible as the
legend carries a lot of information, much of which is shared
with the coin’s pictorial elements. For example, the obverse
legend in almost all cases contains the name of the emperor
depicted, and the reverse the name of the deity shown. The
denarius of Antoninus Pius with Aequitas (goddess of justice
and equality) in Figure 3 illustrates this well, the obverse
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Fig. 2. An example of a modern, machine produced coin. Shown is the well-
known silver Washington quarter dollar in different condition grades used for
grading modern coins. Unlike ancient coins which suffer from imperfect die
centring and which within the same type exhibit variation in the appearance
of the semantically identical elements, and the overall coin shape, no such
challenges exist in the analysis of modern coins.

legend being ANTONINVSAVGPIVSPPTRPCOSIII, and the
reverse AEQVITASAVG. However, in spite of this, methods
such as that described in [2] offer little promise for practical
use. The key reason for this lies in the fact that the legend,
with its fine detail, is one of the first elements of the coin
to experience damage and wear. Coins with clearly legible
legends are generally expensive and rare, and thus of little
interest to most collectors. They are also the easiest to identify,
by the very nature of their good preservation, and hence do
not represent the target data well.

It is important to highlight that all work to date has been
highly unstructured and ad hoc in its evaluation methodology.
Some authors use data sets with coins in different conditions
and unstated distributions thereof [12], and others very small
data sets with coins in extremely rare, museum grade [11].
In the first large-scale, systematic evaluation to date, Fare and
Arandjelovi¢ [3] demonstrated that the current state of the art
performs extremely poorly when applied on coins in the state
of preservation of interest in practice, even in the absence of
clutter or a number of other confounding factors which make
coin analysis even more challenging.

II. CONTRIBUTIONS

In this section we detail the key contribution of the present
work, which involves the localization of an ancient coin in
a possibly cluttered image, and its accurate delineation (or
segmentation). We start with an overview of the approach and
then proceed with explanations of each of the steps of the
algorithm.

A. Overview

Localizing an ancient coin in a cluttered image is a very
challenging task. Ancient coins vary in shape, colour and
toning, the amount of detail they show, and the background
is all but entirely unpredictable in appearance and information
content. Our approach is very much inspired by the human
visual system which first employs fast but rough approximate
localization, then followed by slower but accurate segmenta-
tion of an image into foreground (coin) and background re-
gions. Indeed, notwithstanding the aforementioned variability
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Fig. 3. Specimens of Antoninus Pius’s denarius (RIC 61) from our RIC-ACS data set described in Section II-B1.

in appearance, coins are roughly oval and this property allows
them to be readily distinguished from the rest of the image
content.

Considering that the second stage of our method, that
concerned with the accurate delineation of a coin’s boundary,
is statistical in nature and requires learning from data, we
first summarize the collection and content of the data sets
employed for the purposes of the present work, and then go on
to describe the two stages (coarse and fine) of our algorithm
in Sections II-C and II-D respectively.

B. Data

A major limitation of existing research on computer vision
based ancient coin analysis concerns the evaluation methodol-
ogy. In particular, virtually all experiments in previous work
were performed using extremely small data sets and using
images acquired in highly controlled and uniform conditions.
To cater to the goals of the present work, set out in Section I,
we collected two new data sets, which we describe in detail
next. Their use will be made clear in the subsequent sections
in which we explain the technical aspects of the proposed
algorithm.

1) Data set 1 (RIC-ACS): The data set that herein we
refer to as RIC-ACS is a large data set of high quality
images acquired professionally and in controlled conditions
(mostly uniform background, favourable illumination, stan-
dardized coin orientation, etc.). The data set comprises images
of 200,000 coins and was kindly made available to us by the
Ancient Coins Search Engine (acsearch.info). This is a highly
diverse corpus in that it spans the entire timespan of the Roman
empire (from the rise of Octavian in 29 BC until the fall of
Romulus in 476 AD), includes all denominations used in this
period (sestertii, dupondii, asses, denarii, antoninianii, foll€s,
AE4s, AE3s, etc.), as well as coins of different conditions.
It is worth noting that coin types in RIC-ACS are highly
heterogeneously distributed across different classes of interest
(emperors, as the issuing authorities). This is an consequence
of the manner in which data were collected and the inherent
differential in the scarcity of different emperors’ coins —
certain classes (usually those corresponding to emperors who
ruled for prolonged periods of time, such as Antoninus Pius)
contain many exemplars, while others very few (similarly,
usually those which correspond to usurpers who ruled for brief
periods of time, like Didius Julianus). Examples are shown in
Figure 1(a) and Figure 3.

2) Data set 2 (RIC-eBay): The data set introduced in the
previous section was acquired in controlled conditions, and
by skilled professionals. As we will explain in Section II-D

images from this corpus are used for training purposes only.
Given the aim of the present work and our focus on images
of coins ‘in the wild’, we manually acquired another, smaller
data set comprising images of 100 coins listed for sale on eBay
(note that the total number of images is 200, as each coin is
photographed separately from the obverse and the reverse).
We specifically rejected any professionally acquired images or
images with a uniform background, and sought challenging
and varied examples. Some are illustrated in Figure 1(b).

C. Step 1: Coarse localization

Our approach to coarse localization involves the use of
a simple geometric primitive as a hypothesis employed as
a bootstrap for the subsequent refining step. We start with
an explanation of the baseline methodology which uses a
circular primitive and then progress to the final, more complex
approach used in our final implementation.

1) Coarse localization using the circular shape assump-
tion: Notwithstanding shape irregularities which are effected
during the minting process or subsequently as a consequence
of damage (through use, due to erosion by substances in
the coin’s environment, etc.), as the first approximation coins
are roughly circular. Indeed, it is this feature which enables
humans to localize them quickly even in greyscale images
or even when the visual elements of the coin are absent.
Therefore, it is reasonable to approach the first stage of the
proposed algorithmic pipeline, that of coarse localization, as
a circle detection problem. This idea is particularly attractive
considering that circle detection has been studied in detail since
some of the earliest days of computer vision. Circle detection is
usually performed using binary, edge images [12], and herein
we adopt the same strategy. Hence we start by applying the
Canny edge detector [18] to the original input.

The option of exhaustively exploring the entire parameter
space, e.g. using the Hough transform [19], is simple but
unattractive. Not only is it highly inefficient but it also fails to
exploit the information obtained when hypotheses are tested
in guiding future search efforts. To overcome these limitations
we adopt an approach which uses a genetic algorithm [20].
Our methodology is inspired by the work of Ayala-Ramirez
et al. [21] but with important differences in the core design,
which we shall explain shortly.

A circle embedded within a 2-dimensional Euclidean space
can be parameterized using three parameters, e.g. the location
of its centre (two parameters) and the length of its radius.
Numerous others are possible and the choice of the parame-
terization is crucial in making the most of the genetic search
strategy. In particular, the parameterization should be such



that when encoded as a ‘chromosome’ (in the context of a
genetic algorithm), operations such as crossover, mutations,
and others, are likely to effect an improvement in the fitness
of a hypothesis. With this goal in mind, we parameterize
a circle (hypothesis) using three points on its circumference
and, unlike Ayala-Ramirez et al. [21], use a short, non-binary
chromosome comprising the coordinates of these points. By
enforcing the indivisibility of coordinate values (which the
binary chromosome of Ayala-Ramirez et al. does not do) we
ensure that the constraint imposed by two circumference points
is retained during evolutionary operations, thereby achieving a
higher chance of greater generational fitness improvement.

The fitness of a specific hypothesis is evaluated in a
straightforward fashion. Firstly, from three circumference
points (Z4,Ya), (Tb,yp), and (2., y.), the coordinates of the
circle’s centre (xg,yo) can be computed using closed form
expressions:

xp +yp —xn — a2y 2(Yp — Ya)
N a2 +ye —xl =y 2(Ye — Ya) 0
0= )
4 [(l'b - ma)(yc - ya) - ({EC - xa)(yb - ya)]
2(xp — x4) mg + yg —xz2 - xg
2($$ - ya) xz + yf - x?z - :17127 (2)
Yo = )
4 [(Z’b - ma)(yc - ya) - (xc - ma)(yb - ya)]
as well as its radius r:
= \/(xa —x0)% + (xq — x0)2. 3)

From this parameterization, the fitness of a hypothesis can
be readily quantified by (i) uniformly sampling the circum-
ference of the corresponding circle, and (ii) computing the
number of samples which are located on edge pixels of the
edge image. Formally, if there are ng samples, and the samples

are {(z1,y1), (T2,92), ..., (Tn.,Yn.)}, the fitness becomes:
e F(x, y
6= lel (i%%)v 4)
Ns

where E(z,y) is the value of the pixel (z,y) in the edge image
E.

2) Coarse localization using the basic elliptical shape
assumption: Two representative examples of coarse coin local-
ization using the circular shape assumption, described in the
previous section, are shown in Figure 4. In the first case, in
Figure 4(a), the localization can be seen to be highly successful
both in the obverse and in the reverse images. Despite the
presence of background clutter (edge features of the palm
which supports the coin), the coin is localized well, owing
to its circularity which matches the basic assumption of the
localization algorithm. However, in the example in Figure 4(b),
the coin is distinctly non-circular, its shape being closer to
an ellipse with significant eccentricity. Thus, unsurprisingly,
this violation of the assumption underlying the localization
algorithm misleads our genetic algorithm which finds as the
best hypothesis a circle that matches a part of the coin’s
boundary, which is approximately circular.

These observations, pertinent in many (if not most) in-
stances of ancient coin images in the wild, motivated us to pro-

(b) Failure

Fig. 4. Examples of coarse coin localization using the circular shape assump-
tion, described in Section II-C1. Shown are (a) successful, and (b) unsuccessful
examples. In the former case, despite the presence of background clutter, the
coin is localized well, owing to its circularity. In the latter example, the coin
is distinctly non-circular and exhibits shape closer to elliptical. Unsuccessful
localization is effected by this violation of the assumption underlying the
localization algorithm and an approximately circular boundary segment which
misleads our genetic algorithm.

pose several improvements to the previously designed coarse
localization algorithm. Firstly, we abandoned the assumption
of circularity and instead regard coins to be roughly elliptical.
Secondly, we employ edge orientation information to ensure
local shape coherence.

Unlike a circle, an ellipse embedded within a 2-dimensional
Euclidean space is parameterized not by three but five param-
eters. This can be readily seen from the implicit equation:

%+ kyyxy + kyyy2 + ke +Ekyy+k=0. 5)

Hence, we now construct chromosomes by concatenating the
coordinates of five points on an ellipse’s circumference. From
these, (Ta,¥a)s (T6,Yn)s (Te,¥e)s (¥a,ya), and (e, ye), the
parameters in (5) can be obtained by solving a simple linear
equation:

1
xi TaYa yg Ta Yo 1 k 0
o owyy Y, T Y 1 e 0
1‘3 TcYe yf Te Ye 1 kyy = 0 (6)
3 x 2z 1 r 0
4 dyd  Yq d Yd k
T2 TeYe Y2 Te Yo 1 Y 0
e ede e e e k

As in Section II-C1, to evaluate the fitness of a hypothesis
we first generate equispaced samples along the circumference
of the corresponding ellipse. This is readily done using the
canonical form, i.e. using the major and minor radii (a and
b) of the ellipse, its centre (xg,yo), and the rotation angle 6



relative to the coordinate system:

—V2011 —V2)

Q= — and b = T5 i (7)
kgy — 4k, k?cy — 4kyy
2kyyke — koyky 2ky — kypyky
T TR, — ik, T R, k) ®)
where:

¥ =k} + kyyk2 — koykoky + (K2, — 4kyy )k, 9)

1 =14 kyy + (1—k§y)+kgy, (10)
Yo =1+ ky, — /(1 —k2,) + k2, 11

As noted earlier, we evaluate the fitness of the hypothesis
from the generated set of samples by counting the proportion of
samples which fall onto edge pixels whose direction matches
the direction of the ellipse tangent at the sample within a
tolerance threshold 7:

Z?:s(la’b) E(z;,yi)u(Aa < 74,)
ns(a,b) ’

where A« is the aforementioned direction difference, and
u(...) the function which is equal to 1 when its argument
is true, and O when false. Note that we also make the number
of samples ng a function of the ellipse circumference length.
This was done to eliminate the bias towards smaller ellipses
which is effected by the local correlation in the appearance of
an edge image — for small ellipses consecutive sampling can
even sample the same pixel twice, thus falsely increasing the
measured fitness of the hypothesis.

¢= (12)

3) Coarse localization using the coherent elliptical shape
assumption: Our experiments readily demonstrated that the
algorithm we introduced in the previous section vastly out-
performed the simplistic localization using the circular coin
shape assumption described in Section II-C1, both in terms of
producing more accurate fitting, as well as in terms of overall
robustness to irregularities in the shape of coins, background
clutter, etc. Nevertheless, in a small but practically significant
proportion of cases, we observed a particular weakness. Specif-
ically, in some instances we found that one side of the coin (the
obverse or the reverse) was localized well but not the other.
This may happen when different backgrounds were present in
the two images, or when one of the sides of the coin contains a
motif which itself is circular in shape (for example, the design
of many reverses includes a circular boundary of dots, as can
be seen in Figure 3).

Our idea for overcoming the aforementioned problem was
to perform localization in the obverse and reverse images
concurrently, ensuring coherence between the two. This is far
from a simple task. Firstly, considering that in the present
work we are interested in images acquired by amateurs and
in uncontrolled conditions, the coin scale cannot be assumed
to be the same in the images of its two sides. Indeed, the
scale is often very different. Similarly, no assumptions on the
relative orientations of the coin in the two images can be made
— misalignment may be introduced by the person imaging
the coin, with the further unknown rotation due to the die
axis angle. These challenges introduce algorithmic problems
too. In particular, it is not clear how the chromosome based

Fig. 5. An example of rough localization result obtained using our approach
based on the coherent elliptical shape assumption described in Section II-C3.

representation of a shape hypothesis used in Sections II-Cl
and II-C2 may be adapted to represent coherent shapes in both
the obverse and the reverse images.

We propose an algorithm which maintains two separate
sets of chromosome populations, one for the obverse and
one for the reverse image. The interaction and coherence
between the two is achieved when chromosomal fitness is
assessed. In particular, given that both scale and orientation
can vary, we quantify the fitness of a particular hypothesis
by combining its baseline individual fitness, evaluated using
the expression introduced previously in (12), with the baseline
fitness of the chromosome in the counterpart population with
the closest matching eccentricity of the corresponding ellipses.
The combined fitness is computed as:

)|61—62|
€1 + €3

¢ = (¢1+ ¢2 ) (13)
where ¢1 and ¢ are the two baseline fitness values, and ¢; and
€2 the corresponding eccentricities. In our final implementation
we increase the robustness of this process by searching for the
n., closest matching hypotheses and selecting the one which
results in the greatest combined fitness. A typical result is
illustrated in Figure 5.

D. Step 2: Localization refinement using a statistical model
learnt from data

Recall from Section II-A that our algorithm involves two
steps, the first of which concerns rough localization of a coin
in an image, and the second which performs fine segmentation.
We perform the latter task using a statistical approach which
is data driven, and explain it in detail next.

Our methodology is inspired by the work of Arandjelovi¢
and Zisserman [22] who described a Markov chain based
method for the accurate segmentation of faces. Starting from
the rough, elliptical approximation of the coin’s boundary
obtained using the algorithm described in the previous section,
a discrete mesh of points around the ellipse is created. Specif-
ically, the mesh comprises equispaced points in the direction
perpendicular to the ellipse at equidistant intervals along its
circumference [22]. Thus, the mesh has an overall shape of



an elliptical annulus. If the points of the mesh are x; ; where
different values of the index 7 correspond to the movement
along the circumference of the ellipse, and of the index j
perpendicular to it, the coin boundary is detected by finding
the best sequence:

or, equivalently:
(T1,51): V151> (T2,52), V2,5@))s - -5 (T iny)» ynb,jmbg-s)

Optimality in this context is governed by two factors. The first
of these concerns the differential lateral displacement between
two consecutive points in the sequence (z; ;(;),¥: j(;)) and
(Ti41,5(i4+1)> Yit+1,j(i+1)). We treat the distribution of these
displacements as being Gaussian, with a zero mean and the
variance learnt from data (as we will explain shortly). In effect,
this is a statistical way of representing how the flan of the
coin behaves when struck during the minting process, and
how it is affected by the use of the coin and by the exposure
to various environmental factors. The second factor which
defines the optimality of a specific boundary delineation is
dependent on local image appearance. Following Arandjelovié
and Zisserman [22] we estimate the magnitude of the gradient
at a specific mesh point in the direction perpendicular to
the initial elliptical approximation, and assign a high weight
(high chance of inclusion in the final boundary delineation)
to points at which the gradient exceeds a certain threshold,
and a low weight to others. By doing this we ensure that
unfavourable imaging conditions (shadow, locally similar coin
and background colour, etc.) can be overcome using the
learnt statistics on boundary shape variability. Formally, the
likelihood of our model for a given sequence of mesh points
can be written as:

‘C(jlv e 7jnb) :p(ml,juyl,jl |mnbajnb ? yannb)' (16)

V(@151 Y1,51) * V(@ng oy Yo, ) (A7)

Ny
Hp(xi,ji7 Yi,j;

1=2
V(@i gis Yings)  V(Tiz14i 1, Yi-15:0) (19)

where 1 is the aforementioned gradient based weight. The
optimal solution is found by likelihood maximization:

Tiot1ji 1> Yi-14i,) (18)

(i--odn) = arg max LGu.ojn). (20)
ey

which can be performed efficiently (in linear time in the
number of mesh points) using dynamic programming and
the so-called Viterbi algorithm [23], [24]. Typical results are
illustrated in Figure 6.

a) On training.: As our approach illustrates, the prob-
lem we address is similar in nature to that of face segmentation
considered by Arandjelovi¢ and Zisserman [22], though with
a notable difference. Namely, unlike faces which have a
single and well defined axis of (approximate) symmetry [25],
[26], [27], the statistical behaviour of the coin shape can be
considered to be isotropic — deviations from the circular shape,
effected in the minting process or thereafter, are equally likely
to occur in all directions. A welcome consequence of this is

(@)

(b)

Fig. 6. Examples of the final segmentation result obtained by coarsely
localizing a coin using our coherent elliptical shape assumption based method
described in Section II-C3, and then refining the segmentation boundary using
the Markov chain based statistical model detailed in Section II-D.

that the statistical properties of coin boundaries considered
here, in contrast to those of faces, can be learnt independently
of direction, thus allowing for more knowledge to be extracted
from the same number of images.

The second difference between the problem in this paper
and that in the work of Arandjelovi¢ and Zisserman is of a
practical nature: unlike faces, coins can (and often are) readily
imaged in controlled conditions with a uniform background.
This allows us to collect large numbers of training images
from which ground truth segmentation data can be obtained
in a straightforward manner. As indicated earlier, this is the
key reason for our use of the RIC-ACS corpus described in
Section II-B1. Considering that the background in these images
is uniform, the background is readily detected by applying the
flood fill algorithm starting from the sides of an input image,
as illustrated in Figure 7.

III. SUMMARY AND FUTURE WORK

In this work our aim was to localize and accurately segment
out an ancient coin from a cluttered image acquired by a non-



Fig. 7. An example of a coin from our RIC-ACS corpus used for training
our Markov chain based statistical model for fine coin boundary fitting. The
uniform background of images in RIC-ACS facilitates simple segmentation
by applying the flood fill algorithm starting from the sides of an image. The
boundary is then sampled and the spatial relationships between consecutive
samples used as ground truth training data.

professional, e.g. a hobby numismatist. We proposed a two
stage approach which first uses a simple shape hypothesis
to localize the coin roughly and then arrives at the final,
accurate result by refining this initial estimate using a statistical
model learnt from data. Our results on data collected ‘in the
wild’ demonstrate excellent accuracy even when the proposed
algorithm is applied on highly challenging images. A weakness
of our approach which we intend to address in future concerns
the potential confounding effect of elliptical elements in the
background of a coin (e.g. from a coin holder). The use of
colour [28] or superpixel based segmentation [29] are likely
to be of help in this context.
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