1710.06940v1 [cs.LG] 18 Oct 2017

arxXiv

Concept Drift Learning with Alternating Learners

Yunwen Xu*, Rui Xuf, Weizhong Yan' and Paul Ardis’
* Machine Learning Lab
GE Global Research, San Ramon, CA, 94583
Email: yunwen.xu@ge.com
tMachine Learning Lab
GE Global Research, Niskayuna, NY, 12309
Emails: xur@ge.com, yan@ge.com, ardis.p@ge.com

Abstract—Data-driven predictive analytics are in use today
across a number of industrial applications, but further integra-
tion is hindered by the requirement of similarity among model
training and test data distributions. This paper addresses the
need of learning from possibly nonstationary data streams, or
under concept drift, a commonly seen phenomenon in practical
applications. A simple dual-learner ensemble strategy, alternating
learners framework, is proposed. A long-memory model learns
stable concepts from a long relevant time window, while a short-
memory model learns transient concepts from a small recent
window. The difference in prediction performance of these two
models is monitored and induces an alternating policy to select,
update and reset the two models. The method features an online
updating mechanism to maintain the ensemble accuracy, and
a concept-dependent trigger to focus on relevant data. Through
empirical studies the method demonstrates effective tracking and
prediction when the steaming data carry abrupt and/or gradual
changes.

Index Terms—Online learning, streaming data analysis, alter-
nating learners, ensemble learning, model management

I. INTRODUCTION
A. Background

With the advancement in technologies of online data mining,
scalable and low cost data management, and distributed and
cloud computing, data-based modeling for streaming data has
gained tremendous popularity in industrial asset management.
The use cases range from statistical process control to monitor
machine operation condition for manufacturing systems [1]],
[2], early failure detection and diagnosis as prognostics and
health management [2], detecting and tracking objects and
abnormalities in video streams [3]], and monitoring and fore-
casting application demand to dynamically improve resource
allocation utility [4]], just to name a few. In many of these
scenarios, the relationship between the modeling target and
the available observations are often characterized using various
machine learning models.

Conventional machine learning models assume that the
training data well represent the relationship in all data drawn
from the process of interest. In other words, data stationarity
is required over the course of model learning and application.
However, this is commonly violated in real practice, especially
for applications involving streaming analysis. In many indus-
trial use cases, data recorded from manufacture and operation
processes demonstrate an inherited nonstationary nature. For
example, a sensor’s measurement can drift due to the sensor’s

fault or aging, changes in operation conditions or control
command, and machine degradation as a result of wearing.
Even without seeing any drift in available data, there is no
guarantee that data to become available in the future follow
similar distribution as the past in a stream setting. For all
these observed, unseen, or uncertain changes in data, or in the
process, we call them concept drift as in the literature.

On account of these practical limitations, the modeling
technologies can either be used under constraints, or have to
be adapted to handle nonstationarity. The first point of view
follows the thought process of dynamic systems modeling
[S[l. It assesses the robustness of a system model by carrying
out sensitivity analysis and uncertainty decomposition, which
results in a set of feasible working conditions (states) where
models are valid and stable. Once the actual system states do
not meet those constraints, the model does not provide any
analytic conclusions. Seeing this disadvantage, most recent
researches take the latter perspective, and continuously cope
with the drifting concept. The problem of concept drift learn-
ing can be stated as: sequentially given (labeled) measured
data that may be nonstationary over time, how to construct a
predictive model that 1) predicts in a timely manner, and 2)
tracks and responds to meaningful changes in data, and adapt
to valid system behavior.

The term concept drift roughly denotes the source to gen-
erate observations x; and target y;, or the joint distribution
of the time-indexed random vectors S; = {(X;, Y:)} for
t = 1,2,..., changes over time ¢ [6]. The causes can be
categorized as: change in data distribution P(X;), so that a
fitted model that achieves optimal averaged prediction perfor-
mance for one period of time (the training phase) is no longer
optimal for the new test data; this is also called virtual drift,
since the response y for a same x remains the same. The other
type of drift refers to the change in the conditional distribution
P(Y|X), describing the relationship between X and Y. This
is also called real drift, since response may change despite the
same observation. Changes purely caused by seasonal effect
and operational condition (e.g., temperature, humidity) are
examples of virtual drift; while machine degradation belongs
to real drift.

Depending on how model adapts to newer concepts, existing
works can be generally classified as trigger-based and evolving
methods. The trigger-based approaches explicitly perform



concept change detection on input streams, the derived fea-
ture space, or model performance metric; various window
based, or sequential hypothesis tests have been developed,
aiming at an optimal detection rate and sample efficiency
[71-19]. Once a drift is detected, the models are retrained
or incrementally updated with valid training data from recent
experience or through resampling [10]—[13]]. In contrast, the
evolving approaches continuously update the model without an
explicit goal to detect change. Many online learning models
are evolving over time. The most studied methods with overall
better performance utilize an ensemble of base models, dif-
ferent implementations are distinguished by the type of base
models, training set composition methods, ensemble update
rules, and the way model output is fused, [14]-[17]. It is
commonly viewed that the trigger-based approaches work well
for abrupt changes, while evolving approaches can pick up
gradual changes with less delay, more discussions can be
found in recent survey papers on this topic [6]], [[18]], [[19].

In addition to the challenges sharing across concept drift
learning literature, the recent rapidly rising pull from the
Industrial Internet of Things (IIOT) applications also set
further constraints on computational resources: some analysis
are performed in embedded systems with limited computing
power and memory (edge analytics), and this sometimes makes
typical ensemble learning technologies unsuitable.

Notations: Throughout this paper, we use regular lower
case letters (e.g., x, §) to denote single scalar observation or
parameter, bold lower letters (e.g., X,y) to denote vectors or
realization of random vectors, and upper case bold letters to
denote matrices or random vectors (e.g., X, Y). The subscripts
means time stamp (e.g., xX¢, X¢).

B. Contribution

In this paper, we propose a light-weight, easy-to-implement
alternating learner framework that continuously adapt to new
concept, and provide high quality predictions. In particular,
we employ two models: a long-memory learner (L) that is
trained on a long time window (LW) with samples relevant
to the current concept, and a short-memory (S) learner that is
trained on a short window (SW) that only contains most recent
samples. The intuition is: when the concept is stationary, L
performs no worse than S, since the training data of S is a
subset of L, and data distribution is homogeneous; however,
on occurrence of concept drift, S adapts faster since the
percentage of newer samples in SW is typically much higher
than LW. This gives us the rule of alternating: As a new batch
of measurements and corresponding labels arrive, S and L are
individually tested on the new samples. If performance of L
is acceptable, then frontier of LW moves forward, and L is
updated using information in the fresh samples. If L does not
meet the performance target but S does, this is an indication
of concept change. In this case, we truncate the tail of LW
to be the same as SW, so all information prior to SW is
retired. On the other hand, the fixed-sized SW window always
slides forward with most updated information. As a result, we
alternatively choose prediction from L and S. And S acts like

a clutch to determine the boundary of each concept (LW), and
serves as a (vague) change detector as well as providing a
baseline after change.

The idea is based on the work by Bach and Maloof [11].
Comparing with [[11], we chose the extreme learning machine
(ELM) as a base learner for regression cases, and

1) designed a new learner comparison criterion that better
suits the regression case,

2) modified the learner alternating policy to prevent fre-
quent reset under noisy environment, and

3) included data quality check to mitigate overfitting effect
due to small sample size followed by learner reset.

In [11]], extensive comparative studies have been done on the
paired learner (PL) approach against most popular trigger-
based and ensemble algorithms in classification setting, and
PL has outperformed or shown comparable performance with
much less computational costs. So in this paper, we focus
on comparison with the PL algorithm and two other base-
line models. Through a set of empirical studies, we show
that the alternating learner approach successfully responses
to both abrupt and gradual changes with different pattens,
and provides the overall best prediction performance across
comparison, and also achieves common industrial standard.

The remainder of the paper is organized as follows: in
Section [l we describe the alternating learner algorithm in de-
tail, and propose an implementation using the online extreme
learning machine as the base model; we then perform a case
study on real power plant performance modeling and present
the results in Section we close the paper with conclusion
in Section

II. METHOD
A. Alternating Learners Framework

We consider a typical streaming analysis scenario: a set of
labeled data (henceforth referred to as the initial dataset) are
available in the beginning of learning process, after that, new
measurements with labels become available one by one or in
small batches (not necessary to have equal batch sizes). In
industry practice, the initial dataset is usually from design
of experiments (DoE), testbed runs or historical operation
records. Sometimes they already contain a rich variety of
concepts, but more often this is not sufficient due to limited
duration and operation modes covered by the initial data.

The alternating learners (AL) framework consists of two
learning models, L for long-memory learner and S for short-
memory learner, an alternating policy is employed to choose
the final prediction output either from L or S. Like many
online sequential learning algorithms, the AL framework has
two phases: initial learning phase and continuous learning
phase.

In the initial learning phase, predictive models are built from
the initial dataset. Without further assumption, this is a con-
ventional (static) model training task. We initialize L trained
by all initial dataset, and for S, at most W samples from
the latter portion (SW) are used, where W is a user defined
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Fig. 1. The long-memory learner (L) captures the feature-response relation-

ship over a window [Ty, T'] with relevant data, the short-memory learner (S)
models “current” window of size W. LW and SW alternatively define the
beginning of the learning window for stationary and changing environment
respectively.

size for the short memory window. Note that, only samples
in SW will be kept in memory. We choose online learning
algorithms to incrementally update L afterwards (except those
reset instances), so there is no need to save an increasing
volume of training data. The base model for L discussed in
this paper is the online sequential extreme-learning machine
(OSELM), which we will introduce in subsection [[I-B

In the continuous learning phase, learning is driven by
update, compare, and select the two models using the new
available data, and concepts. The process is illustrated in
Figure [I] Model S is always refit to the short window SW,
serving as a baseline local prediction. Model L continuously
integrates new information by including new samples into its
long-memory, LW = [Ty, T, where Tj is the time since when
new concept has not been observed. In case of concept change,
outdated data must be discarded from training set by resetting
Ty, and this is done by comparing predictive performance of
L and S, on the new data.

Upon arrival of a new batch of b samples {(x:,y:) tqué 1
where x; € R? and y: € R*, the two learners both make
prediction on the labels (response values). Let ¥~ and y7 be
the prediction and Err(y}) and Err(y7) be the corresponding
performance of L and S. The performance measure can be
any error metric of interest, assuming the smaller the better,
common choices can be the Mean Squared Error (MSE) or
the Mean Absolute Percent Error (MAPE). The comparison
outcome can be one of the following four cases:

1) Err(gF) is acceptable, Brr(7) > Err(gF): there is no
sign of concept drift, old data ([Tp,T)) is sufficient to
train L to achieve the desired accuracy, performance of
S is likely to be restricted by small training set;

2) Err(gl) is acceptable, Err(7) < Err(¢F): although the
local model shows a better performance on the new
batch, since L still meets the prediction objective, this
does not count towards a sign of concept drift. Moreover,
in this case, we let L augment the training knowledge
and pick up variability in system behavior;

3) Err(§F) is unacceptable, Brr({;) > Err(jf): predictions
of both S and L are off. This may related to concept
change, but a better substitution for L is not available;
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Fig. 2. The work flow of manage the alternating learners online. The
prediction unit incrementally updates to learn from most recent data, the
detection unit checks stationarity of data streams.

4) Err(gF) is unacceptable, Err(jy) < Err(gF): local
model outperforms long memory model in a meaningful
way, this may indicate the distribution of pairs (x;,y:)
in the short window [T" — W, T] and the long window
[To, T differs significantly, and model S is closer to the
upcoming concept.
From all four cases, only the last one both indicates a change
and suggests a meaningful alternative for L. In other cases
either performance of L is satisfactory (Case 1 and 2), or
a better alternative is not available (Case 3). So we use the
occurrence of Case 4 to design a “forgetting rule” for L.

In particular, we use a queue, Q, with a maximum length
W to record the status of performance comparison: register
1 to Q whenever Case 4 happens, otherwise register 0. The
concept change is asserted when the rate of seeing 1 is high
in the Q, one criterion is the percentage of 1 exceeds a user
defined threshold §(0 < ¢ < 1), which related to forgetting
sensitivity. When a new concept is asserted, we shrink window
LW to match SW by setting Ty := T — W, and also reset L
by S, so that the performance of L after reset is not arbitrarily
bad (warm restart). The flowchart of the algorithm is provide
in Figure [2]

Overall, L represents a long and relative stable concept,
and it aims at improving prediction accuracy by expanding
training set. And S serves as a change detector, and also
the alternative model to be exerted from an ensemble of two
models. When concept is stable, L typically outperform S, and
in the ensemble notion, we choose to output the prediction of
L solely. When concept drift happen gently, L slowly catches



up by online update. If change is rapid or the magnitude
of the change is large, online update fails to follow since a
large portion of training data are still associated to the old
concept, then learners switch and reset mechanism determines
the beginning of new concept.

Remarks:

o The user-specified reset threshold §(0 < § < 1), the
maximum length of the queue W, and the acceptable
performance threshold 7 > 0 are domain dependent and
can be pre-learned. In general, § is not too small, small
value results in frequent reset, which leads to overall
small training set size, and harms the overall prediction
performance. We provide sensitivity study on 6 and W
in Section

o To prevent the alternating mechanism from overly reac-
tion to noise, we also introduce a leastWait parameter ny,
so that reset is only allowed after the length of @) exceeds
ng. In practice, ng is determined by reset threshold ¢
and sensitivity evaluation. For example, when ¢ < 0.5,
selecting ng < 2 essentially calls for a learner reset after
seeing Case 4 one out of two checks after a previous
reset. Frequent reset is undesired, especially when the
learner accuracy fluctuation is caused by noise, since the
information used to train the learners is almost as short as
SW. In our sensitivity experiments, we find for mid-range
0 (between 0.3 and 0.6), performance does not change
much with respect to ng as long as it is larger than 4.

o We assume equal batch size b for the ease of description,
this framework also works for varying batch size, as long
as it is compatible with the online updating algorithm.
The OSELM algorithm we use for this study is able to
handle varying batch size.

o The actual models to implement L and S are not restric-
tive: any model that can be updated in an online fashion
(efficiently updated and does not store an increasing
amount of data) will suffice.

B. Base model selection: OS-ELM

We adopt the Extreme Learning Machine (ELM) as the
base learners for L and S. The ELM is a special type of
feed-forward neural networks introduced by Huang, et al.
[20]. Unlike in traditional feed-forward neural networks where
training the network involves finding all connection weights
and bias, in ELM, connections between input and hidden
neurons are randomly generated and fixed. This implies for
any given inputs, the hidden neuron outputs are uniquely
determined; this mapping and the values are referred to as
ELM feature mapping and ELM features. Thus, training an
ELM reduces to finding connection weights from the ELM
features to output neurons only. Because of such special design
of the network, ELM training becomes very fast. Numerous
empirical studies and recently some analytical studies have
shown that ELM has better generalization performance than
other machine learning algorithms including SVMs and is
efficient and effective for both classification and regression
[20], [21]].

Algorithm 1 Alternating Learners
1: Input: By, W, ng, 6, 7, b, {(x¢,y¢)},t =1,2,...,N
2: Bp: number of batches available for initial training

: W: maximum queue length to compare learners perfor-
mance

4: mo: minimum reset interval in batch count

5: J: reset threshold

6: 7: threshold for acceptable performance

7

8

9

(98]

: b: number of samples per-batch
: procedure ALTERNATING LEARNERS(L, S)
: T + Bo7 To <0
10:  Train Ly, Ly, S on initial dataset {(x,y¢)}72 5> Ly:
complicated model requires many training samples, Lo:
simple model requires less training samples

11: Q=] > Performance tracking queue

12: while ¢ < N : do > New data come in

13: VEL « Ly.predict(xy), §52 < Lo.predict(x;)

14: ¥ <« S.predict(x;)

15: if not overfit then > Choose long-memory learner

16: yi <yt

17: else

18: yi < vi?

19: end if

20: if Err(yL) < 7 or Err(yF) < Err(y7) then

21: Q.append(0)

22: else

23: Q.append(1)

24: end if

25: if len(Q) > W then

26: Q.pop()

27: end if

28: if len(Q) > no and sum(Q)/len(Q) > § then
> Alternating condition

29: To<—T-W

30: L+S

31: Q H

32: end if

33: Update L1, Lo, S using {(x¢,y+)}

34: end while

35: end procedure

Consider a set of M training samples, {(x;,y;)},,x; €
R? y; € R*. Assume the number of hidden neurons is K.
The output function of ELM for generalized SLFNS is

K
Fx) = Bihi(x) = H(x)8, (1)
=1

where h;(x) = G(w;,w;,X) is the output of i*" hidden neuron
with respect to the input x, and w; € R% w; € R are the
neuron’s weights and bias respectively; G(w,w,-) : R¢ — R
is a nonlinear piecewise continuous function satisfying ELM
universal approximation capability theorems [21]], for exam-
ple, the sigmoid function; 3, is the output weight matrix
between i*" hidden neuron and the k& > 1 output nodes. The



H(-) = [h1(),...,hr ()] : R? = RE is the random feature
map transforming a d-dimensional input to a K -dimensional
random ELM feature.

For batch ELM where all training samples are available at
the same time, the output weight vector 3 € RX** can be
estimated as the least-squares solution of H@3 =Y, that is,

B=H'Y )

where H' is the Moore-Penrose generalized inverse of the
hidden layer output matrix (see [20] for details), which can
be calculated through orthogonal projection method: Hf =
(HTH) 'HT when H has full column rank.

The online sequential ELM (OSELM), proposed by Liang,
et al. [22]], is a variant of classical ELM, it addresses the need
of incrementally learning the output weights from chunks of
data available in sequence. As described in details in [22],
OS-ELM involves two learning phases, initial training and
sequential learning.

Initial training: choose a small chunk of initial training
samples, {(xi,yi)}ﬁ(’l, where My > K, from the given M
training samples; and calculate the initial output weight matrix,
3’ using the batch ELM formula (). And initialize Ry =

(HiH,) .
Sequential learning: for the (Mo + m + 1) training
sample, where m = 1,..., M — My — 1, iterate between the

following two steps.

1) Calculate the partial hidden layer output matrix for the
new sample:

H, 1 = [hi(Xng4m1), -« hL(Xntg4mt1)]s

_ T
and set the target t,,41 = yMO*’."“'
2) Calculate the output weight matrix:

~m—+1 Am Am

ﬁ =0 + Rm+1Hm+1(tm+1 - ngrlﬁ ) 3)
where
Rm+1 = (4)

Rm - RnLHm+ 1 (I + Hz;H_ 1 RmHnL-l—l ) -1 Hz;H- 1 RTYL .

Note that the number of hidden node K and the random
feature mapping is fixed after the initial training, only the ELM
feature matrix H is re-f:alculated for new data chunks, and the
output weight matrix 3 is updated accordingly.

C. Implementation

The OSELM algorithm enjoys the benefits of fast training
and incrementally updating, which fulfills our needs to main-
tain the long-memory learner L. For given (fixed) input-hidden
layer weights {w;,w; },i = 1,..., K, the iteratively calculated
output connection weight matrix 3™ by (B) and (@) is the same
as the batch-mode solution when all M+ m training samples
are fed at once. The structure of the SLEN, or the number of
hidden neurons K, is determined by performing a k-fold cross
validation in initial learning phase. This structure parameter,
K, once determined, remains the same for the online updating
process.

The short-memory learner, S, on the other hand, is repeat-
edly trained by batch mode ELM using all samples in SW, and
can be served as the starting point of OSELM after switching.
Note that, except the samples in SW, old data are not saved,
so L is not completely retrained.

When solving for the output weights 3 from SLFN, if
the number of sample points is less than number of hidden
neurons, Equation ([Z]) become under-determined, and the fitted
network is easily overfit. So in implementation, we maintain
two versions of L: L; learns complicated concepts trained
and updated by OSELM; L, learns simple hypothesis, and
we choose a linear regression model based on the same input
features. We add an overfit test for L, checking if the training
samples in LW is more than 2K, we then switch the output
of L to point to either L; or Lo. The detailed implementation
steps are provided in Algorithm

Here we make a note that, the comparison aims to conclude
relative performance of the concept-drift handling frameworks,
either triggering policies or ensemble rules, rather than the
selection of base learner. Our base learner selection only
considers the suitability of online update and efficient train-
ing/application.

III. EXPERIMENTAL RESULTS

We perform empirical performance assessment for the alter-
nating learner algorithm in the regression setting. To demon-
strate on an industrial use case that is typically suffered by
the issue of concept drift, we use simulated data representing a
power gas turbine operation with synthesized deterioration and
maintenance work. The synthesized drift information we used
in data generation are treated as ground truth. Comparison
against three baselines are provided.

Algorithms to compare with: The conventional static
machine learning model is implemented with the basic reg-
ularized ELM trained on the initial batch By and tested
on the remaining time series, this model misses the target
right after concept change as expected. The OSELM is an
example of typical online learning methods, under nonsta-
tionary environment, online learning gradually picks up new
relationship but tends to have long lag, since the sensitivity and
stability trade-off is controlled globally. The third algorithm
we implemented is the Paired Learner algorithm proposed
in [11], the original algorithm is designed for classification,
we re-implemented two versions for regression with slightly
different queue registration criteria. Only results with better
performance is reported in this paper.

Performance measure: In multi-variate time series re-
gression for power plant applications, we choose the Mean
Absolute Percent Error (MAPE) of the model prediction as
the evaluation metric, i.e., for the ! batch, M APE(y;,y:) =
7 Zi’:l( % x 100%), where b is the batch size. Note that,
we assume the true response values (y;) of every new batch
is available after L and S predict.




A. Case study: gas turbine performance modeling for power
plant

In this case study, we consider to model the performance of
a gas turbine in a power plant. The data are time series sensor
readings from a power plant. A collection of 9 signals related
to turbine operating status are simultaneously recorded: com-
pressor inlet temperature, compressor inlet humidity, ambient
pressure, inlet pressure drop, exhaust pressure drop, inlet guide
vane angle, fuel temperature, compressor flow, and controller
calculated firing temperature.

The generated power depends on the machine condition, and
is comprehensively captured by a hidden variable compressor
efficiency n. The recorded sensor data and predefined com-
pressor efficiency profile are fed into the GE internal power
simulation tool, Gas Turbine Performance (GTP) to get the
instantaneous gross electric power and net heat rate. The GTP
simulator has been independently developed by GE Power, it
has high fidelity, and requires large computational resources
to configure and run.

In real plant, the efficiency n drops as regular wear, dust
cumulation, coating material oxidation and some non-ideal
usage condition. On an opposite side, maintenance activities
such as cleaning and renovation improves machine status,
and 7 significantly increases after these events. In order to
investigate the algorithm performance under different types of
concept drift. We generate different change patterns of 7 and
simulate turbine response respectively. Our learning target is
to predict generated power using measured signal only.

To obtain statistical description of the algorithm perfor-
mance, we generate 500 datasets, each set is a sequence of
2000 samples with inputs and outputs introduced above. We
generate two change patterns of 7:

o Abrupt change: this pattern contains two sudden jumps
on the compressor efficiency 7. 7 is set to be 1.0 in the
beginning, and linearly drops to 0.9 in /; sample range,
then suddenly jumps to = 1.1. Then in [l sample range,
7 slowly drops to 0.9, and again jumps back to 1.1. After
that, 7 stays around 1.1 for /3 sample range, then begins to
decrease, and finally ends at 0.95 in the end of simulation.
The duration of each section, Iy, l5 and Ls are randomly
generated positive integers satisfying [ 412 + 13 < 2000.

o Gradual change: this pattern contains one relatively long
linear change of 7. In this case, 1 begins at value n = 1.1
and stays near constant for a duration of /; samples. Then
7 linearly decreases to 0.9 in Il sample range, after that
it stays near 0.9. Similarly, the random integers satisfies
l1 + 13 < 2000.

For both cases, independent and identically distributed Gaus-
sian noise is added to every simulated efficiency profile and
lasts for the entire 2000 time steps. The dataset contains 265
cases with abrupt change and 235 with gradual change.

B. Performance summary

We select the initial dataset with By = 100 samples, and
perform a repeated 5-fold cross validation on each time series
to select the best hidden node number for its SLFN.
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Fig. 3. Sensitivity of the prediction accuracy with respect to the alternating
threshold, 6 € [0.2,0.7] and short-memory window, W € {20, 30, 40}.
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Fig. 4. An example with gradual concept drift: (Top) real (red) and predicted
(green) electric power generated by the turbine, length of time series is
2000. (Bottom) The batch-wise Mean Absolute Percent Error (MAPE) from
the alternating learner output. The black vertical bars indicate the switching
moment. Parameters: Bg = 100,b = 1, W = 20, = 0.4, ng = 5, average
MAPE over time is 0.364% .

The three user defined parameters are W, maximum queue
length to compare learner performance; ¢, the learner switch-
ing threshold, and ng, the least queue length allows a reset.
As commented in Section [[I-A] ny and ¢ are closely related,
once the threshold ¢ is given, we can choose ng properly,
so we first determine the § and W jointly by a preliminary
sensitivity experiments: on a subset of 20 randomly selected
dataset from all the 500 (10 abrupt cases and 10 gradual cases).
The prediction MAPE distribution on the 20 sampled datasets
are displayed in Figure [3] the Box-and-Whisker plots indicate
the average, median, and the 25th and 75th quantiles and
extreme value ranges (end of vertical lines). It is seen that
all combination show good MAPE score from 0.4% to 0.8%,
with an overall increasing trend with respect to 6 and W.
We choose W = 20, and § = 0.4. The reason not selecting
0 = 0.2 or 0.3 is that, in order to avoid “single instance reset”
described in Section [[I-A] selecting smaller § leads to ng > 7,
which is about 30% of the queue length, and we decide to
trade this toward response speed.
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Fig. 5. An example with abrupt concept drift: (Top) real (red) and predicted (green) electric power generated by the turbine, length of time series is 2000.
(Bottom) The batch-wise Mean Absolute Percent Error (MAPE) from the alternating learner output. Parameters: Bo = 100,b =1,W = 20,5 = 0.4,n09 = 5,
average MAPE over time is 0.682%. The blue and black vertical lines indicate beginning of online learning phase and the learner alternate instances.

Examples of the algorithm prediction results are shown in
Figure [4] (gradual) and Figure [3] (abrupt). Assume data comes
one sample at a time, so batch size b = 1, 100 batches
are available during the initial learning. We take industrial
standard and set the performance acceptance limit 7 = 1%.
The figures show results when selecting the maximum queue
capacity as W = 20 batches, and reset trigger to be § = 0.4.
On the top figures, real power output value is plotted in red,
and the green stars are the alternating learner’s prediction. The
bottom plot depicts MAPE of prediction on each prediction
batch (sample). Blue vertical line indicates the beginning of
continuous learning phase, and the black lines indicate the time
instance to reset long-memory learner. It is seen that, reset
usually occurs when the MAPE score shows an increasing
trend. It happens less frequently for gradual changes, and can
be caused by either slow concept drift, or local fluctuations
(Figure [). The algorithm also responses quickly after abrupt
changes, and the prediction performance returns to small
MAPE range (1%) after the reset (Figure .

We run the AL algorithm on all of the 500 simulated dataset
and compare the predicted power with the power output from
the GTP simulator and calculate the MAPE measure for each
series. Then the same data are modeled by the three other
methods (batch-ELM, OSELM, and PL EI) The key statistics
for the resulting distribution of the prediction MAPE metric
over the 500 set is summarized in Table[l] Figure [] and Figure
[7 visually depict the performance comparison of different
algorithms under abrupt changes and gradual changes. It is
observed that, the framework with dual learners to detect
change achieves significantly better prediction accuracy: the
average MAPE for PL and AL are both below 1% and meet
industrial standard with standard error of about 0.11%, while
the average MAPE for the batch-ELM is about 6.799+3.254%
and for the OSELM is about 3.189 + 1.956%.

'Only the version with the Q registration criterion that leads to a better
performance is reported in comparison.

TABLE I
SUMMARY STATISTICS OF MAPE DISTRIBUTIONS OF FOUR ALGORITHMS

batch-ELM | OSELM PL AL
mean 6.799 3.189 0.596 | 0.562
sd 3.254 1.956 0.111 | 0.112
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Fig. 6. The Box-and-Whisker plots of the prediction MAPE when the four
algorithms perform on a set of 265 simulated data streams with abrupt
concept drift. The black dots inside the boxes indicate the mean values of
the distribution and the center bars of the boxes indicate the median values.

The poor performance of the batch-ELM can be understood
as the concept change exceeds the model generalization ca-
pability, in other words, the model predicts with the initial
concept for the entire data stream. The OSELM adjusts the
output weights using (), but the contribution of each new
concept data is small comparing with the historical learned
information, so it needs more iterations to settle the model.
The methods with two learners apply a reset rule so that more
aggressively adapt to the up-to-date concept.

The modification of AL upon PL makes it works better on
regression setting, we provide a set of rescaled Box plots in
Figure [§] to better illustrate the improvement.
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Fig. 7. The Box-and-Whisker plots of the prediction MAPE when the four
algorithms perform on a set of 235 simulated data streams with gradual
concept drift.
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Fig. 8. The Box-and-Whisker plots of the prediction MAPE when the PL
and AL methods are applied on the set of 500 simulated data streams.

IV. CONCLUSION

We proposed an efficient online machine learning frame-
work to model nonstationary data streams with concept drift.
By training and maintaining two learners with long and short
memory, and compare their prediction performance on new
coming batches, the two-model ensemble effectively identifies
data or relationship changes. By alternating ensemble predic-
tion output between the two learners, the model continuously
adapts to new concept. We performed a numerical algorithm
evaluation using simulated power plant operation data. After
extensive tests on various change pattens, the proposed al-
gorithm outperforms other baseline and benchmark methods
and consistently meets the 1% industrial standard for power
performance prediction.
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