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Abstract—This paper presents an extension of the BrainScaleS
accelerated analog neuromorphic hardware model. The scalable
neuromorphic architecture is extended by the support for multi-
compartment models and non-linear dendrites. These features are
part of a 65 nm prototype Application Specific Integrated Circuit
(ASIC). It allows to emulate different spike types observed in
cortical pyramidal neurons: NMDA plateau potentials, calcium
and sodium spikes. By replicating some of the structures of these
cells, they can be configured to perform coincidence detection
within a single neuron. Built-in plasticity mechanisms can modify
not only the synaptic weights, but also the dendritic synaptic
composition to efficiently train large multi-compartment neurons.
Transistor-level simulations demonstrate the functionality of the
analog implementation and illustrate analogies to biological
measurements.

I. INTRODUCTION

The biological nervous system is a main source of inspiration
in the quest for future computing. A prominent example is deep
learning, a computing scheme based on multi-layer Perceptron
models [1], which is currently in the focus of academia as
well as industry [2]. The neuron models used in these machine
learning applications are heavily simplified compared to the
biological example. The fact that such a simple copy of the
basic architecture of the nervous system is already capable of
impressive results encourages many scientists that even more
powerful computing devices might be built by looking more
closely at nature’s principles. The hope is that even without a
full understanding of the operation of the brain, studying its
architecture leads to new inspirations for the development of
novel computing systems [3].

Testing such concepts is mostly done with numerical
simulations, often using standardized software packages [4], [5].
These tools allow a step up in complexity from the Perceptron
model by using spike-based neuron models. Spike-based models
cover a wide range of complexities, ranging from the basic
Integrate-and-Fire models up to Hodgkin-Huxley-like models
incorporating a multitude of different ion-channel kinetics [6].

It has been shown by several research groups that prominent
concepts used with Perceptron models, for example sam-
pling based approaches [7], [8] or deep-learning using back-
propagation [9], can be transferred successfully to spiking
models [10]. Comparing typical benchmark problems, many

spike-based implementations reach similar scores as their rate-
based examples [11], but they execute orders of magnitude
slower on the commonly used High Performance Computing
(HPC) platforms [12].

It gets even worse if the training methods are constrained to
biologically plausible mechanisms, which requires that at short
timescales all information exchange is done by spikes only. This
forbids for example the implementation of back-propagation
as it is currently used in the standard deep-learning software
packages [13]. Luckily, first ideas how to circumvent these
problems have been reported lately [14], where the network
learns not only its objective but also the correct mapping of the
error information from the output backwards to the upstream
synapses.

Recent findings in biology [15] have inspired novel models
[3], [16] which include the three-dimensional structure of
the neuron. The dendritic tree is no longer treated as a
compartmentalized cable-equation [17], but as a complex non-
linear structure which allows multi-layer information processing
and coincidence detection within a single neuron [18].

Including all these details into numeric simulations strongly
enhances the performance problems already surfacing with
spiking neuron models. The work in this paper presents
an alternative approach to the numerical modeling of multi-
compartmental, non-linear dendrites, using physical-model-
based neuromorphic hardware [19]. It builds upon the Brain-
ScaleS accelerated analog neuromorphic system [20] in con-
junction with the built-in hybrid plasticity extension developed
for the BrainScaleS 2 system [21]. It expands these concepts
by incorporating novel circuits to mimic non-linear dendritic
behavior, including an emulation of N-Methyl-D-Aspartat
(NMDA) and calcium channels [22].

In [23] a neuromorphic chip is presented that also contains
NMDA emulation circuitry and has adapted many of the
features of the BrainScaleS system, but implementing them
in the real-time domain using sub-threshold point neurons,
in contrast to the accelerated emulation used in the circuits
presented in this publication. Some authors have reported
neuromorphic circuits incorporating aspects of NMDA-R
behavior to achieve a certain functionality, for example [24]
and [25]. In contrast to those, our approach is not targeted
at a single functional model, but aims to be a universal
experimental platform. The presented implementation is also
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Fig. 1. Basic structure of the HICANN chip. Left: Micro-photograph of a
first generation HICANN chip. The synapses are organized in two blocks
with the neurons in the center. Each block has 128 independent pre-synaptic
input circuits, each capable of relaying 64 different pre-synaptic neurons,
adding up to a total of 16k different pre-synaptic neurons. A single input
is symbolically depicted by the red arrow. Right: conceptual drawing of the
neuron compartment circuits and their associated synapses. The individual
compartments are connected to each other by switches to assemble the neurons
from the compartments. There are switches between neighboring compartments
(A) and between adjacent compartments in the upper and lower block (B).

inherently scalable in the framework of the BrainScaleS system.
Neuromorphic hardware concepts based on non-linear dendrites
have also been previously reported [26] [27], demonstrating
the viability of the concept for pattern classification.

This paper will present an extension of the BrainScaleS
Adaptive-Exponential Integrate-and-Fire (AdEx) neuron model
[28] that allows the replication of coincidence detection
between basal and apical dendritic segments similar to those
observed in experiments [29]. The circuits are fully plastic and
can be tuned during the experiment according to plasticity rules
executed by the local plasticity processing unit [30], while still
performing the network emulation at an acceleration factor of
103. A first prototype chip has been sent to manufacturing at
the time of this writing.

The remaining sections of the paper are organized as follows:
Section II gives an introduction to the BrainScaleS 2 accelerated
analog neural network hardware implementation, Section III
describes the theory as well as the circuit implementation of
the multi-compartment extensions. Section IV shows simula-
tion results demonstrating the presented circuits’ capabilities.
Section V discusses the built-in plasticity and possible learning
algorithms. The paper closes with Section VI, presenting our
conclusions and outlook.

II. ACCELERATED ANALOG NEUROMORPHIC HARDWARE

The presented multi-compartment circuits are part of a larger
research project which aims to develop the second generation
BrainScaleS neuromorphic hardware as part of the European
Human Brain Project (HBP) [31]. The basic neuromorphic
building block of every BrainScaleS system is the High Input
Count Analog Neural Network (HICANN) chip. It contains the
neuron and synapse circuits as well as a digital communication
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Fig. 2. Conceptual drawing of the synaptic input with its associated column of
synapses (rotated by 90 degrees to fit the layout of the figure), the enlargement
shows a block diagram of the synapse circuit. The part of the synapse
implementing the pre-post connection is shaded in green.

network. While the first generation is implemented in 180 nm
standard Complementary Metal-Oxide-Semiconductor (CMOS)
technology, the second generation uses a smaller 65 nm feature
size, which enables, among others, the inclusion of a Plasticity
Processing Unit (PPU) to implement hybrid plasticity [21].

Fig. 1 shows the basic structure of the BrainScaleS neuro-
morphic ASIC. The micro-photograph is the current version
of the BrainScaleS chip and serves only as an illustration,
since the basic structure of the second generation BrainScaleS
ASIC, which is the version referred to in this paper, will be
very similar. The synapses are arranged in a two-dimensional
array. All synapses in a column share their output, while two
adjacent rows share the same group of pre-synaptic input
signals. There are 512 rows all-together, each group of two
is connected to 64 pre-synaptic neurons by the means of the
digital communication network. The inputs to the upper and
lower block are independent from each other. Each block can
receive events from a maximum of 8192 different pre-synaptic
neurons.

To be able to create neurons of different sizes, each column
of synapses together with the neuron compartment circuits in
the center of the chip has an adjustable membrane capacitance
which can be connected to the neighboring compartment circuit
by an electronic switch1. A second set of switches allows to
connect adjacent neuron compartments in the upper and lower
block, doubling the number of available pre-synaptic inputs
to the neuron. The maximum number of pre-synaptic neurons
that can project to a single neuron is 16k. The pre-synaptic
neurons can be located on the same or on remote chips, either
on the same or different silicon wafers [32].

Fig. 2 illustrates the synaptic input of the neuron with its
associated synapses as well as the temporal relationship of the
related signals. It shows that a column of synapses (rotated

1All switches are built from standard CMOS transmission gates.
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Fig. 3. One PPU instance each is located a the outer edge of the upper and
lower synapse block.

in the figure to fit the page format) is connected to the two
dendritic input lines of the neuron compartment, labeled A
and B. The enlargement in the lower half of Fig. 2 depicts the
different functional blocks within each synapse. At its core
is a 6 bit memory storing the current weight of the synapse.
A weight of zero means there is effectively no connection
between the pre- and post-synaptic neurons, but the correlation
between pre- and post-synaptic events is still being monitored2.

The neuron compartment circuit emulates the different ion
channels. The voltage on the membrane capacitance reflects
the momentary membrane voltage of the compartment [33].
The conductances and capacitances are scaled such that all
time constants are a factor of 1000 shorter compared to
biology. Hence the addition accelerated in the designation
of the BrainScaleS model.

A time-multiplexed scheme is used to allow the high number
of inputs per row. The communication network delivers pre-
synaptic events with a maximum rate of 125 MHz. Each
row of synapses receives pre-synaptic events from up to
64 different pre-synaptic neurons through said network. The
synapses receive the events via one shared input bus per
row, transmitting a 6 bit pre-synaptic address to identify the
pre-synaptic neuron. Each synapse stores a 6 bit pre-synaptic
address that is compared to the address presented on the input
bus each time a pre-synaptic event is transmitted. In case
of an address match, the synapse uses a pulse of a precise
duration of 4 ns to sink current from the dendritic input of the
neuron compartment circuit it is connected to. The amplitude
of the current pulse is proportional to the weight stored in
a separate 6 bit memory within the synapse [21]. Depending
on a row-wise configuration setting, the synapses use one
of two available dendritic inputs, named A and B in Fig. 2.
This allows each neuron compartment to accommodate two
different synaptic time constants and reversal potentials. The
capacitance of the dendritic input line acts as an integrator of
all synaptic current pulses. An adjustable resistor recharges
the dendritic line capacitance continuously, thereby setting

2This will be covered in detail in Section V.

Fig. 4. Different kinds of spikes in a cortical pyramidal neuron. Figure taken
from [34].

the synaptic time constant. Due to the acceleration factor the
synaptic time constant is typically about 2 µs, approximately
three orders of magnitude slower than the synaptic current
pulses.

By storing not only their weight, but also part of their pre-
synaptic neuron address, the content of the synapse memories
defines the local network topology. To program these memories,
a custom Single Instruction Multiple Data (SIMD) micro-
processor (PPU) is connected to the synapse array at the
opposite edge of the compartment circuits. Fig. 3 illustrates
this arrangement. It is described in detail in [21].

III. MULTI-COMPARTMENT NEURONS

III-A. Conceptual Background

The accelerated analog neuron model presented in Section II
can be used to emulate point-neuron-based network models
with a biologically realistic fan-in of more than 10k pre-synaptic
neurons. To use a physical model with such a high number of
inputs one has to consider the linear character of the synaptic
input in the point neuron model. Identical synapses generate
the same post-synaptic potentials (PSPs), thus having the same
potential contribution to the firing of the soma. A contribution
which decreases with the total number of synapses, since in the
BrainScaleS physical model increasing the size of the neuron
automatically decreases the PSP of a single synapse. This is
caused by the growth of the membrane capacitance due to
the larger number of neural compartment circuits connected
together.



Therefore, the more synapses a neuron has, the more pre-
synaptic action potentials must arrive in synchrony to reliably
relay an input pattern. On the other hand it is desirable to
use sparse coding in neural networks [35], [36]. The energy
consumption in the BrainScaleS physical model is directly
linked to the sparseness of the neural code used.

Arguments against the simple linear addition of all synaptic
inputs can also be found in biology. It has been observed that
many neo-cortical cells are subject to a dense background firing
from thousands of synapses as well as that microscopic sources
of true noise are present at each synapse [37].

Recent findings have shed some light on different non-linear
mechanisms within the dendritic tree of the neuron [38], most
notably the capability of the dendritic membrane to generate
different spike types in distinct parts of the dendritic tree
of a neuron. These properties provide a possible solution to
the problem outlined above. A hypothesis reviewed in [34]:
“Clustering of synaptic inputs in space (and time) improves
the chances for reaching the dendritic threshold for firing a
regenerative (amplified) response and provides the opportunity
for faster and more frequent cooperation among synaptic
contacts involved in the same computational task.” Therein the
authors furthermore elaborate: “Instead of thousands of synaptic
inputs, the pyramidal cell requires only a correct set of < 50
active synaptic contacts to trigger a regenerative dendritic
response (e.g. NMDA/plateau potential)”. Fig. 4, taken from
[34], summarizes the three kinds of spikes one can observe
within a cortical pyramidal neuron.

NMDA-receptors are typically located in the thin, distal parts
of the tuft, oblique and basal dendrites. They are responsible
for NMDA spikes (B1). Since they are usually co-located
with sodium channels, the resulting waveforms resemble the
NMDA plateau potential (PP) shown in Fig. 4A. Triggered by
a sufficiently localized synaptic input of approximately 10 to
50 pre-synaptic action potentials [39], it strongly increases the
membrane conductance for a period ranging from several tens to
hundreds of milliseconds. Due to the fact that NMDA channels
are glutamate receptors with voltage dependent magnesium
blocks, the NMDA PP is a strongly non-linear function of the
pre-synaptic input. If the dendritic membrane stays below its
threshold, only a sub-threshold PSP is observed.

The presented in-silico emulation has been guided by these
observations. Because the design of our physical modeling sys-
tem already incorporates the interconnection of compartments
to implement a scalable number of synapses per neuron it was a
natural step to include an extension that incorporates dendritic
structures with active components. In the subsequent sections
we focus on pyramidal neurons becuase of their supposed role
in cortical information processing, as discussed for example in
[29].

III-B. Implementation

The implementation of the multi-compartment concepts
introduced in Section III-A into the BrainScaleS 2 neuron
requires two additional features for the existing neuron circuit
[40]: an emulation of the effect of the NMDA and calcium
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Fig. 5. Left: Operation principle of the compartmental ion channel circuit
(exemplarily configured as NMDA circuit). Right: Transistor-level simulation
of an NMDA PP.

ion channels as well as controllable inter-compartmental
conductances. The previous neuron implementations of our
research group, beginning with the Spikey neuron [19], and
including our previous multi-compartment chip [41], are only
capable of emulating a sodium-like spike. This is done by
continuously comparing the membrane voltage against an
adjustable threshold voltage. If the threshold voltage is crossed,
a spike is generated and the membrane is connected to the reset
potential by a very high conductance. This condition is held for
an adjustable amount of time to generate the refractory period of
the neuron. After the refractory time has passed, the connection
to the reset is released and the membrane is controlled by the
interplay of synaptic input and leakage potentials again.

Fig. 5 illustrates the operational principle of the ion channel
circuit. It is based on a unified emulation circuit for the three
different neuronal spike types listed in Fig. 4. The ion channel
circuit uses two adjustable settings for its reversal potential
as well as its conductance. The active setting is controlled by
a voltage comparator (Comp), which continuously compares
the membrane voltage against an adjustable threshold. If the
threshold voltage is crossed, the ion channel circuit switches to
the alternate setting. The output signal of the comparator passes
through a mono-flop (MF) which ensures that the ion channel
circuit switches to its alternate setting for a defined period
of time. In the presented implementation this time interval is
controlled by a digital counter, allowing a wide dynamic range
from sub-milliseconds to several hundreds of milliseconds
in biological time. The ion-channel itself is built from an
operational transconductance amplifier (OTA) circuit, emulating
the channel conductance. Electronic switches connect one of
the two electrical parameter sets to the OTA. The parameters
are part of the analog parameter storage memory associated
with the neuron compartment circuits [42]. This memory holds
24 analog parameters for each individual neuron compartment.
In addition to parameter tuning, the values stored in the analog
memory are also used to compensate process and fixed-pattern
variations.

In Fig. 5 the circuit is configured for the emulation of
NMDA channels: the threshold is set to the gating voltage
of the NMDA receptor (Vth NMDA), the ion channel emulation
is switched from the leakage setting (gleak and Vleak) to the
setting for an NMDA PP (gNMDA and VNMDA). The right half
of the figure shows a transistor-level simulation of this circuit,
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demonstrating the effect of the voltage-gated NMDA channel
on the membrane voltage: as soon as multiple PSPs pile up and
reach the NMDA threshold, the conductance mode is switched
and the NMDA conductance pulls the membrane quickly up
to the NMDA reversal potential VNMDA where it stays until
τNMDA has passed and the ion channel emulation switches back
to the leakage parameters, pulling the membrane back to the
compartment’s leakage potential Vleak.

By changing the values of the threshold as well as the two
parameter sets for the ion channel and the time constant of the
mono-flop other kinds of spikes can be emulated as well. For
example, in the sodium case the threshold equates to the firing
threshold and the time constant to the refractory time. Instead
of using the NMDA parameters the ion channel circuit is set to
maximum conductance and the reversal potential to the reset
voltage. This will be shown in more detail in Section IV.

In the current revision of the BrainScaleS 2 chip, each neuron
compartment circuit contains one instance of the functional
unit described above. Therefore each compartment can now
be configured to generate either NMDA, calcium or sodium
spikes. All three spikes also generate digital signals that can
be routed as events to other parts of the system, which are
typically but not exclusively the pre-synaptic inputs of unrelated
neurons. Thus, they also take part in the coincidence detection
mechanisms used for plasticity (see Section V). Since all
parameters are freely adjustable within the available ranges,
settings which do not resemble biological examples can be
realized as well. If no voltage-gated ion channels are required,
the circuit can be disabled.

The presented models are still simplistic and do not take
into account some of the known features of their biological
examples. For example, the glutamate concentration at the
distal dendrite modulates the length of the NMDA PP [15].
Also, the channel emulation is only voltage gated while the
real NMDA-R molecule is a glutamate receptor with a voltage
dependent magnesium block.

The second extension is an additional interconnect to create
larger neurons from a set of neuron compartments. The
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shaded part in Fig. 6 shows the necessary components: an
adjustable conductance per neuron compartment and some
switches. The new shared line represents the somatic membrane.
Each neuron compartment can be connected to it via an
adjustable conductance which represents the conductance
between the distal dendrite and the soma. Usually, not all
neuron compartments within a neuron block (see Fig. 1) are
supposed to be part of the same neuron. Therefore, there are
switches built into the somatic line at regular distances (every
four compartments in Fig. 6) which allow its separation into
different neurons. The somatic membrane by itself does not
contain any active circuits, neither does it have an associated
membrane capacitance. It acquires this functionality by a
connection to a neuron compartment which is configured
to have an infinite conductance between its compartmental
membrane and the somatic membrane. To achieve the effect of
this infinite conductance, or zero resistance, a bypass switch
exists in parallel to each adjustable conductance.

Including said extensions into the basic neuron block
structure illustrated in Fig. 1, the neuron can now be con-
figured to emulate non-linear, multi-compartment neurons.
By including calcium spikes it is possible to emulate more
complex neurons, like for example layer 5 pyramidal neurons
[18]. Fig. 7A illustrates this concept: the basic structure of a



pyramidal neuron is replicated using the presented circuits. The
individual compartments are connected by the adjustable inter-
compartment conductances introduced in Fig. 6, depicted by
resistor symbols. The neuron model consists of a set of distal
tuft and basal dendrites containing NMDA receptors, giving
them the ability to create NMDA PPs if the NMDA threshold
is reached. All basal distal dendrites are connected to the soma,
which is configured to generate sodium spikes to emulate the
axon hillhock. The distal tuft dendrites converge at a separate
junction, emulating the apical dendrite. The apical dendrite
connects to the soma via a compartment configured for calcium
spike generation. This allows the electronic neuron model to
detect coincidences between its basal and distal input, similar
to the measurements of layer 5 pyramidal neurons reported in
[29]. Section IV provides simulation results illustrating this
mechanism.

Fig. 7B depicts the same configuration of the neuron
compartment circuits, but shown as they are arranged in the
physical layout of the chip (see Fig. 1). Both neuron blocks,
the upper and the lower, are used. The somatic line in the
upper block emulates the apical dendrite, the one in the lower
block the soma. The lower left compartment is configured
to generate sodium spikes. Therefore, the bypass switch for
the resistor connecting it to the somatic line is closed. Its
membrane capacitance becomes the somatic capacitance of the
neuron. If the voltage on this capacitance crosses the sodium
threshold programmed into the compartment, the neuron will
fire a spike and the soma capacitance will be pulled down to
the reset potential. The NMDA compartments (marked red in
Fig. 7B) in the lower block emulate the distal basal dendrites,
the ones in the upper block the distal tuft dendrites.

Two compartments, one in the upper and one in the lower
block, are used to connect the apical dendrite with the
soma (shown in blue). This is accomplished by closing the
vertical switch between them. This directly connects both their
membrane capacitances and both calcium spike mechanisms
share the same membrane voltage, which is isolated from
the soma as well as the apical dendrite by an adjustable
conductance each. The calcium spike generation can use either
one or both of the spike mechanisms in the two compartments,
which provides additional possibilities for better approximating
the correct calcium waveform by combining multiple time
constants and conductances. The possible neuron models are
not limited to the pyramidal neuron example. For instance, it
is also possible to create a branch in the apical dendrite, or to
have several distinct dendrites.

IV. RESULTS

This section provides results from circuit simulations of the
neuron and its multi-compartment extensions. The simulation
setup includes four neuron compartments with the correspond-
ing multi-compartment circuits and eight synapses for each
compartment. Only the part of the system that is essential to the
new multi-compartment functionality is simulated at transistor
level to reduce computation time. The simulated circuits match

those of the prototype ASIC. The Spectre simulator3 is used
with device characterization data provided by TSMC4 for the
simulations.

A behavioral model is implemented for the mono-flop which
triggers the start of the refractory period and the alternate
conductance mode (Fig. 5) when it receives a signal from the
spike comparator. In the chip, the digital configuration is stored
in local Static Random Access Memory (SRAM) while the
analog parameter memory provides currents and voltages to the
respective circuits. In simulation, the SRAM is implemented
at transistor level and each cell is initialized to the required
value for the corresponding neuron setup. The analog parameter
memory is simulated as a behavioral model which consists of
the output stage for current and an effective ideal capacitance
and resistor for voltage parameters [42].

The chip design provides the possibility to stimulate one
neuron by external current in addition to spiking input that
reaches the compartments via the synapse circuits. In the sim-
ulation, current and voltage signals are provided to implement
these inputs to the neurons and synapses as the ideal version
of the input that is seen by the circuits during operation. In
particular, the pre-synaptic enable signal and neuron address
(Fig. 2) are provided to each synapse to initiate synaptic events
while the current stimulus is injected into a shared input line.
One neuron at a time is configured to receive input from this
line.

Voltage readout for an arbitrary compartment is possible
via a dedicated read-out path in the chip design. This path
is not included in the simulation to reduce simulation time
and the signals that are shown are recorded directly from the
corresponding capacitors in the circuit.

Fig. 8A shows the basic functionality of a multi-compartment
configuration. One compartment receives two inputs of different
strength. The exponential term of the AdEx implementation is
enabled for the compartment which receives the input. This
term generates a current onto the membrane that increases
as an exponential function of the membrane potential itself.
It acts as a soft threshold [28] in addition to the explicit
firing threshold in each compartment (Fig. 5). The second
input is sufficiently strong to cause the membrane voltage
of the stimulated compartment to exceed the threshold of
the exponential term in that compartment and induce a spike
and reset. The reset is configured to have a short refractory
period and a low reset voltage, which corresponds to typical
point-neuron models with Na spikes, e.g. the AdEx model
[43]. The neighboring compartment is passively pulled up
via the inter-compartment conductance. The upswing of the
membrane voltage during an action potential is not captured in
the implemented circuit as is usual for low-dimensional spiking
neuron models (cf. [44]), which is particularly beneficial for a
hardware implementation as it allows for a better utilization
of the available voltage range for the neural sub-threshold
dynamics.

3Cadence Design Systems, Inc., San Jose, CA, USA
4Taiwan Semiconductor Manufacturing Company, Ltd., Hsinchu, Taiwan
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NMDA compartment (green, bottom) is chosen as not to cause firing in any compartment. An attenuated version of the post-synaptic potential is seen in the
Ca and Na compartments. F: Current stimulus into the Na compartment which is adjusted to initiate a single spike. The pictogram shows the switch and
resistor configuration to which the simulations in E–G will correspond in the final chip. G: Both inputs combined suffice to cause firing in the Ca and NMDA
compartments. This, in turn, induces a burst in the Na compartment. Note that the time scale is milliseconds for the biological reference (D) and microseconds
for the circuit simulation (E–G) due to the accelerated nature of the neuromorphic device (Section II). The circuit and stimulus parameters in all simulations
were chosen such as to reproduce the desired spiking behavior. There is no procedural parameter mapping from a given reference for circuit or stimulus
parameters. The relative timing of the stimulus in E–G is chosen such that the current input into the soma compartment arrives first, as in D. The time scales
are not translated quantitatively.

The refractory time, reset voltage and threshold can be
configured individually for each compartment (Fig. 8B), which
is central to the implementation of active dendrites (Section III).
Here, the reset potential is set above the threshold and the reset
duration is set to three values between 9 µs and 70 µs. Since
the reset conductance is configured to be greater than the leak
conductance, this setting effectively serves as an additional
positive input current to the neighboring compartment, which
is being pulled up passively.

A demonstration of directed coincidence detection is shown
in Fig. 8C. Two compartments, one with a Na-like (short reset)
and one with an NMDA-like (plateau potential) configuration,
are connected by a conductance and each compartment is
stimulated by distinct synaptic input. The circuit parameters
are adjusted in such a way that the Na compartment emits spikes
for single synaptic inputs during the high state of the NMDA
compartment, but does not when the NMDA compartment is

in its inactive state.

The features described above (Fig. 8A–C) are used to
implement a functional behavior which is similar to that of
layer 5 pyramidal neurons (Fig. 8D) described in [29]. Therein
its author hypothesizes that pyramidal neurons in the cortex
act as coincidence detectors for their basal and apical inputs.
This proposed mechanism employs the active nature of Ca
and NMDA spikes (Fig. 4) to allow a non-linear interaction of
synaptic input to opposite poles of the neuron. Fig. 8D shows
how a dendritic stimulus leads to a marginal effect at the soma,
while a somatic stimulus leads to a single action potential. Both
inputs combined trigger a burst. This functionality is emulated
using the active components in the presented circuits (Fig. 8E).
Synaptic input to the NMDA compartment induces a PSP which
propagates to the other compartments and is attenuated along
the way. Current stimulus into the Na compartment (Fig. 8F)
is set to cause a single spike. When both inputs are applied



simultaneously the voltage in both dendritic compartments
crosses the respective threshold, pulling up the membrane
voltage in the Na compartment and causing a burst (Fig. 8G).

This demonstrates how the presented physical implementa-
tion is configured in analogy to a biological use case, emulating
the dendritic structure by a series of connected compartments
and using the introduced extensions of the BrainScaleS neuron
model (Section III) to emulate the active nature of the Ca
and NMDA spikes in the biological reference. The simulation
shows that using this structural analogy one can parameterize
the circuit to achieve a functional analogy, in this case the
implementation of a non-linear coincidence detection for inputs
into different locations of a single neuron.

V. PLASTICITY

In Section III the basic concept of the BrainScaleS acceler-
ated analog neuromorphic network chips has been presented,
omitting one important aspect: plasticity. Similar to other
neuromorphic devices, e.g. [45], [46], correlation measurement
between pre- and post-synaptic events is used to implement
learning. In Fig. 2 and Fig. 3 two key structures implementing
plasticity5 are shown: the correlation sensor within each synapse
and the PPU at the edge of each synapse array. The correlation
sensor measures the exponentially weighted temporal difference
of each pre-post and post-pre spike pair6 and stores it locally
in each synapse. The PPU can read back these causal and
anti-causal correlation data as well as the current weights
and addresses of the synapses. It executes a software-defined
algorithm to determine new weights and possibly new addresses.
It can also update all parameters of a configured neuron circuit
like Fig. 7, e.g. modify NMDA plateau durations, calcium
threshold voltages or reset conductances. A detailed description
of how these circuits interact to implement a flexible hybrid
plasticity concept can be found in [21].

Measuring correlation between pre- and post-synaptic events
is frequently used to implement local learning in neuromorphic
hardware [45] [46] based on the strengthening of causal connec-
tions, i.e. synapses that were active in the time frame before
the firing of the post-synaptic event. In large neurons with
linear dendrites, this becomes increasingly difficult because of
the diminishing effect a single synapses has on the firing of the
post-synaptic event. The non-linear model using NMDA PPs
may provide better signatures for plasticity. Only about 10 to
50 synapses located on a common distal dendrite are needed to
evoke a plateau potential [39]. Therefore, replacing the NMDA
event as the post-synaptic event for plasticity provides a clear
learning signal even with thousands of synapses connected to
the neuron. The presented hardware model allows to use all
spike types as post-synaptic signals for plasticity, including
NMDA for the synaptic columns configures as distal dendrites.

Grouping synapses onto distal dendrites with non-linear,
active mechanisms solves the problem of the single synaptic

5We are restricting this chapter to the multi-compartment related aspects of
long-term plasticity. The BrainScaleS chips also implement short-term synaptic
plasticity [47].

6The correlation sensor implements a nearest-neighbors scheme.
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Fig. 9. Illustration of structural plasticity. Part of the pre-synaptic address
memories in the synapses are changed by the PPU (left: yellow numbers).
Synapses recording a high correlation are kept (right: bold numbers). Synapses
with insufficient correlation are changed to a different pre-synaptic neuron
(right: yellow numbers). In the lower left an established synaptic connection
has been replaced (right: italic yellow) by a random new one.

event drowning in the overall synaptic input of the cell, but
creates a new one: which synapses should be grouped on a
dendrite? The presented neuromorphic hardware realizes an
efficient platform for testing algorithms using the combination
of local correlation measurement and the possibility to quickly
change the pre-synaptic input of a dendrite. This implements a
hardware analogy to the kind of structural plasticity created by
the growth of axons and dendrites and the formation of axonal
boutons and dendritic spines [48] [49].

Fig. 9 visualizes the basic concept. It presents an example
where each row of synapses gets input from a group of neurons
with similar, related information, e.g. part of an upstream
layer or a subset of neighboring neurons within the layer.
The PPU assigns random addresses to the synapses of such a
row (rows two and three in the example). While the network
emulation is continuously operating the synapses in each
column measure the correlation between the NMDA PPs and
their input. The PPU monitors these correlation measurements
and tags synapses with high correlation results to be established
as working synapses, i.e. assigns them a non-zero weight (bold
numbers) while it reassigns new random pre-synaptic input to
the synapses showing weak correlation numbers. In addition,
it can also reassign previously established synapses if their
weight has fallen below a threshold, i.e. if their correlation has
weakened over time.

Although a similar net result could be achieved by starting
with a fully connected network and pruning unused connections
by Spike-timing dependent plasticity (STDP), a much larger
number of synapses would be needed initially and a subsequent
re-mapping of the remaining non-zero synapses onto the
hardware would be necessary to realize any benefit form the
pruning.

It is possible to route the post-synaptic firing signal of one
compartment, for example the soma, to synapses of different
compartments. This allows to implement the functional analogy
of back-propagating action potentials from the soma to the
dendrites. In a supervised learning scenario this may be used
to relate different kinds of teacher signals that modulate



somatic firing with the synaptic composition of the neuron.
Similar models to implement biologically plausible back-
propagation learning schemes have been proposed [16]. Due to
the acceleration factor of 1000 the chip can test a multitude of
possible synaptic configurations per dendrite while still being
faster than biological real time.

VI. OUTLOOK

This paper presents extensions to the BrainScaleS 2 neuron
model for non-linear dendrites and structured neurons using
multiple compartments. The purpose of these extensions is not
the emulation of the full three-dimensional structure of the neu-
ron [50] but its reduction to a minimal electronic model which
captures the essential features of such a multi-compartment
structure with active, non-linear dendrites. We think that
the non-linearity created by the different kinds of spikes in
combination with a flexible multi-compartment structure will
significantly extend the capability of the BrainScaleS 2 system
to help investigate the intersection between biologically inspired
hypotheses of information processing [29], machine-learning
derived approaches [16] and the efficient implementation of
these kinds of processing in dedicated hardware systems.

The ability of a single neuron to act as a coincidence detector
and the availability of somatic spike information at distal
dendrites is expected to facilitate the mapping of established
machine learning approaches to large-scale spiking systems.
Future computing based on neuromorphic hardware might also
benefit from the presented level of biological realism, since it
could help in creating efficient local learning strategies derived
from the biological example. Most likely, if these strategies
are identified and proven, the neuromophic systems could be
simplified again. Not all of the biological features implemented
in the presented model will be needed for each application.

The fully parallel and accelerated nature of the system
supports a fast investigation of spiking systems with highly
different time scales of neural and plasticity dynamics. Due
to its analog implementation it will keep the advantages
of neuromorphic hardware like low power-consumption and
robustness against localized defects. Since it is spike based and
continuous time it might be useful for studying spatio-temporal
problems.

The multi-compartment extensions will not change the power-
consumption of the HICANN chip significantly. The energy
needed per synaptic transmission depends strongly on network
topology and activity and is of the order of magnitude of 10 pJ.
The area used by the extensions is less than 200 µm2 per neuron
compartment. This is approximately 0.5 % of the total area
used by neuron and synapse circuits.

The introduced extensions of the BrainScaleS neuron model
capture essential features of complex biological structures.
Although we do not yet fully understand the purpose and the
function of the biological details we are optimistic that the
presented models will allow insight into the functional possibil-
ities of multi-layered networks built from multi-compartment
neurons possessing non-linear active dendrites. By evaluating
the behavior of such networks using a multitude of possible

plasticity schemes, we expect to gain insight into which features
are relevant for functional performance. Future hardware
generations might utilize these insights for systems that
incorporate novel nano-electronic components.

The presented circuits have all been implemented in silicon
using a 65 nm low-power CMOS technology and are currently
being manufactured. As soon as funding allows they will be
integrated in the wafer-based BrainScaleS 2 system which will
then combine the speed of accelerated neuromorphic hardware
with the substantial network size achievable by wafer-scale
integration. The presented circuits and concepts should also be
transferable to smaller process geometries.

In the meantime, a single chip implementation will soon
be available to all interested researchers as an experimental
platform for ideas inspired by biology and machine learning
and to prepare the ground for future, non-Turing computing
substrates.
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