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Abstract—Regression-based tasks have been the forerunner
regarding the application of machine learning tools in the context
of data mining. Problems related to price and stock prediction,
selling estimation, and weather forecasting are commonly used
as benchmarking for the comparison of regression techniques,
just to name a few. Neural Networks, Decision Trees and Support
Vector Machines are the most widely used approaches concerning
regression-oriented applications, since they can generalize well in
a number of different applications. In this work, we propose an
efficient and effective regression technique based on the Finite
Element Method (FEM) theory, hereinafter called Finite Element
Machine for Regression (FEMaR). The proposed approach has
only one parameter and it has a quadratic complexity for both
training and classification phases when we use basis functions
that obey some properties, as well as we show the proposed
approach can obtain very competitive results when compared
against some state-of-the-art regression techniques.

I. INTRODUCTION

Machine learning techniques have been actively pursued in
the last decades, since there is a growing number of appli-
cations that require some sort of intelligent-based decision-
making mechanism. Recently, deep learning-oriented works
have pushed machine learning to the cutting-edge research
related to unsupervised learning features from large datasets.
For some applications, deeply learnable features work much
better than handcrafted ones, but at the price of needing a
considerable amount of data for learning purposes, otherwise
the model can get overfitted.

Similarly to pattern classification, regression techniques
aim at learning a function that can predict outputs given
some input data, being the output not a single label, but
any real-valued outcome instead. Problems related to weather
forecasting, selling price and stock prediction are the most
related ones when one talks about regression applications. As
such, the reader can refer to a number of techniques to handle
such problem, such as Neural Networks [1], Support Vector
Regression (SVR) [2], Gaussian Processes [3], and Bayesian
regression [4], just to name a few.

Although we can refer to a number of regression techniques
in the literature, there is still room for improvements. Support
Vector Regression, for instance, might be one of the most
effective ones, but at the price of a high computational load
to find out suitable parameters related to the kernel mapping
process. On the other hand, Decision Trees are usually quite
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fast, but they may not generalize well for some complex
problems. Such side effects, among others, have motivated us
to think about alternatives and new solutions for regression-
like problems.

Moving from machine learning to numerical analysis, one
of the most widely used approaches for finding approximate
solutions to boundary-value problems in partial differential
equations is the Finite Element Method (FEM) [5], [6].
Roughly speaking, FEM divides the original problem into
smaller pieces called finite elements, and the simple equations
that describe each element are assembled in a complex one
that should describe the whole problem. Therefore, given a
set of points, FEM can interpolate them using basis functions
in order to build a manifold that contains all these points.
In this paper, we borrow some ideas related to FEM to
propose FEMaR - Finite Element Machine for Regression,
a new framework for the design of pattern classifiers based
on finite element analysis. Depending on the basis function
used, FEMaR can be parameterless. It also features a quadratic
complexity for both training and classification phases, which
turns out to be its main advantage when dealing with mas-
sive amount of data. In short, FEMaR learns a probabilistic
manifold built over the training samples, which are the center
of a finite element basis. Therefore, the problem of learning
a manifold using one finite element basis is broken into a
surface composed of several bases, centered at each training
sample. In this paper, we show that FEMaR can obtain very
competitive results when compared against some state-of-the-
art regression techniques.

The remainder of this paper is organized as follows. Sec-
tions II and III introduce the theoretical background related
to FEM and FEMaR, respectively. Section IV presents the
methodology and experiments used to evaluate FEMa in the
context of regression problems, and Section V states conclu-
sions and future works.

II. FINITE ELEMENT METHOD

In this section, we present the main concepts related to
the Finite Element Method. Broadly speaking, FEM aims at
approximating functions given a set of sampled points by
means of basis functions. In a first step, the basis functions
are used to interpolate the manifold based on the sampled
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points (domain) and their respective responses to that functions
(image). Further, the approximation step aims at interpolating
new points to the learned manifold.

A. Function Approximation

Let D and V be an infinite and a non-trivial set, respectively,
and F' : D — V be a function that contains an infinite
number of mappings. Therefore, F' can not be represented as
a generic element in computers, and thus one needs to replace
F by an approximation function F in some finite subspace.
Additionally, the quality of the approximation function F can
be measured by the norm ||F — F||, where | - || can be any
norm defined on some finite space. Also, that norm is often
called approximation error.

1) Approximation Basis: A basis ¢ of the space )V is an
array ¢ = [¢1, ¢2,. .., ¢n] of functions whose elements are
linearly independent. Also, every element v € ) can be
obtained by a linear combination of those functions as follows:

v=3aiti, ()
1=1

where a = [a1,a2,...,a,] such that a; € R. Notice the
approximation function F' can be represented in computers
by the real coefficients a when ¢ is a basis of some finite
space.

2) Interpolation: One basic application of approximation
spaces is the interpolation of discrete data. In this con-
text, given a set of points X = {xi,Xo,...,X,} such that
X C D, and their respective set of associated values ) =
{y1,92,.-.,Yn}, such that J C V), the goal is to find an
approximation function F' that interpolates the pairs (Xi,yi)
such that:

F(x;) =y, Vie {1,2,...,n}. )

In order to describe F' by the basis ¢ one needs to find the
coefficients a such that:

n
F(xi)=> a;0j(xi) =y, Vi€ {1,2,....,n}. (3
Jj=1
The above equation means each element y; € ) is generated
from the linear combination between all basis functions and
their respective coefficients.
The above formulation is equivalent to solve the following
linear system in the matrix notation:

Za=y, “

where y = [y1,¥2,...,9n]T, and Z is an n x n matrix that
stores the influence of each basis element ¢; concerning the
point x;, as follows:

Zij = ¢i(x;). )

3) Interpolating Bases: A basis ¢ is an interpolating basis
regarding the points in & iff:

1 ifi=j
0 otherwise.

) = { ®

For such a basis, Z stands for the identity matrix, which means
a; =vy;, Vi€ {1,2,...,n}.

However, one can face bases that are not interpolating
natively. In this case, given a non-interpolating basis, we can
obtain a new interpolating one & where each element ngbz is a
linear combination of the elements ¢;, as follows:

Gi(x) = Z;; b;(x), @)
j=0

where Z~! is the inverse of matrix Z.

B. Partition of Unity Basis
A basis ¢ is a partition of unity iff:

¢;(x) > 0,Vi and Vx € D, ®)
and
> ¢i(x) =1,vx € D. )
i=1

Such basis has smoothing properties, as follows:

n
a > a;idi(x) > an, (10)
i=1
where a; and aj; stand for the minimum and maximum
coefficients of a. The smoothness in interpolation-driven com-
putations is often desired to avoid discontinuities.

Given a basis ¢ that satisfies Equation 8 only, we can easily
define a new basis gz~$ in order to satisfy Equation 9 either.
Such new basis can be obtained by means of the following
normalization step:

¢i(x)

PN = s S

Y

C. Finite Element Basis

Let S(¢(x)) be the support of a given basis ¢(x), which
represents the set of points x € D such that ¢(x) # 0. A
finite element basis ¢ for an approximation space requires
S(¢(x)) be small and compact enough. The meaning of
“small” depends on the context, but usually means the value
(e.g. length, area, and volume) of S(¢(x)) is about 1/n of the
measurements of D.

The union of all supports of basis ¢ should cover the entire
domain D of the points where the function F' (function to
be approximated) is nonzero. The use of such bases of finite
elements to the approximation of functions concerns the so-
called Finite Element Method.

In this work, we use a special class of finite element bases,
which are defined by points (meshless) [7], [8]. In such basis,
each finite element ¢; has a central point x; located at the
center of S(¢(x;)). In other words, we are just centering the
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basis at the point x;. Next, we present the basis used in this
work, which is quite popular in the context FEM.

1) Shepard Basis: In the Shepard basis [9], each element
is defined as follows:

w(X,X;)

n 9
Zj:l w(x, Xj)
where w : D x D — R is a non-negative function, such
that w(x,x;) — oo when x — x;. Roughly speaking, the
closer is x from x;, the larger is the value of function w. Such

property implies that a Shepard basis holds the interpolating
and partition of unity assumptions.

bi(x) = (12)

Usually, function w is chosen as a power & > 1 of the
inverse of the Euclidean distance, as follows:

1

w(x,xi) = W’
) &g

(13)
where |X,x;| denotes the Euclidean distance between x and
x;. Notice parameter %k controls the smoothness of the inter-
polation process, and it should be chosen according to the
user needs. Figure 1 shows different Shepard bases using
three values of k. One can observe the behaviour of the basis
centered at the black dots according to different values of k:
the greater the value of k, the more sloppy is the function.
Clearly, k = 1 results in a steep function.

Fig. 1. Behaviour of different Shepard bases according to three values of k,
where the black dots stand for the center of the basis: (a) k = 1, (b) k = 3
and (¢) k = 5.

Figure 2 depicts some interpolated functions using FEM
with Shepard basis. Analogously to the behaviour of the afore-
mentioned basis, the interpolated functions tend to become less
smooth. Once more, the rectangles stand for the center of the
basis.
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Fig. 2. Interpolated function using the Shepard basis for (a) k = 1, (b) k = 3
and (c) k = 5. The blue rectangles represent the center of the basis and their
sampled values.

III. FINITE ELEMENT MACHINE FOR REGRESSION
A. Background Theory

Let Z = Z; U Z, be a dataset partitioned into a training
(Z1) and a test (Z3) set. In this case, the pair (x;,vy;) € Z
denotes the feature vector (independent variables) x; € R™
extracted from sample 4, and y; € R stands for the value of
dependent variables (output). Notice we adopted the very same
formulation used in the previous section, i.e. a point in FEM
formulation stands for a sample in FEMaR.

B. Manifold Learning

Depending on the basis function used to interpolate points,
FEMaR does not require a training step, which turns out to
be quite interesting when dealing with big data. Precisely,
this assumption is true concerning bases that are natively
interpolating, such as Shepard basis. On the other hand, with
respect to non-interpolating basis, e.g. radial functions, one
needs to compute Z~' in Equation 7. Also, if the basis
function does not hold the partition of unity property, one shall
compute Equation 11 either. Therefore, although FEMaR can
be used with any basis function, we shed light over that bases
holding both the interpolating and partition of unity properties
are much more appealing when dealing with massive amount
of data. As such, we can consider the calculation of Z~! and
Equation 11 as the training steps when using non-interpolating
and non-partition of units bases.

Assuming we are using an interpolating and partition of
unity basis (e.g Shepard), we can move to the testing step.
Given a sample x € Z5, we need to compute its dependent
variable y, as follows:

|Z1]

F(x) = Zyquj(x), (14)
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where y; stands for the sampled value of x;. Roughly speak-
ing, the estimation (testing) phase of FEMaR aims at assigning
a real value to each test sample that is basically a weighted
combination of all bases centered at the training samples. As a
matter of fact, the weights are, essentially, the output of each
training sample.

C. Toy Example

In this section, we present the FEMaR working mechanism
on a bidimensional classification problem. Figure 3a shows
a training set with samples distributed over a feature space.
Concerning this example, we consider three different values
to be estimated, which are represented by three different colors
(i.e. red, green and blue). The task is to verify the influence
region of each training sample in the image domain, i.e. we
want “to interpolate” the remaining points (white ones) in
the image frame displayed in Figure 3a. In this case, each
sample (point) is described by its (z,y)-position, and the
dependent value (output to be predicted) is a different color.
The regression outputs of different regression methods are
displayed in Figures 3b-g.

One can observe a very much clear difference among the
methods: while decision trees generate discrete influence re-
gions, SVR with Linear kernel and Bayesian Ridge regression
seem to get confused, since the influence region of each
training sample is not clearly defined. On the other hand, SVR
with a Radial Basis Function kernel and FEMaR are capable
to generate well-bounded influence regions for each training
sample (colored points). However, FEMaR can also cover a
larger area of the feature space, thus being able to generalize
better when one lacks data.

Figures 4b, 4c and 4d depict the image frame after regres-
sion by FEMaR using the Shepard basis with k = 1, £ = 3 and
k = 5, respectively. Since we are using the (x,y) coordinates
to describe each sample, the image refers to the influence of
the training samples and their estimated values (color). Notice
that FEMaR can obtain quite good and smooth functions for
different values of k£ (Equation 13). As matter of fact, the larger
the value of k, the less points will influence the regression
process.

D. Complexity Analysis

As aforementioned, depending on the basis function used to
build the manifold function (i.e. interpolating and partition of
unity properties), FEMaR does not require an explicit training
step, since we just need to place the training points, thus taking
6(1). However, if one uses a non-interpolating basis function,
we need to compute the inverse matrix Z~ ' in Equation 7,
which requires 9(|Zl\2'37) using the Coppersmith-Winograd
algorithm [10].

In regard to the regression phase, for each test sample x, we
need to compute Equation 12, which requires (| Z;|). How-
ever, the denominator of such equation considers all training
samples, thus becoming a constant, and we need to compute it
only once. Since the test set contains | 25| samples, the overall
regression phase takes 0(|Z1| + |Z1||22]) € 6(|1Z1].|22)).

- .
(c) (d)
® ®
Fig. 3. Regression example: (a) samples in the feature space, (b) Bayesian
Ridge Regression, (c¢) Decision Tree with maximum depth of 2, (d) Decision
Tree with maximum depth of 5, (¢) SVR with Linear kernel (parameter C' =

0.0001), (f) SVR with Radial Basis Function kernel (C' = 0.001 and v = 0.1,
and (g) FEMaR.

. - .
(b) © (d)

Fig. 4. FEMaR working mechanism: (a) training set with samples distributed
in three classes, and the regression outputs generated by FEMaR using (b)
k=1,(c) k=3and (d) kK =5.

(b)

(e

Therefore, by using an interpolating basis function, the
whole FEMaR learning and classification processes require
a quadratic complexity with respect to the training/testing set
size (i.e. when |Z1| = | Z2)).

IV. EXPERIMENTS

In this section, we present the methodology and the exper-
imental setup used to asses the robustness and efficiency of
FEMaR against four other regression methods: (i) Bayesian
Ridge Regression (Bayes-R), (ii) Decision Trees (DT), (iii)
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Support Vector Regression with Linear basis function (SVR-
L), and (iv) Support Vector Regression with Radial Basis
Function (SVR-RBF). Such approaches were selected for
comparison purposes since they have been commonly applied
in a wide number of applications in the literature.

Concerning Decision Trees, we used two distinct versions:
one composed of trees with maximum depth of 2, and another
composed of trees with maximum depth 5. With respect to
SVR-L, the parameter C' was set to 0.0001, and concerning
SVR-RBM the parameter C' was defined as 0.001, and ~
as 0.1. Finally, with respect to FEMaR, parameter k was
defined as 3'. In regard to the implementation, the four
regression techniques used in this work come from scikit-
learning toolbox [11], and concerning FEMaR we used our
own implementation.

In order to validate the experiments, we employed 14 public
benchmarking datasets”> that have been frequently used for
the evaluation of regression methods. Table I presents the
main characteristics of the datasets, which were selected in
order to model distinct scenarios, which comprise datasets
with different number of features, sizes and normalized/non-
normalized features.

TABLE I
INFORMATION ABOUT THE USED IN THE EXPERIMENTS.

Dataset | # samples | # features
abalone 4.177 8
abalone-scale 4.177 8
bodyfat 252 14
bodyfat-scale 252 14
housing 506 13
housing-scale 506 13
mg 1.385 6
mg-scale 1.385 6
mpg 392 7
mpg-scale 392 7
pyrim 47 27
pyrim-scale 47 27
triazines 186 60
triazines-scale 186 60

The datasets were partitioned at random using 25%, 50%
and 75% for training purposes, being the remaining samples
for testing purposes. Notice the aforementioned protocol was
repeated under 15 runnings for the computation of the Mean
Squared Error (MSE) and computational load in seconds. The
idea is to verify the behavior of FEMaR under training sets
with different sizes. Additionally, the Wilcoxon signed-rank
statistical test [12] with significance of 0.05 was used to
validate the results.

Table II presents the MSE results concerning a training set
with 25% of the entire image for learning purposes. The most
accurate results according to the statistical test are in bold.
FEMaR obtained the best results in 6 out 14 datasets, Bayes-

'All parameters were empirically defined by means of a cross-validation
procedure.
Zhttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

R obtained and SVR-RBF achieved the best results in 10
and 8 datasets, respectively. However, for some situations (i.e.
“abalone-scale” and “housing-scale”) FEMaR obtained much
better results than all techniques, as the opposite has happened
either (e.g. “bodyfat-scale” and “mpg-scale”). In regard to
normalized/non-normalized datasets, some techniques seem to
be highly affected, such as SVR-L in “housing” and “mpg”
datasets, for instance. In our case, FEMaR does not appear to
be considerably affected by non-normalized features.

Table III presents the mean computational load in seconds
concerning the training and testing steps. The fastest tech-
niques where Bayes-R and the ones based on Decision Trees,
followed by FEMaR and SVR-RBF. SVR-L took longer in the
situations where its results were the worst ones in Table II.
Since SVR is essentially an optimization problem, SVR-L did
not find a reasonable result for some datasets, thus taking
longer in the search for better solutions (e.g. “housing” and
“mpg”).

Tables IV and V present the MSE values concerning training
sets with 50% and 75% of the entire dataset, respectively.
Concerning 50% of the dataset for training purposes, FEMaR
obtained the best results in 6 out of 14 datasets, and with
respect to 75%, the proposed approach obtained the best
results in 7 out of 14 datasets. Roughly speaking, FEMaR
also benefit from larger datasets, which is usually expected in
machine learning applications.

Figure 5 depicts the robustness of FEMaR with respect to
different values of k concerning “triazines” dataset. One can
observe that FEMaR gets little affected by different values of
k, which is interesting, since we can save time when looking
for the k-nearest neighbors of a given testing sample. We opted
to use that dataset due to their small size, thus requiring low
computational burden.

0.05 "D5% ——o—
50% =

0.04 + 75% =
L, 003
[92]
= 002

0.01 |

O n
1 2 3 4 5 6

Fig. 5. Robustness of FEMaR with respect to different values of k concerning
“triazines” dataset.

V. CONCLUSIONS AND FUTURE WORKS

Supervised pattern recognition techniques have been
paramount in the last years, mainly due to the increasing
number of applications that make use of some decision-making
mechanism. In this paper, we proposed FEMaR - A Finite
Element Machine for Regression problems based on the Finite
Element Method theory, which has been extensively used
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Dataset Bayes-R DTree2 DTree5 SVR-L SVR-RBF FEMaR
abalone 4.98 +0.08 6.72 +0.10 6.00 + 0.22 5.18 £0.11 4.71+0.08 5.68 £0.19
abalone-scale 4.95£0.12 6.68 £0.16 6.01 £0.22 5.12+0.17 4.77£0.12 4.54 +0.26
bodyfat 0.00 £ 0.00 0.00 £0.00 | 0.00 +0.00 0.00 £ 0.00 0.00 £0.00 0.00 +£0.00
bodyfat-scale 0.00 £ 0.00 0.00 +£0.00 | 0.00 +0.00 0.00 £ 0.00 0.00 £ 0.00 6.02 +1.18
housing 29.34+£2.24 | 35.75£5.11 | 31.12+4.47 2521.17 £ 1338.29 82.11 £ 3.86 38.97 £5.92
housing-scale 26.34 £2.47 | 3218 £4.37 | 2849+ 7.75 27.98 £4.91 20.28 £5.10 11.72 +2.93
mg 0.02 £ 0.00 0.02 +£0.00 | 0.02 +0.00 0.02 £ 0.00 0.02 £ 0.00 0.02 £+ 0.00
mg-scale 0.02 £0.00 0.02+0.00 | 0.02+0.00 0.02 +£0.00 0.02 £0.00 0.02 +0.00
mpg 12.04+£0.71 | 20.89 +£1.93 | 16.19 = 1.84 | 4132207.71 &£ 3463504.50 59.92 + 3.03 21.44 +£1.55
mpg-scale 11.73 £0.67 21.33£1.81 | 15.12£2.18 12.59 +0.58 10.05£1.00 | 49.56 + 34.51
pyrim 0.01 + 0.00 0.02 +0.00 0.02£0.01 0.01 £0.00 0.01 £0.00 0.01 +£0.00
pyrim-scale 0.01 £0.00 0.02 +£0.01 0.02 £ 0.00 0.01 £ 0.00 0.01 £0.00 777 +£4.20
triazines 0.02 £0.00 0.03 £0.01 0.03 £0.01 0.08 £ 0.04 0.03 £0.01 0.03 £ 0.00
triazines-scale 0.02 £ 0.00 0.03 +0.00 0.03 £ 0.01 0.18+£0.10 0.03 £0.01 56.99 £ 28.24
TABLE II
MSE CONSIDERING A TRAINING SIZE WITH 25% OF THE ENTIRE DATASET.
Dataset Bayes-R DTree2 DTree5 SVR-L SVR-RBF FEMaR
abalone 0.01+£0.01 | 0.00+0.00 | 0.00=0.00 1.73+£0.29 0.38£0.08 | 0.81£0.17
abalone-scale | 0.00 £0.00 | 0.00 £ 0.00 | 0.00 &+ 0.00 2.54 £0.50 0.45£0.07 | 0.79£0.16
bodyfat 0.00£0.00 | 0.00+0.00 | 0.00=+0.00 0.00 £ 0.00 0.00 £0.00 | 0.00 =+ 0.00
bodyfat-scale | 0.00+0.00 | 0.00 £ 0.00 | 0.00 £ 0.00 0.00 £ 0.00 0.00 £0.00 | 0.00+£0.00
housing 0.01 £0.00 | 0.00+0.00 | 0.00+0.00 | 60.24+17.09 | 0.01£0.00 | 0.02+0.01
housing-scale | 0.00 £0.00 | 0.00£0.00 | 0.00 =+ 0.00 0.29+£0.34 0.03£0.01 | 0.01+£0.00
mg 0.00 £0.00 | 0.00+0.00 | 0.00 4 0.00 0.55 £+ 0.09 0.11+£0.02 | 0.08 £0.01
mg-scale 0.00 £0.00 | 0.00+0.00 | 0.00=0.00 2.36 +0.68 0.33£0.06 | 0.08£0.01
mpg 0.00£0.00 | 0.00+0.00 | 0.00+0.00 | 19.54+10.09 | 0.00+£0.00 | 0.00 £ 0.00
mpg-scale 0.00 £0.00 | 0.00+0.00 | 0.00 =% 0.00 0.08 £+ 0.05 0.0240.00 | 0.00+0.00
pyrim 0.00£0.00 | 0.00+0.00 | 0.00=+0.00 0.00 £ 0.00 0.00 £0.00 | 0.00 =+ 0.00
pyrim-scale 0.00 £0.00 | 0.00+0.00 | 0.00 4 0.00 0.00 £ 0.00 0.00 £0.00 | 0.00+£0.00
triazines 0.02+£0.02 | 0.00+0.00 | 0.00 =4 0.00 0.20£0.20 0.00 £0.00 | 0.01+£0.00
triazines-scale | 0.01 £0.01 | 0.00 +0.00 | 0.00 £ 0.00 0.68 £0.41 0.00 £0.00 | 0.00+£0.00
TABLE III
MEAN COMPUTATIONAL LOAD (SECONDS) CONSIDERING A TRAINING SET WITH 25% OF THE ENTIRE DATASET.
Dataset Bayes-R DTree2 DTree5 SVR-L SVR-RBF FEMaR
abalone 4.92+£0.16 6.66 £ 0.16 5.66 + 0.29 5.13+£0.21 4.631+0.18 5.45+0.19
abalone-scale 4.89 +0.16 6.63 +0.22 5.50 £ 0.27 5.11£0.23 4.631+0.18 5.68 & 2.37
bodyfat 0.00 +0.00 0.00 £+ 0.00 0.00 £ 0.00 0.00 £+ 0.00 0.00 = 0.00 0.00 £+ 0.00
bodyfat-scale 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 5.19 £ 1.27
housing 26.03 £ 3.21 32.29+4.09 | 23.67+6.53 1956.37 £ 909.42 77.86 £6.53 32.22 £6.29
housing-scale 23.26 £2.22 29.78 £ 3.06 20.13 £5.44 24.00 £ 3.34 14.01 £4.70 | 10.03 £2.47
mg 0.02 +£0.00 0.02 £ 0.00 0.02 £0.00 0.02 +£0.00 0.02 £ 0.00 0.02 +0.00
mg-scale 0.02 +0.00 0.02 £+ 0.00 0.02 £ 0.00 0.02 +0.00 0.02 £ 0.00 0.02 +0.00
mpg 11.50 £1.02 | 19.16 +1.46 12.48 £2.11 106960.37 4 56646.27 | 58.02 +4.17 18.65 +1.16
mpg-scale 11.88 £0.90 20.69 £ 2.13 13.23 £1.91 12.61 +1.03 7.97+1.12 | 43.36 £ 17.37
pyrim 0.01 +0.00 0.02 £0.01 0.02£0.01 0.01 £0.01 0.01 +£0.01 0.01 +0.00
pyrim-scale 0.01 £0.00 0.02 +£0.01 0.01 +£0.01 0.01 £0.00 0.01 +£0.01 4.32 +2.08
triazines 0.02 +0.00 0.03 £0.01 0.02 £0.01 0.03 £ 0.00 0.03 £0.01 0.02 £+ 0.00
triazines-scale 0.02 +0.00 0.03 £ 0.00 0.02 £ 0.00 0.03 £0.01 0.03 £ 0.00 60.45 £ 30.35
TABLE I

MSE CONSIDERING A TRAINING SIZE WITH 50% OF THE ENTIRE DATASET.

for several purposes in engineering and sciences, but not for
regression purposes. The main idea is to learn a probabilistic
manifold built upon the training samples, which will become
the center of a basis function each. Further, the regression
process simply inserts a test sample into the manifold, and
computes the output given by FEMaR.

Experiments against five other well-known regression tech-
niques in 14 datasets showed that FEMaR can obtain very
competitive results, though being considerably fast and, in
practice, it does not have a training phase. In regard to future
works, we aim at extending FEMaR for clustering problems,
as well as to evaluate the influence of other basis functions.

In addition, we shall implement its optimized version based
on kd-trees to estimate the parameter k.
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