
Scaling Up Deep Reinforcement Learning for
Multi-Domain Dialogue Systems

Heriberto Cuayáhuitl
School of Computer Science

University of Lincoln
Lincoln, United Kingdom

Email: HCuayahuitl@lincoln.ac.uk

Seunghak Yu
Artificial Intelligence Team

Samsung Electronics Co. Ltd.
Seoul, South Korea

Email: seunghak.yu@samsung.com

Ashley Williamson, Jacob Carse
School of Computer Science

University of Lincoln
Lincoln, United Kingdom

Email: {awilliamson,jcarse}@lincoln.ac.uk

Abstract—Standard deep reinforcement learning methods such
as Deep Q-Networks (DQN) for multiple tasks (domains) face
scalability problems due to large search spaces. This paper
proposes a three-stage method for multi-domain dialogue policy
learning—termed NDQN, and applies it to an information-
seeking spoken dialogue system in the domains of restaurants and
hotels. In this method, the first stage does multi-policy learning
via a network of DQN agents; the second makes use of compact
state representations by compressing raw inputs; and the third
stage applies a pre-training phase for bootstraping the behaviour
of agents in the network. Experimental results comparing DQN
(baseline) versus NDQN (proposed) using simulations report
that the proposed method exhibits better scalability and is
promising for optimising the behaviour of multi-domain dialogue
systems. An additional evaluation reports that the NDQN agents
outperformed a K-Nearest Neighbour baseline in task success and
dialogue length, yielding more efficient and successful dialogues.

I. INTRODUCTION

Neural-based dialogue systems are playing an important
role in the research and development of artificially intelligent
systems. Agents based on the Reinforcement Learning (RL)
paradigm offer the possibility to treat dialogue design as an
optimisation problem, and are attractive because they can
improve their performance over time with experience. But
the application of RL is not trivial due to the complexity of the
problem such as large state-action spaces exhibited in human-
machine conversations. This is especially true in multi-domain
systems, where the number of state variables (features) and
dialogue actions increases rapidly as more context and domains
are taken into account. On the one hand, unique situations in
the interaction can be described by a large number of variables
(e.g. words raised in the conversation by the system and user)
so that enumerating them would result in very large state spaces.
On the other hand, the action space can also be large due to the
wide range of unique dialogue actions (e.g. requests, apologies,
confirmations in multiple contexts).

While one can aim for optimising the interaction via com-
pression of the search space, it is usually unclear what features
to incorporate in the state representation. This is a strong
motivation for applying Deep Reinforcement Learning (DRL)
to dialogue management so that the agent can simultaneously
learn its feature representation and policy [1]. This paper
makes use of raw noisy text as features in an attempt to avoid

engineered features to represent the dialogue state. By using
this representation, dialogue agents bypass spoken language
understanding in order to learn dialogue policies directly from
raw (noisy) text to actions [2].

We address dialogue policy learning using the divide-and-
conquer approach, in which dialogue states can be described
at different levels of granularity, and an action can be executed
using either a single dialogue action (taking one dialogue
turn) or a composite one (equivalent to a subdialogue taking
multiple dialogue turns). This approach offers at least two
benefits. First, modularity helps to optimise subdialogues that
may be easier to optimise than the whole dialogue. Second,
subdialogues may include only relevant dialogue knowledge
in the states and relevant actions, thus reducing significantly
the size of possible solutions: consequently they can be found
faster. These properties are crucial for training the behaviour
of multi-domain spoken dialogue systems in which there may
be a large set of state variables or a large number of actions.

The remainder of this paper describes a novel data-driven
method applied to an information-seeking dialogue system in
the domains of restaurants and hotels. Experimental results
show that the proposed method can train policies faster than
previous work [3] and more effectively than standard and
baseline algorithms in the literature, showing promise for
training conversational neural-based agents in multiple domains.

II. BACKGROUND

Raw features in human-machine conversations such as words
with confidence scores can be given as input to a reinforcement
learning agent to induce dialogue policies from interaction
with the environment, where situations (words) are mapped
to actions (dialogue acts) by maximizing a long-term reward
signal [2]. An RL agent is typically characterized by: (i) a
finite set of states S = {s1, ..., sn}; (ii) a finite set of actions
A = {a1, ..., am}; (iii) a state transition function T (s, a, s′)
that specifies the next state s′ given the current state s and
action a; (iv) a reward function R(s, a, s′) that specifies the
reward given to the agent for choosing action a when the
environment makes a transition from state s to state s′; and
(v) a policy π : S → A that defines a mapping from states to
actions. The goal of an RL agent is to find an optimal policy

(π∗) by maximising its cumulative discounted reward defined
as

Q∗(s, a) = max
π

E[rt+γrt+1+γ
2rt+2+ ...|st = s, at = a, π],

where function Q∗ represents the maximum sum of rewards r
at time t discounted by factor γ at each time step. An RL agent
takes actions with probability Pr(a|s) during training, and the
best at test time according to π∗(s) = argmaxa∈AQ

∗(s, a).
To induce the Q function above our agent approximates Q∗

using a multilayer neural network as in [4]. The Q function
is parameterised as Q(s, a; θi), where θi are the parameters
(weights) of the neural net at iteration i. Training a deep RL
agent requires a dataset of experiences D = {e1, ...eN} (also
referred to as ‘experience replay memory’), where every learn-
ing experience is described as a tuple et = (st, at, rt, st+1).
Inducing the Q function consists in applying Q-learning updates
over minibatches of experience MB = {(s, a, r, s′) ∼ U(D)}
drawn uniformly at random from the full dataset D. A Q-
learning update at iteration i is thus defined according to the
loss function

Li(θi) = EMB

[
(r + γmax

a′
Q(s′, a′; θi)−Q(s, a; θi))

2
]
,

where θi are the parameters of the neural net at iteration i, and
θi are the target parameters of the neural net at iteration i. The
latter are held fixed between individual updates. This process
is implemented in the learning algorithm Deep Q-Learning
with Experience Replay described in [1].

III. METHOD

Our proposed method to scale up Deep Reinforcement
Learning (DRL) for multi-domain neural-based dialogue agents
has three stages. First, multi-policy learning via a network
of DRL agents; second, more compact state representations
by compressing raw inputs; and third, a pre-training stage
using concurrent dialogues to bootstrap the behaviour of
dialogue policies. Although these three stages can be applied
independently, their combination aims for further scalability
than any one of them individually.

A. Network of Deep Q-Networks (NDQN)

We propose to optimise multi-domain neural-based dialogue
agents using a network of Deep Reinforcement Learners, for
example a network of Deep Q-networks (DQN) — see [1], [4]
for an introduction to the standard DQN method. In our method,
instead of training a single DQN, we train a set of DQNs
(also referred to as NDQN), where every DQN represents
a specialised skill to converse in a particular subdialogue
— see Figure 1. The network of agents enable DQNs to be
executed without a fixed structure in order to support flexible
and unstructured dialogues. In contrast to Hierarchical DQNs
[5] that follow a strict sequence of agents, an NDQN in our
method allows transitions between all DQN agents except for
self-transitions. The latter using a stack-based approach as in
[6]. While user responses can motivate transitions to another
domain in the network, completing a subdialogue within a
domain motivates a transition to the previous domain to resume

the interaction. Algorithm 1 describes the procedure to train
and execute NDQN agents.

An optimal policy in an NDQN performs action selection
according to

π∗θ(d)(s) = arg max
a∈A(d)

Q∗(d)(s, a; θ(d)), (1)

where domain or skill d ∈ D is selected according to

d = argmax
d′∈D

F (d′|d, s′), (2)

and evidence s′ takes into account all features that describe the
environment state of domain d. While this transition function
(Eq. 2) is used for high-level transitions in the interaction, Eq. 1
is used for low-level transitions within a node (skill) in the
network and subject to reinforcement learning. NDQN assumes
that the domain transition function F can be deterministic or
probabilistic (the latter due to uncertainty in the interaction),
and it is a prior requirement for NDQN-Learning.

Fig. 1. Illustration of NDQN dialogue agents. The dashed arrows connecting
domains denote flexible transitions between domains in order to avoid a rigid
structure in the interaction. Although all policies are considered for decision-
making, only one domain can be executed at a time implying that a previous
domain can continue its execution in order to resume the interaction.

B. NDQN with Compressed Raw Inputs

Previous work on dialogue policy learning using DRL map
raw (noisy) text to actions [2], [7]. This is not only com-
putationally intensive, but it becomes infeasible for dialogue
systems with large vocabularies. To tackle this problem we
propose to use delexicalised sentences (similarly as in [8]) and
synonymised sentences. This has the advantage that dialogue
policies can be trained from more compact state representations
than those using only raw inputs, and have coverage for a larger
vocabulary than trained for.

Algorithm 1 Network of Deep Q-Learners (NDQN)
1: Initialise set of Deep Q-Networks for all domains d ∈ D with replay

memories D(d), action-value functions Q(d) with random weights θ(d),
and target action-value functions Q̂(d) with weights θ̂(d) = θ(d)

2: repeat
3: Set initial domain d, predefined or defined by argmaxd∈D Fo(d)
4: Set initial environment state s ∈ S(d)

5: repeat
6: repeat
7: Choose action a ∈ A(d) in s derived from Q(d) (e.g. ε-greedy)
8: Execute action a and observe reward r and next state s′
9: Set next domain d′ according to argmaxd′∈D F (d′|d, s′)

10: Append transition (s, a, r, s′) to D(d)

11: Sample random minibatch of experiences (s, a, r, s′)j ∈ D(d)

12: yj=

{
rj if s is terminal
rj + γmaxa∈A(d) Q̂(d)(s′, a′; θ̂(d)), otherwise

13: Gradient descent step on
(
yj −Q(d)(s′, a′; θ(d))

)2
14: Set Q̂(d) = Q(d)

15: Set s = s′

16: until s is a terminal state or d 6= d′

17: Set d = d′

18: until s is a goal state
19: until convergence

1) Delexicalisation: Consider a dialogue system for restau-
rant search receiving the following user request—with corre-
sponding delexicalised sentence underneath.

I am looking for italian food in the city centre

I am looking for $foodtype food in the $area

The latter representation combining words and slot IDs
(denoted with the symbol ‘$’) has several practical advantages.
For example, policies can be learnt faster, they contribute
to further scalability of systems with large vocabularies, and
policies do not have to be retrained if the slot values change
over time. In this work we use heuristics to replace slot values
by slot IDs, and a trainable component for automatic slot
labelling is considered beyond the scope of this paper.

2) Synonymization: Consider the same system above receiv-
ing the following user request given the unknown words ‘fancy’
and ‘cuisine’—with corresponding synonyms underneath.

We fancy italian cuisine in the centre of town

We want italian food in the centre of town

We argue that word synonyms can be useful in such situations
because the unknown word ‘fancy’ can trigger the known
word feature ‘want’. Similarly, the unknown word ‘cuisine’
can trigger the known word feature ‘food’. In this way, the
vocabulary of our NDQN incorporates a mapping from filler
words and slot values to synonyms in order to cope with unseen
wordings. We generated synonyms automatically from word
embeddings [9]. Unfortunately, they were not very meaningful
and in cases slot values conflicted (e.g. ‘north’ and ‘south’).
This work used manually specified synonyms and the automatic
generation of meaningful synonyms is left as future work.

Fig. 2. Illustration of NDQN dialogue agents with policy pre-training. The
multiple arrows connecting the agents and environments denote concurrent
agent-environment interactions. While all environments w are used concurrently
during pre-training (using multi-threaded dialogues), only one environment is
used after policy pre-training (using single-threaded dialogues).

C. Policy Pre-Training

Our method above performs policy learning using a single
dialogue at a time. This means that during training an agent
selects an action, provides a response to the environment,
waits for a user response, and so on until the end of the
dialogue. Motivated by [10], we extend our method above by
incorporating a pre-training phase using multiple concurrent
dialogues rather than single-threaded dialogues. To avoid
domain mixing in concurrent dialogues and potentially unstable
behaviour, we propose to perform the pre-training phase
per domain. We consider this pre-training phase as part of
initialising the behaviour of policies in multi-domain dialogue
systems. Once the initialisation phase is over, the training phase
carries on as in the method above. A policy in a concurrent
DQN is expected to perform action selection according to

π∗θ(d)(w, s) = arg max
a∈A(d)

Q∗(d)(w, s, a; θ(d)), (3)

where d ∈ D is a domain or skill and w ∈ W is a thread ID.
The latter is used to denote multiple copies of the environment,
and is also required to track the agent-environment interactions
in order to use them accordingly. For example, a decision made
by the agent interacting with environment w = 10 produces
a response that is sent to this particular environment, which
observes state and reward of environment w = 10. Figure 2
illustrates agent-environment interactions in our extended
method. While multi-threaded agent-environment interactions
are used during pre-training, single-threaded agent-environment
interactions are used after pre-training. Algorithm 2 describes
the procedure to train NDQN agents with a pre-training phase.

Algorithm 2 NDQN with Pre-training
1: Initialise set of Deep Q-Networks for all domains d ∈ D with replay

memories D(d), action-value functions Q(d) with random weights θ(d),
target action-value functions Q̂(d) with weights θ̂(d) = θ(d), and number
of concurrent dialogues W during pre-training

2: for each domain d in D do . Pre-Training Phase
3: c← initialise number of pre-training dialogues
4: for each thread w in W do
5: repeat concurrently
6: Lines 4-10 and 12-18 of Algorithm 1, and increment c
7: until c > max(number of pre-training dialogues)
8: end for
9: end for

10: repeat . Training Phase
11: Lines 4 to 18 of Algorithm 1
12: until convergence

IV. MULTI-DOMAIN DIALOGUE SYSTEM

The proposed framework for training multi-domain neural-
based dialogue agents is a substantial extension from the
publicly available software tools SimpleDS [2] and ConvnetJS
[11]. It can be executed in training or test mode using
simulations or speech-based interactions (via a mobile App1).
Our dialogue system runs under a client-server architecture,
where the learning agents—one per domain—act as the clients
and the dialogue system as the server. They communicate by
exchanging messages, where the clients communicate to the
server the action to execute, and the server communicates to
the clients the state and reward observed. The elements for
training NDQN-based dialogue systems are as follows.

a) State Spaces: They include word-based features de-
pending on the vocabulary of each learning agent. They include
177 unique words2 without synonyms, and 150 unique words
with synonyms. For example, an agent in the domain of
restaurants has relevant features for its domain and it is agnostic
of features in other domains. While words derived from system
responses are treated as binary variables (i.e. word present or
absent), the words derived from noisy user responses can be
seen as continuous variables by taking ASR confidence scores
into account. Since a single variable per word is used, user
features override system ones in case of overlaps.

b) Action Spaces: They include dialogue acts for the
targeted domains—currently 69 unique actions in total. Ex-
ample dialogue act types, dialogue acts without slot-values,
are as follows: Salutation(), Request(), AskFor(), Apology(),
ExpConfirm(), ImpConfirm(), Retrieve(), Provide(), among
others. The set of slots include the following: meta={domain};
restaurants={food_type, area, price}; hotels={city, day, month,
nights}. Rather than learning with whole action sets, our frame-
work supports learning from constrained actions by applying
learning updates only on the set of valid actions. These actions
are derived from the most likely actions, Pr(a|s) > 0.0001,
from Naive Bayes classifiers (due to scalability purposes)

1https://youtu.be/B5fZfZ-xaKM
2The unique words in our system’s vocabulary excludes words from

information presentation due to the vast amount of information about hotels
and restaurants. Nonetheless and during testing, our system retrieves live
information from http://www.bookatable.co.uk) and www.reservetravel.com.

trained from example dialogues. See example demonstration
dialogue in Appendix A. In addition to the most probable
data-like actions, the constrained actions are extended with
legitimate requests, apologies and confirmations. The fact that
constrained actions are data-driven and driven by domain-
independent heuristics, facilitates its usage across domains.

c) State Transition Functions: They are based on numer-
ical vectors representing the last system and user responses3.
Taking a wider dialogue context is also possible but not ex-
plored in this paper. The system responses are straightforward,
0 if absent and 1 if present (hit-or-miss). The user responses
correspond to the confidence level [0..1] of noisy user responses.
While system responses are generated from templates, user
responses are generated from semi-random user behaviour. The
latter is based on sampling user actions from those observed
in example interactions, and randomly selecting an observed
verbalisation. These elements enable the creation of a vast
amount of different conversations for agent training.

d) Domain Transition Function: This function specifies
the next domain or task in focus. It is currently defined
deterministically, and it is also implemented as an SVM
classifier trained from example interactions—see Appendix A.
The design of this classifier follows that of a two-deep fully
connected neural network with 80 nodes in each hidden layer,
with tanh activation, and an SVM output layer, using Hinge
Loss. While the input layer accepts domain-independent words-
as-features vectors representing the unique global vocabulary
shared amongst all domains in a hit-or-miss approach, the
output layer has 3 classes representing system domains (meta,
restaurants and hotels). We refer to meta domain as subdia-
logues containing domain-general system and user responses.
15K dialogues of data were generated, partitioned as a 60-40
training-testing split, and trained for 180 epochs. Initial results
of this classifier shows a 87.5% classification accuracy on
user-simulated data.

e) Reward Function: It is defined as R(s, a, s′) = GR+
DR−DL. Briefly, GR is a goal-based score treated as task
success [0..1] (i.e. the proportion of positively confirmed slots
and information retrieved and presented). DR is a data-like
probability of having observed action a in state s. DR scores
are derived from Naive Bayes classifiers to allow statistical
inference over actions given states (Pr(a|s)). Finally, DL =
t ∗ w is a dialogue length score used to encourage efficient
dialogues with t time steps and weight w (-0.1 in our case).

f) Model Architectures: We use fully-connected multilayer
neural nets, trained with stochastic gradient descent, where
nodes in the input layers depend on the vocabulary of each
agent. The use of convolutional neural nets is work in progress.
They include 2 hidden layers with 80 nodes with Rectified
Linear Units to normalise their weights [12]. Other hyperparam-
eters include experience replay size=10000, burning steps=1000,
discount factor=0.7, minimum epsilon=0.001, batch size=32,
learning steps=30000, number of threads in pre-training=10,
and number of pre-training dialogues=500.

3Representing dialogues using the entire set of system-user responses is left
as future work.

https://youtu.be/B5fZfZ-xaKM
http://www.bookatable.co.uk
www.reservetravel.com

Fig. 3. Learning curves of the baseline DQN-based system: (top 2 plots)
without input compression, (bottom 2 plots) with input compression. The higher
the better in blue straight lines, and the lower the better in other metrics.

V. EXPERIMENTAL RESULTS

In this section we compare a multi-domain dialogue system
using a standard DRL method versus our proposed method
described in Sections III and IV. While the former (DQN)
uses a single policy for learning (baseline), the latter (NDQN)
uses multiple policies with and without input compression and
policy pre-training (proposed). Both multi-domain dialogue
systems use the same data, resources and hyperparameters
for training. The only difference between both systems is the
learning method (DQN or NDQN), state representation (with or
without compression), and training approach (with or without
policy pre-training).

We use four different metrics to measure system performance:
avg. reward, learning time (in hours), avg. task success, and
avg. dialogue length (i.e. avg. actions per dialogue). The higher
the better in the first and third, and the lower the better in
the second and fourth. Figure 3 shows learning curves for the
baseline DQN-based system, Figure 4 shows learning curves
for the proposed NDQN-based system without pre-training, and

(a) Meta Domain with input compression and pre-training

(b) Restaurants Domain with input compression and pre-training

(c) Hotels Domain with input compression and pre-training

Fig. 5. Learning curves of the NDQN method with policy pre-training
.

(a) Meta Domain: (left plots) without input compression, (right plots) with input compression

(b) Restaurants Domain: (left plots) without input compression, (right plots) with input compression

(c) Hotels Domain: (left plots) without input compression, (right plots) with input compression

Fig. 4. Learning curves of the proposed NDQN-based system without policy pre-trainig. The higher the better in avg. reward and avg. task success, and the
lower the better in other metrics. The plots on the left correspond to our proposed system with word-based features, and the plots on the right correspond to our
proposed system with delexicalised inputs as features. The latter plots show no performance degradation despite of using more compact state representations.

Method / Input Type Without With Input
Input Compression Compression

Baseline (DQN) 28.57 hrs 16.63 hrs
Proposed (NDQN 6.21 hrs 6.05 hrs
without pre-training)
Proposed (NDQN 6.04 hrs 4.21 hrs
with pre-training)

TABLE I
LEARNING TIMES OF THE BASELINE AND PROPOSED METHODS

Figure 5 shows learning curves for the proposed NDQN-system
with pre-training. Both the baseline and proposed system report
results over 150K learning steps (about 8700 dialogues without
pretraining and 9200 dialogues with pre-training). Our results
report that training multi-domain systems using a single policy
is twofold harder than using a multi-policy approach. First,
this is evidenced by the fact that the baseline policies do not
improve over time4, and the policies with the proposed method
do. This is presumably due to the abstraction exhibited in the
multi-policy approach—more focused system actions rather
than interleaving them across domains. Second, our proposed
system without pre-training learned 4.7 times faster than the
baseline, which was accelerated further to 6.8 times faster by
using pre-training5—see Figure V and Table I. Faster training
can be explained by: (a) the use of less parameters (weights) in
the NDQN-based system without pre-training than the baseline,
and (b) the use of a more guided decision-making in the NDQN-
based system with pre-training. Note that the NDQN-based
system with and without pre-training use the same amount of
parameters, their difference is in bootstraped behaviours in the
case of policy pre-training. By applying synonymization we
are able to use a smaller vocabulary when training and then a
much wider vocabulary at runtime, which adds robustness in
the presence of unseen dialogues. These results show indication
of better scalability for NDQN to multiple domains.

Although the currently generated dialogues using the trained
policies seem reasonable6, it is natural to ask How good
are the DRL-based policies? To answer this question we
integrated a K-Nearest Neighbour (KNN) baseline [13], which
aims to behave as the example demonstration dialogues—see
Appendix A. We ran 1000 test dialogues using our fastest
learnt DRL policies and compared them against 1000 KNN-
based dialogues7. The KNN baseline used the same features,
actions, and demonstration dialogues as the DRL agents with
input compression and pre-training. Our results report that
the DRL-based policies achieved an average of 14.3 actions
per dialogue and 100% of task success, and the KNN-based
behaviours achieved an average of 16.8 actions per dialogue and
95.8% of task success8. This is evidence that the DRL-based
policies can produce more successful and efficient interactions
than other baseline behaviours (KNN-based in our case).

4We validated these performance results using different model architectures
with 80, 120, and 150 nodes in the hidden layers.

5Ran on i5-3210M CPU@2.50GHz x 4; 8GiB DDR4 RAM@2400MHz.
6https://youtu.be/B5fZfZ-xaKM
7We tried KNN with K={1, 2, 3, 4, 5} and obtained best results with k = 4.
8 Significant at p < .05 using a two-tailed Wilcoxon- Signed Rank Test.

VI. RELATED WORK AND DISCUSSION

Multi-domain dialogue agents are receiving an increasing
amount of attention. This can be attributed to the increasing
maturity of speech technologies. But the question of How to
design conversational agents for human-machine interaction
in multiple domains (or tasks)? is still an open and interesting
problem in artificial intelligence. The dialogue system proposed
by [14] used a distributed architecture of domain experts
modulated by a domain selector. The latter used a decision
tree with classification errors over 20% in 5 domains. This
indicates that not only individual domains have to exhibit
robust interactions against errors, but also that errors increase
by incorporating more domains.[15] used rule-based classifiers
for predicting user intentions, which are executed using a
Hierarchical Task Network incorporating expert knowledge.
Trainable multi-domain dialogue systems using traditional
reinforcement learning include [16], [17], [18], [19]. These
systems use a modest amount of features, and in contrast to
neural-based systems, they require manual feature engineering.

Recent work on neural-based task-oriented dialogue agents
include the following. [20] uses a Recurrent Neural Network
(RNN) for dialogue act prediction in a POMDP-based dialogue
system, which focuses on mapping system and user sentences
to dialogue acts. [21] applies DRL with a fully-connected
neural network for trading negotiations in board games, which
focuses on mapping game situations to dialogue actions. [22]
trains RNN-based classifiers for predicting dialogue success in
multi-domain dialogue systems, which can be applied to unseen
domains. [23] also trains RNN-based classifiers but for belief
tracking to improve the robustness of recognised user responses
across dialogue turns. Other neural-based dialogue agents have
been applied to text prediction using the sequence-to-sequence
approach [24], [25], and to reasoning with inference for text-
based question answering [26].

We observe from these works that supervised learning is
playing an important role in neural-based conversational agents.
We also observe that recent DRL-based dialogue systems have
focused on a single domain [21], [2], [27]. To our knowledge,
we report one of the first multi-domain dialogue system using
deep reinforcement learning. Future work includes applying
neural-based dialogue systems to larger sets of domains, to
language generation using a divide-and-conquer approach [28],
to multi-task multimodal interaction using different types of
devices and machines, and to evaluate neural-based systems in
realistic scenarios with genuine users.

VII. CONCLUSION AND FUTURE WORK

The contribution of this paper is a novel method for training
multi-domain dialogue agents in a more scalable way than
traditional deep reinforcement learning, e.g. using the DQN
method. The proposed method uses a Network of DQN
(NDQN) agents in order to train specialised agents, compression
of input features, and a pre-training phase using concurrent
dialogues. Experimental results using simulations report that
the proposed method (NDQN) can train policies faster and
more effectively than DQN—up to 7 times faster than DQNs.

https://youtu.be/B5fZfZ-xaKM

In addition, our results report that input compression and
pre-training contribute faster learning without performance
degradation across metrics. Furthermore, our fastest trained
policies using NDQN with pre-training showed to be more
successful and efficient than a K-nearest neighbour baseline.
The proposed NDQN-based dialogue agents are the first
applications of deep reinforcement learning to optimising
the behaviour of multi-domain human-machine dialogues. A
speech-based evaluation is left as future work.

ACKNOWLEDGMENTS

Funding from Samsung Electronics is gratefully acknowl-
edged. We would like to thank Jihie Kim, Gary G. Lee and the
Samsung’s Software Center AI team for helpful discussions.

APPENDIX

We aim for a data-efficient system, trainable from a small
set of demonstrations. Our agents showed to be data-efficient
due to the amount of data used to induce the simulated
environment and baseline behaviour, which is relevant for
initial training from a small set of example demonstrations.
The dialogue below is one of the 12 manually-specified seed
demonstrations for inducing the system’s features (words) and
actions (dialogue acts), and for training classifiers to predict
the most likely actions given the previous system and user
responses. The latter were used by the DRL agents described
in Section III for inducing their dialogue behaviour according
to the learning environment described in Section IV. Square
brackets denote system actions, double quotes denote system
or user responses, and words beginning with an underscore
encapsulate live web-based information according to the user
requests. During testing, our system retrieves live information
from http://www.bookatable.co.uk) and www.reservetravel.com.

SYS:[Salutation(greeting)]"Welcome to MultiDS!"
USR:null
SYS:[Provide(intro)]"You may ask for information about hotels and restaurants."
USR:null
SYS:[Request(hmihy)]"How can I help you?"
USR:"I am looking for a hotel in edinburgh on the 2nd of january for 2 nights"
SYS:[Apology(h_nights)]"Sorry, how long?"
USR:"2 nights"
SYS:[ExpConfirm(h_day=$h_day,h_month=$h_month,h_nights=$h_nights)]"Did you say
on the 2nd of january for 2 nights?"
USR:"yes i did"
SYS:[ExpConfirm(h_city=$h_city)]"Did you say in edinburgh?"
USR:"i did"
SYS:[Retrieve(h_info)]"Let me see."
USR:null
SYS:[Provide(h_info)]"I found the following hotels. _hotels."
USR:null
SYS:[AskFor(h_more)]"Anything else?"
USR:"I am looking for cheap japanese food in the centre of town"
SYS:[Apology(r_area)]"Sorry, what area?"
USR:"In the centre"
SYS:[ExpConfirm(r_price=$r_price,r_area=$r_area)]"Did you say cheap food in the centre?"
USR:"yes i did"
SYS:[ExpConfirm(r_food=$r_food)]"Did you say japanese food?"
USR:"i did"
SYS:[Retrieve(r_info)]"Let me see."
USR:null
SYS:[Provide(r_info)]"I found the following restaurants. _res."
USR:null
SYS:[AskFor(more)]"Anything else?"
USR:"no"
SYS:[Salutation(closing)]"Okay, talk to you soon. Bye!"
USR:null

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
in NIPS Deep Learning Workshop, 2013.

[2] H. Cuayáhuitl, “SimpleDS: A simple deep reinforcement learning
dialogue system,” CoRR, vol. abs/1601.04574, 2016.

[3] H. Cuayáhuitl, S. Yu, A. Williamson, and J. Carse, “Deep reinforcement
learning for multi-domain dialogue systems,” CoRR, vol. abs/1611.08675,
2016.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, 02 2015.

[5] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. B. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” CoRR, vol. abs/1604.06057, 2016.

[6] H. Cuayáhuitl, I. Kruijff-Korbayová, and N. Dethlefs, “Nonstrict hierar-
chical reinforcement learning for interactive systems and robots,” ACM
Transactions on Interactive Intelligent Systems (TiiS), vol. 4, no. 3, 2014.

[7] T. Zhao and M. Eskénazi, “Towards end-to-end learning for dialog state
tracking and management using deep reinforcement learning,” CoRR,
vol. abs/1606.02560, 2016.

[8] M. Henderson, B. Thomson, and S. J. Young, “Robust dialog state
tracking using delexicalised recurrent neural networks and unsupervised
adaptation,” in IEEE Spoken Language Technology Workshop, SLT, 2014.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in NIPS, 2013.

[10] C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning
after pretraining deep networks to predict state dynamics,” in IJCNN,
2015.

[11] A. Karpathy, “ConvNetJS: Javascript library for deep learning,” 2015,
http://cs.stanford.edu/people/karpathy/convnetjs/.

[12] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010.

[13] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37–66, 1991.

[14] K. Komatani, N. Kanda, M. Nakano, K. Nakadai, H. Tsujino, T. Ogata,
and H. G. Okuno, “Multi-domain spoken dialogue system with exten-
sibility and robustness against speech recognition errors,” in SIGdial
Workshop on Discourse and Dialogue, 2006.

[15] H. Jeon, H. R. Oh, I. Hwang, and J. Kim, “An intelligent dialogue
agent for the IoT home,” in AAAI Workshop on AI Applied to Assistive
Technologies and Smart Environments, 2016.

[16] H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira, “Evaluation of
a hierarchical reinforcement learning spoken dialogue system,” Computer
Speech & Language, vol. 24, no. 2, 2010.

[17] P. Lison, “Multi-policy dialogue management,” in SIGDIAL, 2011.
[18] Z. Wang, H. Chen, G. Wang, H. Tian, H. Wu, and H. Wang, “Policy

learning for domain selection in an extensible multi-domain spoken
dialogue system,” in EMNLP, 2014.

[19] M. Gasic, N. Mrksic, P. Su, D. Vandyke, T. Wen, and S. J. Young, “Policy
committee for adaptation in multi-domain spoken dialogue systems,” in
ASRU, 2015.

[20] W. Ge and B. Xu, “Dialogue management based on multi-domain corpus,”
in SIGDIAL, 2015.

[21] H. Cuayáhuitl, S. Keizer, and O. Lemon, “Strategic dialogue management
via deep reinforcement learning,” CoRR, vol. abs/1511.08099, 2015.

[22] D. Vandyke, P. Su, M. Gasic, N. Mrksic, T. Wen, and S. J. Young,
“Multi-domain dialogue success classifiers for policy training,” in ASRU,
2015.

[23] N. Mrksic, D. Ó. Séaghdha, B. Thomson, M. Gasic, P. Su, D. Vandyke,
T. Wen, and S. J. Young, “Multi-domain dialog state tracking using
recurrent neural networks,” CoRR, vol. abs/1506.07190, 2015.

[24] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau,
“Hierarchical neural network generative models for movie dialogues,”
CoRR, vol. abs/1507.04808, 2015.

[25] O. Vinyals and Q. V. Le, “A neural conversational model,” CoRR, vol.
abs/1506.05869, 2015.

[26] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” CoRR, vol.
abs/1410.3916, 2014.

[27] M. Fatemi, L. E. Asri, H. Schulz, J. He, and K. Suleman, “Policy
networks with two-stage training for dialogue systems,” 2016.

[28] N. Dethlefs and H. Cuayáhuitl, “Hierarchical reinforcement learning for
situated natural language generation,” Natural Language Engineering,
vol. 21, no. 3, pp. 391–435, 2015.

http://www.bookatable.co.uk
www.reservetravel.com

