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Abstract—The abstraction tasks are challenging for multi-
modal sequences as they require a deeper semantic understanding
and a novel text generation for the data. Although the recurrent
neural networks (RNN) can be used to model the context of
the time-sequences, in most cases the long-term dependencies
of multi-modal data make the back-propagation through time
training of RNN tend to vanish in the time domain. Recently,
inspired from Multiple Time-scale Recurrent Neural Network
(MTRNN) [1], an extension of Gated Recurrent Unit (GRU),
called Multiple Time-scale Gated Recurrent Unit (MTGRU), has
been proposed [2] to learn the long-term dependencies in natural
language processing. Particularly it is also able to accomplish the
abstraction task for paragraphs given that the time constants are
well defined. In this paper, we compare the MTRNN and MTGRU
in terms of its learning performances as well as their abstraction
representation on higher level (with a slower neural activation).
This was done by conducting two studies based on a smaller data-
set (two-dimension time sequences from non-linear functions) and
a relatively large data-set (43-dimension time sequences from
iCub manipulation tasks with multi-modal data). We conclude
that gated recurrent mechanisms may be necessary for learning
long-term dependencies in large dimension multi-modal data-sets
(e.g. learning of robot manipulation), even when natural language
commands was not involved. But for smaller learning tasks with
simple time-sequences, generic version of recurrent models, such
as MTRNN, were sufficient to accomplish the abstraction task.

I. INTRODUCTION

The long-term dependencies of the natural language sen-
tences are difficult to be learnt [3] by Vanilla recurrent network
because in most cases the gradients tend to vanish in time
while the back-propagation through time is being processed[4,
5]. This makes most gradient-based learning methods for
recurrent neural networks hardly form a long-term effect. To
solve this problem, the earliest attempt was the long short-
term memory (LSTM) [6] which consists of various gating
functions that controlled by simple element-wise operations.
Since it was designed, it has achieved satisfaction resultsin
competitions [7] as well as tasks such as dialogue system [8],
sentiment analysis [9] and machine translation [10].

The Gated Recurrent Unit (GRU) models [11], as a more
efficient version than the LSTM [12], has recently been used
widely for language processing where they were also able
achieve state-of-the-art results with less computation require-

ments than LSTM, as a GRU has fewer control gates than
the LSTM unit does [12]. Despite of the differences in their
internal operations, both of them can efficiently eliminate
the gradient vanishing problem with the following common
features:

• They can store the previous activations in the internal
memories which can be later refreshed or be retrieved,
depending on different contexts;

• These operations on the internal activations are controlled
by different gates within the recurrent units.

• The control policies of the gates are learnt by the context
of the training sequences; They form the composition
operations which control the information flow that goes
in and out of the internal memory.

With all these features, the recurrent units have the abil-
ity to modify their internal weights (i.e. internal structures)
based on the long-term dependencies existing in the temporal
sequences to the cell states, given that the gated structures
are well-trained. Furthermore, while input and/or output are
of variable length, the gated-like units stack in a hierarchical
manner [13] are also able to extract the neural representation
with a fixed length, based on the time dependencies in the
temporal domain, in which theunpredictableinputs of lower
level of RNN become inputs to the connecting higher level
units, where a slower activation is updated [14]. This is also
one of the theoretical foundations of the state-of-the-artdeep
learning methods. In the context of language processing, the
higher level units of deep learning architectures can repre-
sent the extracted meaning of the phrase/sentence, while the
inputs are (almost) raw data with one-hot/embedding word
representations of this phrase/sentence. Furthermore, connect-
ing and training with two deep (recurrent or convolutional)
networks with a shared higher level representation, namely
encoder-decoder architecture, can abstract meanings for the
sentences, even if such “sentences” are in different languages
or modalities. As a result, a few applications such as image
captioning [15] (LSTM + CNN) and machine translation [10]
(two LSTMs) have been developed based on such encoder-
decoder architecture.

http://arxiv.org/abs/1702.05441v1


While previous architectures used the encoder-decoder ar-
chitecture to connect visual images and language sequences,
in this paper, we proposed that it is possible to do abstraction
tasks for multi-modal information when applying the hierar-
chical RNN architectures, especially with gated-like units, to
the sensorimotor information sequences obtained from robotic
platforms and language sequences. This is an extension work
of our previous experiments [16] based on the Multiple Time-
scale Neural Network (MTRNN) [1]. Inspired by the time-
constant concept of MTRNN, a Multiple Time-scale Gated
Recurrent Units (MTGRU) were recently proposed [2] to apply
this idea into gated-like recurrent units to accomplish thetext
extraction task. Moreover, its dynamic representation on higher
levels along time makes it an ideal architecture to connect
natural language commands, the dynamic multi-modal envi-
ronment and the motor actions for robotic systems. Therefore,
we herein conducted experiments about robot manipulation
based on the MTGRU network. We also did comparison
about the performances between MTRNN and MTGRU. The
organization of this paper is as follows: a brief introduction of
MTRNN and MTGRU model is presented at the next section.
The empirical studies for algorithmic and multi-modal data
from iCub manipulation are showed at the third section. At
the last section, discussion and summaries will be given.

II. M ODELS

A recurrent neural network (RNN) is a feed-forward neural
network with directed connecting weights. As the weights
form a directed connection between neural units in the time-
domain, a neural unit that is connected with the recurrent
weights is dependent on neural activity at the previous time-
step(s). With sufficient learning, it is able to model a variable-
length sequence input data.

More formally, given a sequencex = (x1, x2, , xt), the
RNN updates its recurrent hidden stateht by Eq.1:

ht =

{

0, t = 0 (1a)

Φ(ht−1, xt), t > 0 (1b)

whereΦ is a non-linear function. Ideally, given the hidden
states of the network, the outputy = (y1, y2, · · · , yt) is
computed as

p(y1, y1, · · · , yt) = p(y1) · p(y2|x1) · p(y3|x1, x2) · · ·

p(yt|x1, x2, · · · , xt−1) (2)

In the case of RNN, the last termp(yt|x1, x2, · · · , xt−1)
can be presented as the activation of hidden unit at timet:

p(yt|x1, x2, · · · , xt−1) = g(h(t)) (3)

whereh(t) is from Eq. 1. And the termh(t) is the units we
investigated in the empirical studies below, in which we could
observe the abstract information from previous time-steps.

Fig. 1: The MTGRU Unit

A. Multiple Time-scale Recurrent Neural Network

In the MTRNN network [1], the learning of each neuron
follows the updating rule of classical firing rate models, in
which the activity of a neuron is determined by the average
firing rate of all the connected neurons. Additionally, the
neuronal activity is also decaying over time following an
updating rule of leaky integrator model.

Assuming thei-th MTRNN neuron has the number ofN
connections, the current membrane potential status of a neuron
can be defined as both by the previous activation as well as
the current synaptic inputs:

ui,t+1 = (1 −
1

τi
)ui,t +

1

τi
[
∑

j∈N

wi,jxj,t] (if t > 0) (4)

wherewi,j represents the synaptic weight from thej-th neuron
to the i-th neuron,xj,t is the activity of j-th neuron att-th
time-step andτ is the time-scale parameter which determines
the decay rate of this neuron: a largerτ means their activities
change slowly over time compared with those with a smaller
τ . As we can see, the MTRNN essentially is a continuous
recurrent model. Therefore, it also exists vanished gradient
problem.

B. Multiple Time-scale Gated Recurrent Units

Although both GRU and LSTM have gating mechanisms for
the recurrent units, compared with the three gates that exist
in LSTM, a GRU has only two gates: a reset gater and an
update gatez. As the names imply, the reset gate determines
how to combine the current input with the previous status of
internal memory, and the update gate defines how much of
the previous memory to be preserved. The basic idea of using
such a gating mechanism to learn long-term dependencies is
similar as in a LSTM, but it was reported that fewer number
of gates leads to more efficient in training [12].

When the concept of multiple time-scales (MT) is ap-
plied in GRU, it has a similar meaning as in MTRNN: it
summarises the dynamics with different time scales of the
temporal sequences. Compared with GRU, the output of the
multiple time-scale gated recurrent units (MTGRU) contains a
so-called “time-scale” constant, which controls how the output
from previous time steps influences the current output. It is
equivalent that this constant is being multiplied to the output
and modulates the mixture of the current and previous states.



Fig. 2: The Same Network Architecture was chosen for both
MTGRU and MTRNN

In Fig. 1, the internal structure of MTGRU is shown, which
demonstrates how the candidate activationh̃ is multiplied with
constant1/τ to the current output. In the mean while, the reset
gate rt, update gatezt, and the candidate activationut are
computed similarly to those of the original GRU in [11].

rt = σ(Wxrxt +Whrht−1) (5)

zt = σ(Wxzxt +Whzht−1) (6)

ut = tanh(Wxuxt +Whu(rt ⊙ ht−1)) (7)

ht = ((1− zt)ht−1 + ztut)
1

τ
+ (1−

1

τ
)ht−1 (8)

Similar as the MTRNN, the pre-defined time-scaleτ is in-
troduced to the activation termht at Eq. 8 to control the
levels abstraction. The time-constant controls in what ratio the
current and past output to the GRU cell are mixed to compute.
A largerτ indicates the past activations have larger influences
to the current activation, presenting the long term dynamic
feature of the temporal sequences.

In the original MTGRU paper [2], the learning formula of
the MTGRU and the performances of MTGRU in abstraction
was presented. In this paper, we concentrate the abstraction
of multi-modal sequences obtained from a humanoid robot,
especially its difference with MTRNN. Starting from simple
sequences, we conducted two empirical studies based on the
MTGRU units.

III. E MPIRICAL STUDIES

In this section, we conducted two case studies on a simple
time-sequence-learning task and a more complicated multi-
modal-sequence learning task. In order to have a fair com-
parison, the same architecture with the same parameters were
used for both MTRNN and MTGRU. As shown in Fig. 2, the
architecture for these empirical studies contains three layers:
an input-output layer (IO) and two context layers called
Context fast (Cf ) and Context slow (Cs). The values of the
time constants here were obtained with experiments in [16].
The Input-output neurons have full connections with the fast
context layers. And the slow context layer only connects
with the fast context layer, representing a slower feature that
extracts from the fast context dynamics.

In the following text, we denote the indices of these neurons
as:

Iall = IIO ∪ ICf
∪ ICs

(9)

whereIIO represents the indices to the neurons at the input-
output layer,ICf

belongs to the neurons at the context fast
layer andICs

belongs to the neurons at the context slow
layer. We adopted atanh function on theIO layer, then the
corresponding RNN functions on context layers:

xcf = tanhk(it), k ∈ IIO (10)

xcs = ycf = RNNk(xcf ), k ∈ ICf
(11)

ycs = RNNk(xcs), k ∈ ICs
(12)

it+1 = ot = RNNk(xcf + ycs), k ∈ ICf
(13)

where RNN functions represent either MTRNN or MTGRU
functions in thekth neuron. Note that in MTRNN, the neurons
on one layer own full connectivity to all neurons within the
same and adjacent layers. In MTGRU, as we introduced be-
fore, the internal activations also have full connectivities with
inputs and outputs. Therefore, the only difference between
two architectures of MTRNN and MTGRU are the neural
activations within each neuron units.

While training multiple sequences, both the MTRNN and
MTGRU should balance the training epochs for each sequence
and over-fitting should be avoided. Therefore, one epoch was
defined to include a few iterations for training all the sequence
using stochastic gradient descent (SGD) [17, 18], as showed
in Algorithm 1:

Algorithm 1 Multiple Time-sequences Training

1: procedure ONE EPOCH(data) ⊲ data contains multiple
time sequences.

2: for seq ∈ data do
3: while error > threshold or iteration >

maximum iteration do
4: ⊲ Repeat iteration for one sequence until threshold is

achieved
5: Run SGD(seq)
6: end while
7: end for ⊲ Choose the next sequence
8: end procedure

A. Case 1: Simple Non-linear Sequences Abstraction

In this case study, two time sequences that include two
dimensions were generated to examine the learning perfor-
mances of MTRNN and MTGRU. The two dimensions X =
[x1, x2] of the first sequence was defined as:

X1 =

{

x1 = sin2t (14a)

x2 = sint (14b)

And the second sequence was defined as:



X2 =

{

x1 = sin2t · cos3t (15a)

x2 =
sin3t

2t
·
sint

t
− 0.5 (15b)

In both cases,100 time-steps were applied, i.e.t =
k−50

50
· π, k = {0, 1, 2, · · · , 99}.

The parameters in the MTRNN and MTGRU experiments
are shown as Tab. I. The parametersnCf

andnCs
in the case

of MTRNN mean the numbers of neurons onCf and Cs

layers, while in the case of MTGRU, they mean the number
of dimensions of the MTGRU unit on theCf andCs layers.

Note that, compared with our previous experiment [16],
we did not employ the SOM pre-processing because a fair
comparison between MTRNN and MTGRU is needed.

TABLE I: MTRNN & MTGRU Parameters (Case 1)

Parameters Parameter’s Descriptions Value
η Learning Rate 10−4

nCf
Size ofCf 100

nCs
Size ofCs 5

τf Time-constant ofCf 1

τs Time-constant ofCs 20

max iteration Max. iteration for training one sequence 2000

threshold Threshold for early stop 10−3

α Mixed ratio for prediction/real 0.9

With the network implemented in Theano [19], the training
was done on an AWS G2 (2x large) server equipped with
Grid K520. The training curve of MTRNN and the MTGRU
were depicted in Figs. 3. We can see that with the same
learning rate, the error of the MTRNN converged faster than
the MTGRU, which was compatible with our intuition that
MTGRU converges slower because it owns more weights than
the MTRNN, although they have the same parameters.

(a) Training Curve with MTRNN (Case 1)

(b) Training Curve of MTGRU (Case 1)

Fig. 3: Training Curves with MTRNN and MTGRU

The quantitative results about the performances of MTRNN
and MTGRU were shown in Tab. II. And the comparison
between the MTRNN and MTGRU output and the real value
of Seq.1 were shown in Fig. 6.

TABLE II: MTRNN & MTGRU Performances (Case 1)

MTRNN MTGRU
Prediction Error (RMS after 30 Epochs) 1.6353 2.2255

Time per GD (ms) 135.66 226.26

To further examine the internal dynamics of both networks,
we selected the neural activities of theCf and Cs layers
while the Seq. 1 (X1) was as the input. From the internal
dynamics of the context layers, we could observe significant
difference between the dynamics of MTRNN (Fig. 4) and
MTGRU (Fig. 5):

• oscillations in the activation could be found in the MT-
GRU context units.

• the range of neural dynamics in MTRNN was signifi-
cantly larger than in MTGRU.

B. Case 2: Multi-modal Data Abstraction

To examine the network performance in more complicated
tasks such as abstraction from robot multi-modal data, we
recorded the multi-modal data from object manipulation ex-
periments based on an iCub robot [20]. iCub is a child sized
humanoid robot which was built as a testing platform for
theories and models of cognitive science and neuroscience.
Mimicking a two-year old infant, this unique robotic platform
has53 degrees of freedom totally. As such, using the iCub,
we set a learning scenario in which a human instructor was
teaching the robotic learner a set of language commands whilst
providing kinaesthetic demonstration of the named actionsas
well as the corresponding visual inputs from the camera. The
target of this case study was to evaluate the performances of
MTRNN and MTGRU in this complicated task with a large
data-set, which may toward a natural language understanding
for humanoid robots.

TABLE III: Dictionaries of verbs and nouns for the data sets:
The instructor showed the robot with different combinations
from the9 actions and9 nouns. The actions and the objects are
represented in two discretised values for semantic command
inputs which range from0− 0.9. For instance, the command
“lift [the] ball” is translated into values[0.8, 0.2].

Actions Slide Left Slide Right Touch Reach Push
Verb Value 0.0 0.1 0.2 0.3 0.4

Actions Pull Point Grasp Lift
Verb Values 0.5 0.6 0.7 0.8

Objects Tractor Hammer Ball Bus Modi
Noun Value 0.0 0.1 0.2 0.3 0.4

Objects Car Cup Cubes Spiky
Noun Values 0.5 0.6 0.7 0.8



(a) Cf Activity of MTRNN (Case 1) (b) Cs Activity of MTRNN (Case 1)

Fig. 4: Neural Activity of MTRNN (Case 1)

(a) Cf Activity of MTGRU (Case 1) (b) Cs Activity of MTGRU (Case 1)

Fig. 5: Neural Activity of MTGRU (Case 1)

Fig. 6: Predicted and real values of MTRNN and MTGRU
(Seq. 1)

1) Experimental Setup:Fig. 7 shows the setup used in our
manipulation experiments to collect the multi-modal data-set.
It was obtained using the following steps:

1) The 9 different objects with significantly different
colours and shapes were placed at6 different locations

along a line on the table in front of the iCub.
2) A vocal command was spoken by an instructor according

to the visual scene that was perceived by the iCub.
A complete combination in a sentence of the vocal
command is composed of a verb and a noun. The
corresponding verb and noun were recognised and then
translated into two dedicated discrete values based on the
verb and noun dictionaries like we did in the previous
experiment in [16] (Tab. III)1.

3) The built-in vision tracker of the iCub searched for
a ball-shaped object based on the dictionary-generated
values using its vision tracker system.

4) Once the object was located, the iCub rotated its head
and triggered the object tracking, which changed the
encoder values of the neck and eyes.

1The speech recognition is not always successful here. In theory it is the
same if we use transcribed language data. But toward more natural training
process with human instructors, we manually monitored the recognition results
before the data sequences were recorded to ensure a better performance. Please
also see http://www.nuance.co.uk/dragon/index.htm.



Fig. 7: Data Collection from iCub Robot

5) Joint positions of the head and neck were recorded.
The sequence recorder module of the iCub was used to
record the sensorimotor trajectories while the instructor
was guiding the robot by holding its arms to perform a
certain action for each object.

The whole experimental data-set for the iCub manipulation
included combinations of9 actions and9 objects. In each
of the 43-dimensional temporal sequence, it includes the
vocal commands (i.e. a complete sentence includes verb and
noun), the visual information (presented as joint angles of
neck and eyes) and the change of torso angles (resulting in
motor actions) sequences. We used such a large number of
data to test how the MTRNN and MTGRU perform in such
a complicated task. We also aimed at applying the power
of recurrent network [21] in natural language processing in
robotic platforms, especially to apply humanoid robots in
cognitive tasks such as multi-modal interaction and dialogue
robots.

2) Experiment Results:In this case study, the parameters
of both models were also kept the same as shown in Tab. IV.

TABLE IV: MTRNN & MTGRU Parameters (Case 2)

Parameters Parameter’s Descriptions Value
η Learning Rate 10−4

nCf
Size ofCf 450

nCs
Size ofCs 8

τf Time-constant ofCf 1

τs Time-constant ofCs 20

max iteration Max. iteration for training one sequence 5000

threshold Threshold for early stop 10−3

α Mixed ratio for prediction/real 0.9

Figs. 8 show the training curves from MTRNN and MTGRU
respectively. Quite different from the previous study, although
the MTGRU converged slower than MTRNN, it converged in a
more steady way. The training of MTRNN, on the other hand,
often converged to local minimum and took more epochs to
the same level of error of MTGRU. An output example of
the 50th sequence in the data-set were shown in Fig. 9. The
quantitative results of the training can be found in Tab. V.
As we expected, the training of MTGRU also took almost

twice of the computational time in one iteration compared
with MTRNN. One interesting thing was that the computation
time for one iteration in this case is less than in the previous
case, which was probably because of the advantage of GPU
for parallel computing in neural networks.

(a) Training Curve with MTRNN (Case 2)

(b) Training Curve with MTGRU (Case 2)

Fig. 8: Training Curves with MTRNN and MTGRU

In Figs 10 and Figs 11, the internal dynamics of the
context neurons were also depicted. But since the number of
dimensions was too large to examine in details, we made a
PCA to reduce the dimension to2 before demonstrating the
neural dynamics, in which we could observe that in the case of
larger dimensions, oscillation in dynamics can also be found
in MTGRU.

TABLE V: MTRNN & MTGRU Performances (Case 2)

MTRNN MTGRU
Prediction Error (RMS after 30 Epochs) 1.5212 1.3677

Time per GD (ms) 31.79 62.54

IV. DISCUSSIONS AND CONCLUSIONS

Inspired by the multiple time-scales which determine the
updating rate for the membrane activities in continuous neu-
rons as MTRNN did, the MTGRU was recently proposed as an
extended version of GRU model. In this paper, the empirical
studies comparing with MTRNN and MTGRU were conducted
in terms of its training performances and their feasibilityin
abstraction for time sequences. Specifically, two cases were
studied: 1) the2-dimensional non-linear time sequences (Sec.
III-A); 2) the 43-dimensional multi-modal time sequences
(Sec. III-B). As expected, with the two data-sets we provided,



(a) Predicted Value of MTRNN (b) Predicted Value of MTGRU

Fig. 9: Predicted and real value of MTRNN and MTGRU (50th Seq.)

(a) Cf Activity of MTRNN (Case 2) (b) Cs Activity of MTRNN (Case 2)

Fig. 10: Neural Activity of MTRNN (50th Seq, Case 2)

the complexity of training in GRU (i.e. gates inside the units)
costed more computational effort than the MTRNN. We could
conclude that for such relatively trivial tasks (without signif-
icant long-term dependencies in sequences), the advantageof
GRU (possibly LSTM as well) was hardly been exhibited.

However, we also noticed the training of MTGRU for large
dimension data converges faster than MTRNN (case 2). This
was probably because that the robot manipulation data we used
actually exhibits long-term dependencies to some extent. For
instance, the movement of hands for grasping depends on the
verb showed in the command sentence. If we use more sophis-
ticated time-dependency data in the multi-modal experiments,
the gated mechanisms may result in more steady training
performance than ordinary RNNs. Furthermore, according to
the previous literature with natural language modelling, the
gated mechanisms RNN would be necessary to model the
long-term dependencies in multi-modal environment when the
language commands are involved.

In future work, we will further investigate the following two
topics:

• We will investigate the internal dynamics of MTGRU; for
example, how the neural oscillation on the context layers
happened is still unknown;

• We plan to use natural language as robot commands while
using word2vec [22] as a pre-processed input as [23]
did, instead of the look-up table III. The final target of
this work is to apply multi-modal understanding for both
sensorimotor and language temporal sequences on robotic
systems.

APPENDIX

The code of MTGRU can be found on Github2.

ACKNOWLEDGMENT

The research was supported by Waseda SGU Program, the
EU project POETICON++ under grant agreement 288382 and
the UK EPSRC project BABEL. JZ would like to thank FH for
the working space provided when the paper was being drafted.

REFERENCES

[1] Y. Yamashita and J. Tani. “Emergence of functional
hierarchy in a multiple timescale neural network model:
a humanoid robot experiment”. In:PLoS Comput. Biol.
4.11 (2008), e1000220.

2https://github.com/jonizhong/mtgru.git



(a) Cf Activity of MTGRU (Case 2) (b) Cs Activity of MTGRU (Case 2)

Fig. 11: Neural Activity of MTGRU (50th Seq, Case 2)

[2] M. Kim, M. D. Singh, and M. Lee. “Towards Ab-
straction from Extraction: Multiple Timescale Gated
Recurrent Unit for Summarization”. In:arXiv preprint
arXiv:1607.00718(2016).

[3] G. Mesnil et al. “Investigation of recurrent-neural-
network architectures and learning methods for spoken
language understanding.” In:INTERSPEECH. 2013,
pp. 3771–3775.

[4] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-
term dependencies with gradient descent is difficult”. In:
IEEE Trans. Neural Networks5.2 (1994), pp. 157–166.

[5] S. Hochreiter. “Untersuchungen zu dynamischen neu-
ronalen Netzen”. In:Diploma, Technische Universität
München(1991), p. 91.

[6] S. Hochreiter and J. Schmidhuber. “Long short-term
memory”. In: Neural Comput.9.8 (1997), pp. 1735–
1780.

[7] A. Graves et al. “A novel connectionist system for un-
constrained handwriting recognition”. In:IEEE Trans.
Pattern Anal. Mach. Intell.31.5 (2009), pp. 855–868.

[8] O. Vinyals and Q. Le. “A neural conversational model”.
In: arXiv preprint arXiv:1506.05869(2015).

[9] A. M. Dai and Q. V. Le. “Semi-supervised sequence
learning”. In:Advances in Neural Information Process-
ing Systems. 2015, pp. 3079–3087.

[10] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence
to sequence learning with neural networks”. In:Ad-
vances in neural information processing systems. 2014,
pp. 3104–3112.

[11] K. Cho et al. “On the properties of neural machine trans-
lation: Encoder-decoder approaches”. In:arXiv preprint
arXiv:1409.1259(2014).

[12] J. Chung et al. “Empirical evaluation of gated recur-
rent neural networks on sequence modeling”. In:arXiv
preprint arXiv:1412.3555(2014).

[13] J. Zhong. “Artificial Neural Models for Feedback Path-
ways for Sensorimotor Integration”. In: (2015).

[14] J. Schmidhuber. “Learning complex, extended se-
quences using the principle of history compression”. In:
Neural Comput.4.2 (1992), pp. 234–242.

[15] O. Vinyals et al. “Show and tell: A neural image caption
generator”. In:Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015,
pp. 3156–3164.

[16] J. Zhong et al. “Sensorimotor Input as a Language
Generalisation Tool: A Neurorobotics Model for Gen-
eration and Generalisation of Noun-Verb Combina-
tions with Sensorimotor Inputs”. In:arXiv preprint
arXiv:1605.03261(2016).

[17] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu.
“Advances in optimizing recurrent networks”. In:2013
IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE. 2013, pp. 8624–8628.

[18] R. Pascanu, T. Mikolov, and Y. Bengio. “On the diffi-
culty of training recurrent neural networks.” In:ICML
(3) 28 (2013), pp. 1310–1318.

[19] F. Bastien et al. “Theano: new features and speed
improvements”. In: arXiv preprint arXiv:1211.5590
(2012).

[20] G. Metta et al. “The iCub humanoid robot: an open
platform for research in embodied cognition”. In:Pro-
ceedings of the 8th workshop on performance metrics
for intelligent systems. ACM. 2008, pp. 50–56.

[21] A. Karpathy. “The unreasonable effectiveness of recur-
rent neural networks”. In:Andrej Karpathy blog(2015).

[22] T. Mikolov et al. “Distributed representations of words
and phrases and their compositionality”. In:Advances in
neural information processing systems. 2013, pp. 3111–
3119.

[23] J. Zhong, A. Cangelosi, and T. Ogata. “Sentence Em-
beddings with Sensorimotor Embodiment”. In:The 34th
annual conference of the Robotics Society of Japan.
2016.


