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Abstract—In this work we present a novel recurrent
neural network architecture designed to model systems
characterized by multiple characteristic timescales in
their dynamics. The proposed network is composed by
several recurrent groups of neurons that are trained to
separately adapt to each timescale, in order to improve
the system identification process. We test our framework
on time series prediction tasks and we show some
promising, preliminary results achieved on synthetic data.
To evaluate the capabilities of our network, we compare
the performance with several state-of-the-art recurrent
architectures.
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I. INTRODUCTION

Time series analysis focuses on reconstructing the
properties of a dynamical system from a sequence of
values, produced from a noisy measurement process
acting on the state space of the system. Correct modeling
is necessary to understand, characterize the dynamics
of the system and, consequently, to predict its future
behavior. A Recurrent Neural Network (RNN) is an uni-
versal approximator of Lebesgue measurable dynamical
systems and is a powerful tool for predicting time series
[13]]. In its basic formulation, the whole state of a RNN
evolves according to precise timing. However, in order
to model a system whose internal dynamic variables
evolve at different timescales, a RNN is expected to learn
both short and long-term dependencies. The capability of
modeling multiple time scales is particularly important
in the prediction of real-world time series, since they are
generally characterized by multiple seasonalities [10]].

In this paper we propose a novel RNN architecture,
specifically designed for modeling a system character-
ized by heterogeneous dynamics operating at different
timescales. We combine the idea of using bandpass
neurons in a randomly connected recurrent layer, an
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inherent feature of reservoir computing approaches [17],
with the gradient-based optimization, adopted in classic
RNN architectures. Contrarily to standard RNNs, where
the internal state of the neurons is influenced by all
the frequencies of the input signal, in our network
specific groups of neurons update their states according
to different frequencies in the input signal. Therefore,
since the hidden neurons can operate at temporal res-
olutions that are slower than the fastest frequencies in
the input, we named our network Temporal Overdrive
RNN (TORNN), after the mechanism in vehicles engine
that, under certain conditions, decouples the speed of the
wheels from the revolutions of the engine.

TORNN is capable of modeling with high accuracy
the timescales in the dynamics of the underlying system.
In the proposed architecture, the hidden recurrent layer
is partitioned in different groups, each one specialized
in modeling dynamics at a single timescale. This is
achieved by organizing the recurrent layer in groups
of bandpass neurons with shared parameters, which
determine the frequency band to operate on. During
training, while the neuron connection weights are fixed
to their initial random values, the bandpass parameters
are learned via backpropagation. In this way, the recur-
rent layer dynamics are smoothed out by the bandpass
filtering in order to adapt to the relevant timescale. The
main hyperparameter required by TORNN is the number
of neuron groups composing the recurrent layer, that has
to be chosen by considering the expected number of
separate timescales characterizing the analyzed process.
This information can be easily retrieved through an
analysis in the frequency domain and/or by a priori
knowledge of the input data. The network also depends
on few other structural hyperparameters, which are not
critical as the final performance of the model is not
particularly sensitive to their tuning. Since the pair of
bandpass parameters are the only weights trained in
each group of neurons, the total number of parameters
to be learned are considerably less than in other RNN
architectures, with a consequent simplification of the
training procedure.



In this work we focus on the prediction of real-valued
time series, generated from a system whose internal
dynamics operate at different timescales. In Sect.
we review previous works that dealt with the problem
of modeling dependencies across different time scales
in the data with RNNs. In Sect. we provide the
details of the proposed architecture. In Sect. we
present some initial results on synthetic data obtained
by the proposed architecture and other state-of-the-art
alternatives. Finally, in Sect.|V|we draw our conclusions.

II. RELATED WORKS

Classic RNN architectures struggle to model different
temporal resolutions, especially in presence of long-term
relations that are poorly handled, due to the issue of
the vanishing gradient [1]. Several solutions have been
proposed in the past to deal with long-term dependencies
[19] and an important milestone has been reached with
the introduction of Long Short Term Memory (LSTM)
[14]. This architecture has been shown to be robust
to the vanishing gradient problem, thanks to its gated
access mechanism to its neurons’ state. This results in the
LSTM networks’ capability to handle long time lags be-
tween events and to automatically adapt to multiple time
granularity. In particular, the LSTM neurons, referred to
as “cells”, are composed by an internal state that can be
accessed through three gates: the input gate, that con-
trols whether the current input value should replace the
existing state; the forget gate, that controls the reset of
the cell’s state; the output gate, that determines whether
the unit should output its current state. An additional
component in several implementations of LSTM cells
are the peephole connections, which allow gate layers
to look directly at the cell state. A recent variant of
the traditional LSTM architecture is the Gated Recur-
rent Unit (GRU) [3], which always exposes its internal
state completely, without implementing mechanisms to
control the degree of exposure. In GRU, both peephole
connections and output activation functions are removed,
while the input and the forget gate are coupled into an
update gate. While LSTM and GRU excel in learning
at the same time long and short time relationships,
they are difficult to train due to an objective function
landscape characterized by a high dimensionality and
several saddle points [9]. Additionally, these networks
depend on several hyperparameters, whose tuning is non-
trivial, and the utility of their various computational
components depends on the application at hand [12].

An initial attempt to model multiple dynamics and
timescales was based on the idea that temporal rela-
tionships are structured hierarchically, hence the RNN

should be organized accordingly [8]. The resulting ar-
chitecture managed to improve the modeling of slow-
changing contexts. An analogous hierarchical organiza-
tion has been implemented by stacking multiple recur-
rent layers [11]. In the same spirit, a more complex
stacked architecture called Gated Feedback Recurrent
Neural Networks has been proposed in Ref. [7]. In this
architecture, the recurrent layers are connected by gated-
feedback connections which allow them to operate at
different timescales. By referring to the unfolding in
time of the recurrent network, the states of consecutive
time steps are fully connected and the strength of the
connections is trained by gradient descent. The main
shortcoming of these layered architectures is the high
amount of parameters that must be learned in order to
adapt the network to process the right time scales. This
results in a long training time, with the possibility of
overfitting the training data.

The issue of modeling multiple timescales has also
been discussed within the framework of reservoir com-
puting, a quite recent approach to temporal signal pro-
cessing that leverages on a large, randomly connected
and untrained recurrent layer called reservoir. The de-
sired output is computed by a linear memory-less read-
out, which maps the instantaneous states of the network
and is usually trained by linear regression. The origi-
nal reservoir computing architectures, known as Echo
State Networks [15] and Liquid State Machines [21],
are characterized by a fading memory that prevents to
model slow periodicities that extend beyond the memory
capacity of the reservoir. A solution proposed in Ref.
[17] is to slow down the dynamics of the reservoir
by using leaky integrator units as neurons. These units
have individual state dynamics that can model different
temporal granularity in the target task. Leaky integra-
tors behave as lowpass filters, whose cutoff frequency
is controlled by the leakage parameter. Precise timing
phenomena emerge from the dynamics of a random
connected network implementing these processing units,
without the requirement of dedicated timing mechanism,
such as clocks or tapped delay lines. A different kind of
unit that implements a bandpass filter has been proposed
to encourage the decoupling of the dynamics within a
single reservoir and to create richer and more diverse
echoes, which increase the processing power of the
reservoir [25)]. Improved results have been achieved by
means of neurons implementing more advanced digital
bandpass filters, with particular frequency-domain char-
acteristics [26]. Differently from other strategies where
the optimal timescales for the task at hand are learned
from data, reservoir computing follows a “brute force”
approach. In fact, not only a large, sparse and randomly



connected reservoir is generated in order to provide rich
and heterogeneous dynamics, but also a high amount of
filters are initialized with random cutoff frequencies, to
encode a wide range of timescales in the recurrent layer.
By providing filters that cover the whole spectrum, the
correct timings required to model the target dynamics
are likely to be provided, at the cost of a considerably
redundant representation of the system. An alternative
approach has also been proposed, where the filters are
tuned manually according to the information of the
frequency spectrum of the desired response signal [26].

III. MODEL ARCHITECTURE

In this section we discuss the details of TORNN
architecture. Let us consider a time series © = {z[t]}1_;,
whose values are relative to the measurement of the
states of a system, characterized by slow and fast
dynamics. Each dynamical component is modeled by
a specialized group of neurons in the recurrent layer
which operates at the same characteristic frequencies.
The number of groups K is equal to the number of
main dynamical components of the system and can be
determined through a frequency analysis on the input
signal x. In this work, by means of a power spectral
density estimate, we identify K as the number of peaks
in the power spectrum, but alternative approaches are
possible.

In order to operate only on the portion of the spectrum
located around one of the maxima, each processing unit
implements a bandpass filter, whose configuration is
identical to the one of the other units in the same group.
As it is shown later in Sect. the transfer function of
each bandpass filter depends on two parameters related
to the two cutoff frequencies, but also on the connection
weights of input and recurrent layers. If the configuration
of these connections is modified, the frequency response
of each filter will change as well. In TORNN we
implement an hybrid approach. Analogously to reservoir
computing methodologies, input and recurrent connec-
tions are randomly initialized and kept unchanged, while
the pair of parameters that define the bandpass in each
group of neurons are trained via backpropagation, along
with the output layer.

In the following, we first explain how the recurrent
layer is structured. Then, we describe how the bandpass
filters are implemented in the hidden processing units
and, finally, we discuss the learning procedure adopted
to train the parameters in the model.

A. Recurrent layer structure

The recurrent layer of the network is randomly gen-
erated, under the constraint that the connections form
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Fig. 1. Structure of the recurrent layer, encoded in the weight matrix
‘W,.. Inter-group connections are drawn from a binomial distribution
B(1,p), while intra-group connections are drawn from B(1,q). To
ensure inter-group connections to be more dense than intra-group
connections, we set p > q.

a structure with K groups. Each group Cj contains
N neurons, which are strongly connected to the other
neurons in Ci. Additionally, in order to allow for some
weak coupling between different dynamical components
in the modeled system, we also generate a small amount
of connections between neurons belonging to different
groups. This allows synchronization mechanisms be-
tween different groups, which are required if the different
dynamics of the modeled system are coupled. For intra-
group connections, we define a probability p that deter-
mines the presence of a link e; ; between the neurons
n; and n; of the same group Ci. A second probability
q determines the presence of an inter-group connection
e;,; between the neurons n; and n; of different groups.
To guarantee higher intra-group connectivity we set p, ¢
such that p > q.

To define the recurrent layer connections, we first
generate a Boolean squared matrix W, € RVEXNK py
drawing values from a binomial distribution 5(1, p) for
elements belonging to one of K blocks on the diagonal,
or a binomial distribution B(1,q), for the remaining
elements. The structure of W, is depicted in Fig. [T} To
obtain a higher degree of heterogeneity among neuron
activations and to enrich internal dynamics [23], each
non-zero connection e; ; is multiplied by a value, drawn
from a normal distribution A/ (0, 1). Finally, to guarantee
stability in the network [4]], we rescale the spectral radius
of W,. to a value lower than 1.

Analogously to the connections in the recurrent layer,
the input weights (stored in the matrix W; € RI*NK|
with I the input size) are randomly initialized with



values drawn from a distribution A(0,1) and are kept
untrained as well.

B. bandpass processing units

A leaky integrator neuron outputs a weighted average
— controlled by a leakage rate « — of the new activation of
the neuron with the one from the previous time interval
[2L [17]. A leaky neuron acts as a lowpass filter, whose
cutoff frequency is proportional to ~. Its state-update
equation is defined as

z[t+1] = (1 —y)z[t] +vf (W,z[t] + Wult+1]) (1)
or, by following an alternative definition [24]], as
z[t+1] = f((1—y)z[t] +yWrz[t] + Wiult +1]) (2)

where f(-) is a tanh (or a sigmoid) function. If v = 0,
the new state at time ¢+ 1 maintains the value of state ¢.
If v = 1, the state-update equation reduces to a classic
nonlinear transfer function.

In the integrator of Eq. the non-linearity f(-)
is applied also to the leakage term. This guarantees
stability, since the poles of the transfer function are
constrained to the unit circle, and has the advantage of
no computational overhead, since the integrators can be
incorporated in W, [24]. This integrator always leaks,
due to the contracting property of the non-linear mapping
of the hyperbolic tangent upon itself. Since this is not
an issue in TORNN, these are the filters we chose to
implement.

As previously discussed, we want the processing units
in each group of the recurrent layer to act as band-
pass filters, which allow signals between two specific
frequencies to pass, but discriminate against signals at
other frequencies. In particular, we want the neurons
in the group Cj to reject the frequency components
that are not close to a given peak in the spectrum. A
bandpass filter can be generated by combining a lowpass
filter with a highpass filter (implemented by negating
the lowpass filter). Alternatively, a bandpass filter is
obtained by combining two lowpass filters. In this latter
case, according to Eq. [2] the state update equation of a
bandpass neuron reads as

2t +1] = F((1—y)a [+
+’71Wrx[t] +W1u[t+ 1])a
o [t+1] = (1 — )z’ [t] +yea [t + 1],
aft+1] =2 [t+1] -z [t+1].

The parameters ; and 7, control respectively the high
and low frequency cutoffs of the bandpass filter. Inter-
estingly, the filter has a transfer function equivalent to
the one of an analogue electronic RCL circuit [25]].

3)

C. Learning

The bandpass filters implemented by the units in the
group Cj, must specialize to pass only the frequencies in
neighborhood of one of the peaks in the power spectrum
of x. According to Eq. |3} to control the band to be
passed by the filters in each group, one must tune the
parameters y; and . However, in practical cases the
bandpass width of each filter is not easy to determine in
advance, as the neighborhood of each peak in the power
spectrum could either include noise or useful information
for the problem at hand. Most importantly, v; and vy, are
related to the effective cutoff frequencies in the spectrum
through a highly non-linear dependency and the desired
response of the filter is difficult to determine. Therefore,
we follow a data-driven approach to automatically learn
the control parameters by means of a gradient descent
optimization, which accounts the nature of the task at
hand.

The last component in the architecture is a dense layer,
composed by a set of weights stored in the matrix W, €
RH >0 which combines the output of the neurons in the
recurrent layer to produce the O-dimensional output. A
schematic depiction of the whole architecture is reported

in Fig.
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Fig. 2. Input connections (encoded in W) and recurrent layer
connections (encoded in W) are initialized pseudo-randomly and
they are kept fixed afterwards. In the recurrent layer, the connections
between neurons in the same group, depicted as solid black lines, are
more dense than the connections between neurons in different groups
(dashed gray lines). In red, we marked the elements that are trained
by means of a gradient descent optimization, which are the parameters
that determine the cutoff frequencies in each group Cy, (v1 x and 72 1)
and the weights connecting the recurrent layer with the network output
(Wo).

Like the filter parameters, also the connection weights
in W, are learned through a gradient descent optimiza-
tion. We opted for a standard backpropagation through



time (BPTT) parametrized by a threshold 7i,., which
determines the truncation of the unfolding of the network
in time. To constrain the parameters ; and v, to lay
within the [0, 1] interval (required from Eq. 3, during the
optimization we apply a sigmoid function to the values
of 1 and 7, learned by the gradient descent.

IV. EXPERIMENTS

In this section, we evaluate the capability of TORNN
to model multiple dynamics characterized by different
timescales. To test our model, we consider the prediction
of a time series generated by superimposed sine waves,
whose frequencies are incommensurable. Since the ratio
of the frequencies is an irrational number, the periods
of the sine waves do not cross with each other and
hence the period of the resulting signal is, in theory,
infinite. This academic, yet important task, has been
previously considered to test the memory capacity of
a recurrent neural network [16]. Indeed, to accurately
predict the unseen values of the time series, the network
would require a huge amount of memory. Here, we tackle
the problem from a different perspective. We show that
if the network is capable of learning how to model
the dynamics of each single oscillator separately, the
prediction task can be solved accurately with a limited
amount of computational resources.

In the following, we try to solve several time series
prediction tasks of increasing difficulty. Each time series
is obtained by superimposing sinusoids, whose frequen-
cies are pairwise incommensurable. The sinusoids are
generated by multiplying a frequency ¢ by distinct
integer powers of a transcendental number, such as e
(Euler number) or m. In our experiments we chose e as
the base number and the considered time series have the
form

K
wilt] =) sin(e* )], )
k=1

where K is the number of superimposed sine waves.
The difficulty of the prediction task is controlled by
increasing the number of components K and by adding
to the time series a white noise nft] ~ A(0,1). In the
experiments, we set a noise-to-signal ratio of 0.2 and we
evaluated time series with 7" = 5000 time-steps.

To quantify the performance of TORNN on each
task, we compare its prediction accuracy with the ones
achieved by Elmann-RNN (ERNN), LSTM, GRU and
ESN. To initialize the trainable weights in TORNN,
ERNN, LSTM and GRU, we draw their initial values
from a Gaussian distribution N (0,1/+/d), d being the
number of processing units in the successive layer in
the network [9]. For each network we used Adam

algorithm as the optimizer of the gradient descent step
[18]. ERNN, LSTM and GRU are configured to use a
comparable number of parameters (approximately 8500).
For TORNN and ESN instead, we instantiate 20 neurons
in the recurrent layer for each sinusoidal component in
the signal. Therefore, the number of parameters trained
in TORNN is (2 x K) + (20 x K) + (1), which are,
respectively, the filter parameters for all groups, the
number of connections from the recurrent layer to the
output and the bias. While the number of neurons in
ESN reservoirs is usually much larger, the reason for
this experimental setup is to show that TORNN manages
to handle the same computational resources of an ESN
more effectively.

The details of the configuration in each network are
reported in Tab. [l The model parameters of ESN are not
learned through gradient descent optimization. Indeed,
the output weights in the readout are computed through
a simple ridge-regression, an optimization problem that
can be expressed in close form and solved in a time that
grows as the cube of the number of neurons [3]. On the
other hand, a correct setup of the hyperparameters in the
ESN is in general more critical than in other architectures
and they are usually tuned through cross validation pro-
cedures. In our experiments, we used a genetic algorithm
to search for the optimal hyperparameters values. We
followed the same approach described in [20], to which
we refer the interested reader for further details. The
bounds considered in the search of each hyperparameter
are reported in Tab

In each task we perform a prediction with a forecast
horizon of 15 time steps. Prediction error is expressed
in terms of Normalized Root Mean Squared Error
(NRMSE), computed as

NRMSE = /([ly — y*[12)/(lly — (5[,

where y is the output predicted by the network and y*
the ground truth. We consider 4 different time series
x i [t], generated according to Eq. |4} with K =2,3,5,7
the number of superimposed oscillators. The power spec-
tral density estimates of the time series are depicted in
Fig. 3l As is it possible to see, in the spectra of z5[t] and
x7[t] there are two frequencies which are very close. This
increase the difficulty of the problem as these frequencies
are harder to separate. For each time series, we also
consider a version with superimposed white noise n[t].

The prediction accuracies are reported in Fig. [ where
the colored boxes represent the average NRMSE error
(the shorter, the better) and the error bars are the stan-
dard deviations, computed over 10 different trials with
independent random initializations. TORNN achieves
better performance in every test. In order to provide




TABLE I
SUMMARY OF THE HYPERPARAMETERS CONFIGURATION FOR EACH NETWORK. ERNN, LSTM, GRU: NUMBER OF PROCESSING UNITS
(N;), NUMBER OF TRAINABLE PARAMETERS (# PARAMS), Lo REGULARIZATION OF W, WEIGHTS (\), GRADIENT TRUNCATION IN BPPT
(Ttne). ESN (ADMISSIBLE RANGE OF HYPERPARAMETERS, OPTIMIZED WITH A GENETIC ALGORITHM [20]]): NEURONS OF THE RESERVOIR
(Ny — NOT OPTIMIZED), SPECTRAL RADIUS (p), RESERVOIR CONNECTIVITY (7), NOISE IN STATE UPDATE (&), INPUT SCALING (w;),
TEACHER SCALING (w,), FEEDBACK SCALING (wy), L RIDGE REGRESSION NORMALIZATION (). TORNN: PROCESSING UNITS PER
GROUP (IN), INTRA-GROUP CONNECTIONS PROBABILITY (p), INFRA-GROUP CONNECTION PROBABILITY (q), SPECTRAL RADIUS OF W .
(p), L2 REGULARIZATION OF W, WEIGHTS (A) AND GRADIENT TRUNCATION IN BPPT (7¢yc).

N, # params A Ttne

ERNN ‘ 91 8555 IE-5 10
N, # params A Ttne
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Fig. 3. Power spectral densities of the four time series x2[t], z3t],
z5(t] and z7[t] considered in the experiments. Here, we report the
spectrum of the versions without the superimposed white noise.

a qualitative description of the forecast results, in Fig.
[] we show a portion of the prediction of the time
series z7[t] + n[t] by TORNN and the other considered
networks, respectively RNN, LSTM, GRU and ESN. In
every plot the gray line represents the ground truth, the
black line the considered network’s forecast and the light
red area the residual between the two lines. By looking

at the residual areas of each time series, it is possible
to notice an overall better prediction by TORNN with
respect to the other RNNs.

These results provide empirical evidence of the effec-
tiveness of the proposed framework, which is capable of
modeling the different components and thus performing
a more accurate prediction. As expected, when time
series are corrupted by noise the prediction forecast
accuracy heavily decreases in every model.

The state-of-the-art architectures based on gradient
optimization, which are ERNN, LSTM and GRU, obtain
on average a larger prediction error with respect to ESN
and TORNN. Furthermore, ERNN performs worse than
LSTM and GRU in every test. This is a consequence
of the simplicity in the architecture, which is unable to
handle properly long-term dependencies in the analyzed
time series. The performance of LSTM and GRU are
comparable and it is not possible to conclude which
one is the best performing. This result is expected and
is in agreement with previous studies which evidenced
that the selection of a specific gated architecture should
depend on the dataset and the corresponding task at
hand [6]]. However, even if the GRU structure is simpler
than the plain LSTM architecture (without peephole
connections), the training time of GRU is higher, due
to the larger number of operations required to compute
the forward and the backward propagation steps [3l.

The performance of TORNN are always better or at
least equal to ESN. It is worth noticing that TORNN
can be considered as a general case of an ESN, since its
architecture reduces to ESN when v; = 1 and 72 = 0 in
every group of units. Indeed, with such a configuration
the bandpass filters reduce to regular neurons. Finally,
we underline that in ESN the training of the model is
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gray line represents the ground truth, the black line the predicted time series and the shaded red areas are the error residuals of the prediction.

faster than in the other architectures. In fact, rather than
a slow gradient descent optimization, the weights of the
linear readout in a ESN can be evaluated by performing
a simple linear regression. However, ESNs trade the
precision of gradient descent with the “brute force”
redundancy of random reservoirs and this, inevitably,
makes the models more sensitive to the selection of
the hyperparameters (like spectral radius). Hence, the
computational resources required for an accurate search
of the optimal hyperparametyers should be accounted in

the comparison with other architectures.

V. CONCLUSIONS

In this work we presented the Temporal Overdrive
Recurrent Neural Network, a novel RNN architecture
designed to model multiple dynamics that are charac-
terized by different time scales. The proposed model
is easy to configure, as it only requires to specify the
number of different time scales that should be accounted
for, an information that can be easily obtained from a



rough frequency analysis. Each dynamical component is
handled by a group of neurons implementing a bandpass
filter, whose behavior is determined by two parameters
that determine the cutoff frequencies.

The proposed methodology follows the strategy of
reservoir computing approaches, as the input and re-
current connections are randomly initialized and they
are kept untrained. However, while reservoir computing
implements a “brute force” approach to generate a high,
yet redundant, number of internal dynamics, TORNN
learns from data the optimal configuration of its dynam-
ics through a gradient descent optimization. Furthermore,
with respect to other gradient-based RNNs, the number
of trainable parameters is significantly lower, with a
consequent simplification of the learning procedure.

We performed some preliminary tests on synthetic
data, which showed promising results and demonstrated
that our network achieves superior performance in pre-
diction with respect to other state-of-the-art RNNs.
TORNN can also be used for system identification [22].
In this case, the network must operate in a generative
setup and the output of the network has to be fed back
into the recurrent layer.

We are currently working on real-world data, relative
to load forecast, which will be presented in a future
extension of this work. We also plan to explore the
implementation of more efficient bandpass filters, with
sharper frequency cutoffs. We believe that this will help
in separating the dynamical components more effec-
tively. In the future we also plan to investigate further
the internal dynamics of the network.
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