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Abstract—Horizon or skyline detection plays a vital role
towards mountainous visual geo-localization, however most of
the recently proposed visual geo-localization approaches rely
on user-in-the-loop skyline detection methods. Detecting such
a segmenting boundary fully autonomously would definitely be
a step forward for these localization approaches. This paper
provides a quantitative comparison of four such methods for
autonomous horizon/sky line detection on an extensive data set.
Specifically, we provide the comparison between four recently
proposed segmentation methods; one explicitly targeting the
problem of horizon detection[2], second focused on visual geo-
localization but relying on accurate detection of skyline [15]
and other two proposed for general semantic segmentation –
Fully Convolutional Networks (FCN) [21] and SegNet[22]. Each
of the first two methods is trained on a common training set
[11] comprised of about 200 images while models for the third
and fourth method are fine tuned for sky segmentation problem
through transfer learning using the same data set. Each of the
method is tested on an extensive test set (about 3K images)
covering various challenging geographical, weather, illumination
and seasonal conditions. We report average accuracy and average
absolute pixel error for each of the presented formulation.

I. INTRODUCTION

With the massive availability of geo-tagged imagery and
increased computational power, geo-localization/geolocation
has captured a lot of attention from researchers in computer
vision and image retrieval communities. Significant progress
has been made in urban environments with stable man-made
structures and geo-referenced street imagery of frequently vis-
ited tourist attractions [18], [19], [20]. Recently some attempts
have been made towards geo-localization of natural/mountain
scenes which is more challenging due to changed vegetations,
lighting and seasonal changes and lack of geo-tagged imagery.
Typical approaches for mountain/natural geo-localization rely
on mountain peaks and valley information, visible skylines,
ridges or combinations of all three [10], [11], [12], [13], [24],
[14], [15]. Sky/horizon line has been established to be a robust
natural feature for mountainous images which can be matched
with the synthetic skylines generated from publicly available
terrain maps – Digital Elevation Models (DEMs). Hence, the
very first step in the geolocation pipeline for mountainous
regions is to find the skyline in the given query image. How-

ever, most of the solutions for mountainous geo-localization
rely on user-in-the-loop methods for skyline extraction where
a user is required to mark/correct portion of the sky/horizon
line [11], [12], [14], [15]. In addition to visual geo-localization
and mountain image annotation/tagging, sky/horizon line has
proven to be useful for various other applications e.g. UAV
navigation [23], [5], [17], [9], [6], [7], vehicle navigation[16],
augmented reality [13] and port security [8]. It should be noted
that most of the earlier horizon/sky line detection approaches
assume horizon to be a linear boundary; Hough transform was
generally employed to find the line parameters subject to some
cost function [6], [5], [7], [8], [25]. Although linear horizon
boundary could be of good use for UAV navigation, ship
detection and/or port security; a non-linear sky segmentation is
a must for geo-localization and hence the focus of this paper.

A. Related Work – Mountainous Geo-Localization

Using silhouette edge matching, Baboud et al. [10] estimate
the pose of camera relative to geometric terrain model (DEM)
assuming known viewpoint and FOV estimates. Effectively
a rotation g ∈ SO(3) is searched which maps the camera
frame to the terrain frame. They developed a robust silhouette
matching metric to cope with inevitable noise affecting de-
tected edges (compass edge detector is used). Since, a direct
extensive search on SO(3) based on their devised metric
is quite expensive, that is why they also proposed a pre-
processing search space reduction step based on spherical
cross-correlation of 2D edge orientation vectors. They reported
that 86% of 28 images were correctly aligned belonging
to two distinct mountain regions with matching error below
0.2◦. Baatz et al. [11] proposed a visual geo-localization
pipeline based on bag-of-curvelets; where shape information
is aggregated across the whole skyline of a query image and
a similar configuration of shapes is searched in a large scale
database of panoramic skylines (extracted offline from DEMs).
In addition to encoded contourlets, the viewing direction for
each descriptor is also saved which is used for on-the-fly geo-
metric verification in an inverted file search framework. Since,
they are comparing 10◦ − 70◦ views with 360◦ panoramas,
they redefine the weighted L1-norm to implement “contains”-
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semantics instead of conventional “equal”-semantics used for
visual words (curvelets) matching. The most promising coarse
estimate for the viewing direction (azimuth) is used to initial-
ize ICP (keeping other two angles at zero) which determines
full 3D rotation. The average alignment error between two
visible horizons is used to re-rank the candidates in ICP
framework. They reported an 88% recognition rate on their
challenging data set comprised of more than 200 images where
determined position was within 1km radius of the ground truth.
It should be noted that about half of their images required
manual interaction at the sky segmentation stage.

Somewhat similar to Baatz et al. pipeline [11], Tzeng et
al. [12] proposed a localization approach for desert imagery.
However, instead of curvelet features, concavity-based features
across query and synthetic skylines are used for matching
without any use of meta-data such as GPS, FOV and focal
length. In contrast to [11] where overlapping curvelet descrip-
tors are generated for pre-defined angular width, they generate
concavity descriptors around detected points of extreme curva-
ture. Further a similarity transformation is applied on features
to achieve scale and in-plane rotation invariance. The end-
point matching and features shape matching is accomplished
through geometric hashing and k-d trees respectively. Ranked
database skylines from both matchers (endpoint and shape)
are further refined using alignment error based on sampling
of overlapping regions between query and database skylines.
It should be noted that in their method, skyline in the query
image is first roughly marked by a user and further refined
by edge detection and dynamic programming framework as
detailed in Lie et al. [4].

Porzi et al. [13] also addressed the same image-to-world
registration problem however in the context of an Augmented
Reality based smart phone application. They first compute
rough estimates for position and orientation from phone’s
on-board GPS and inertial sensors. These estimates are then
refined by matching the skylines extracted from images taken
by phone’s camera and rendered from DEMs generated on a
server. In principle their approach is closer to that of [10] since
they also assume roughly known position and orientation;
however they rely on a learning based edge filtering approach
which results in improved accuracy and computational cost
desirable for a smart phone application. Based on the orienta-
tion estimates from device’s inertial sensors, skyline detected
from the phone’s camera image and rendered profiles received
from the server; [13] define a search space around the rough
estimate which is explored by Particle Swarm Optimization
for refined orientation estimates. This is accomplished by
maximizing the objective function based on the matching
between the skyline contour and contours projected (pin-hole
camera projection model) from profiles received from server.

B. Paper Contribution

The body of work on truly automatic non-linear horizon/sky
line detection is rather limited and work comparing such
methods is even rarer with the exception of Ahmad et al.
who compare different formulation [26], [27], [28] of their

approach against original approach of [4]. And quite recently
the work by Porzi et al. [29]; who proposed a small scale deep-
learning architecture inspired from VGG [31] for horizon line
detection. They compared the performance of proposed net-
work against [2] and [13] etc. on CH1 data set [11]. However,
both of these comparisons are based on rather smaller data
sets. To the best of our knowledge, this paper presents a first
detailed quantitative comparison of truly automatic non-linear
horizon/sky line boundary detection methods on a decent sized
data set (about 3K images).

Another lacking aspect of sky segmentation literature being
the use of accurate metrics to measure the accuracy of the
detected boundary e.g. the question: “on average how far is
the segmented boundary from the ground truth boundary? ” is
mostly not answered. This is true with the exception of few
[2], [27], [28], [1], [29] who have reported such measures. For
example; Saurer et al.[15] reported full automatic detection
for 60% of their images (total 948), however how good the
detections were for these images was never mentioned. To
address this issue we report both average pixel accuracy and
mean absolute average distance between the found segmen-
tations and the ground truths for each of the methods being
compared.

Specifically we provide a quantitative comparison for the
following four methods:

1) Ahmad et al. [2] proposed a horizon detection method
inspired from [4] where instead of relying on edges,
they used classification scores to provide confidence
of horizon-ness. The given image is converted to a
classification score image which is formulated as a
multi-stage graph and a shortest path is found which
conforms to a detected horizon boundary in the given
image.

2) For their visual geo-localization problem; Baatz et al.
[11] relied on a sky segmentation approach based on
dynamic programming [4], gradient magnitude and clas-
sification. They reported human-involvement for about
half of the images in their original data set CH1 [11],
the method is later refined and described in more details
in their extended work [15] where human involvement
reduced to 40% on CH2 data set.

3) Long et al. [21] are the first to propose training of
Convolutional Neural Networks based on full scale
images instead of conventionally used small-scale image
patches. They proposed the ideas of deconvolution layers
and fusion of finer and coarse levels to achieve semantic
segmentation instead of instance/rectangular segmenta-
tion. Their proposed approach (FCN) has outperformed
several popular deep-learning methods for segmentation
and detection on various challenging data sets including
PASCAL VOC, NYUDv2 and SIFTS Flow and has been
widely used.

4) SegNet [22] also exploits the idea of deconvolutional
layers and information fusion, however their decoder
architecture is much denser compared to FCN[21] and
information is fused at several levels.



We adopt these deep-learning models for sky segmentation
(horizon line detection) hence targeting a binary semantic seg-
mentation problem. However, it should be noted that the non-
sky class is more general i.e. the non-sky region could have
many geographical, seasonal variations and similarly sky could
have various illumination variations along with the clouds.
Each of the first two method is trained on CH1 data set [11]
while models for the other two methods [21], [22] are adopted
for sky segmentation problem and further fine-tuned. All four
segmentation methods are compared on a single decent sized
data set with significant geographical, seasonal, illumination
and viewpoint variations. We report average accuracy and
average absolute pixel errors as performance measures.

The remainder of the paper is organized as follows: The next
section briefly describes each of the considered approaches for
sky segmentation. Specific details regarding training or other-
wise for each method are provided in section III. Section IV
presents the training and test sets along with the performance
metrics being used for evaluation. Results for each of the
formulations and improvement due to further post-processings
are listed in section V along with discussion. The paper is then
concluded with insights and directions for the future work.

II. APPROACHES BEING COMPARED

For a standalone presentation, this section provides a brief
overview of different segmentation approaches for horizon/sky
line detection. Interested readers should consult actual papers
for further details.

A. Ahmad et al. [2]

Inspired from Lie et al. [4]; Ahmad et al. [2] proposed a
dynamic programming based horizon line detection method
where instead of relying on edge detection [4] and/or edge
classification[3], [1], [13], a dense classification map is gener-
ated equal to the size of input image. This is a representative
example of classical patch based training where a hand-
engineered feature vector is fed to a classifier to predict
the class probability for the central pixel of the patch. This
essentially mimics semantic segmentation; however instead of
being the class labels, the pixels in the output image reflect
the probability of horizon-ness. Once this dense classification
score image is computed, the problem is formulated as a graph
search problem where a shortest path is searched from source
node to sink node in M × N graph. Unlike, Lie et al.[4] who
first perform edge detection and then define graph vertices
based on edge pixels; the graph generated by Ahmad et al.[2]
is dense and hence does not require any gap filling which is
highly dependent on the tolerance-of-gap parameter as used by
Lie et al.[4] and others[3], [1], [13]. Instead, they [2] reduce
the size of the graph by keeping a small number of minima
for each column (graph stage).

Ahmad et al. used normalized pixel intensities as features
and trained small scale SVM/CNN classifiers. The patch-based
training is based on 9 images (about 6K instances of 16x16
patches) while the testing is conducted on about 120 images

belonging to two different data sets, one targeted for rover
localization and other based on images collected from the web.

In other related approaches; the graph is formulated based
on refined/classified edges which still requires gap-filling [3],
[1], [13]. Various classifiers and features have been investi-
gated to reduce the number of edge pixels considerably so
that a shallow multi-stage graph can be formed. The gradient
magnitude and gradient difference to enforce smoothness
along the horizon and combining classification scores, edge
evidence and difference of gradient magnitudes etc. have also
been explored.

B. Saurer et al. [15]

The approach of Saurer et al. is also based on dynamic
programming however the energy function being minimized
is more involved and tries to incorporate both data and
smoothness constraints in a more adaptive manner. They for-
mulate the problem as foreground(non-sky)-background(sky)
segmentation problem where a per-column highest foreground
candidate is searched subject to minimization of data term
and smoothness term in the energy function. The data term
in one column evaluates the cost of all pixels below the
candidate to be assigned to foreground class and all pixels
above it to be assigned to the background class. The pixel-
wise likelihoods are computed through the classifier trained
on contextual and super pixel representation. The smoothness
term is based on the assumption that all pixels on the contour
should have a gradient orthogonal to the skyline. Their pipeline
also allows the user to mark foreground/background strokes
for challenging images where all the pixels above the marked
stroke are assigned to background and those below the stroke
to the foreground.

Their training was based on 203 images from the CH1 set
and testing was done using 948 images from CH2 set. They
reported little to more user-involvement for about 40% of the
test images. Overall, the accuracy of their proposed pipeline
increased 18% compared to one reported in earlier version of
the paper [11].

C. Long et al. [21]

Long et al. built fully convolutional neural network (FCN)
that is able to semantically segment image into multiple
classes. The network can take input image of arbitrary size and
produce semantic labeling of corresponding size i.e. end-to-
end training. This model exceeded other state-of-the-art meth-
ods for semantic segmentation. The authors adapted several
structures of neural network models that were used for classi-
fication tasks (VGG net [31], GoogLeNet[32], AlexNet[30])
and fine-tuned them for the segmentation task. The net-
works were evaluated on PASCAL VOC, NYUDv2 and SIFT
Flow datasets, where they achieved state-of-the-art results for
multiclass segmentation. Specifically the conventional fully
connected layers towards the right end of these networks are
replaced with convolutional layers. The core of the FCN is
the skip-layer architecture which combines the deep, coarse



semantic information with shallow, fine appearance informa-
tion.

Figure 1 shows the VGG network [31] transformed into
FCN32s. Each of the convolutional (conv) layers is followed
by an element-wise Rectified Linear Unit (ReLU) and a
dropout layer (only in conv6 and conv7); color codings are
provided to note the specific differences. For all the conv layers
the receptive field, zero-padding and stride are of 3, 1 and 1
respectively except where explicitly noted as (F/P/S) to the
left of the conv layer e.g. conv1 1 has a padding of 100 and
conv6 has a kernel of 7. Each module of the conv layers is
followed by a max pooling layer with a filter of size 2 and
stride 2. The number of output channels for each of the conv
modules is noted with the number next to the arrow emerging
from preceeding pooling layer. Conv layers conv6 and conv7
are each followed by a dropout layer with 50% ratio i.e. 50%
of the neurons are dropped randomly in the respective layers to
ensure generalization [34]. The conv8 layer is the compression
layer responsible for compressing the 4096 channels to N
channels where N is the number of classes. The de-convolution
layer (de-conv) performs up-sampling while crop layer takes
two inputs and crop the first according to the dimensions of
the second. The softmax loss function is used to guide the
stochastic gradient descent which takes the output of the crop
layer and semantic label equivalent to the size of images.

Given the input resolution of a conv layer the resolution
of the output can be computed using Eq. 1 while Eq. 2 can
be used for similar calculation for the de-conv layer; Ir and
Or are the resolutions of input and output to a layer while
F, P and S indentify the filter/kernel, zero-padding and stride
respectively.

Fig. 1. VGG[31] network transformed into FCN32s[21]

Or =
(Ir − F + 2P )

S
+ 1 (1)

Or = S(Ir − 1) + F − 2P (2)

Transfer learning [33] is an emerging trend in deep learning
research where instead of training new network from scratch,
existing networks are optimized and fine-tuned on one’s own
relevant data set. This is motivated due to the fact that training
these networks is a time consuming task if done from scratch
and realization that the earlier layers in any deep network are
more general. In this paper we tested some of the FCNs for sky
segmentation that were fine-tuned on different datasets by [21].
We compare segmentation results using different approaches
i.e. how to obtain sky segmentation from the multiclass output
given by the networks into binary output (sky vs non-sky).
Additionally, we have fine-tuned these existing networks on
CH1 dataset to see if the existing multiclass segmentation
network can be fine-tuned to perform better for the task of
binary classification.

D. Badrinarayanan et al. [22]

SegNet is also motivated by the same principles as FCN
and is based on fully convolutional layers and does not
involve any fully connected layer, however it further focuses
on maintaining sharp boundary delineation which is essential
for pixel-wise segmentation of small/rare classes. Additionally,
unlike FCN which requires the stage-wise training where
a new decoder (fusion at multiple strides) is progressively
added to the existing trained network (FCN-32s) and the
resulting network (FCN-16s) is trained again; SegNet provides
the capability of end-to-end training thanks to its decoder
network. The encoder network in SegNet is exactly same as
that of FCN i.e. 13 convolutional layers from VGG16 [31],
however it is followed by a decoder containing equal number
of convolutional layers as in encoder and is the core of SegNet.
Each decoder in the decoder network first upsample its input
coming from the corresponding encoder (max-pooling indices)
in the encoder network and then followed by learnable convo-
lutional layers. The final convolutional layer is followed by a
classification layer (softmax) same as in FCN. This decoder-
decoder architecture of SegNet allows end-to-end training and
crisp boundary delineation while FCN would have to rely on
additional components/architectures e.g. CRFs and RNNs to
achieve the similar objective [35].

III. SPECIFIC DETAILS

A. Edge-less Horizon Line Detection (DCSI)

We replicated the approach of [2] and trained an SVM
classifier based on CH1 data set. For each of the training
images (203 total) the positive (horizon) key points are chosen
along the ground truth horizon line while equal number
of negative (non-horizon) key points are chosen from edge
locations randomly which are not in a close vicinity of the
ground truth horizon. A 16× 16 normalized intensity patch is
used as a feature vector. Unlike [2] the key points and features
are extracted from the raw images instead of resizing them
to a fixed resolution. The trained SVM classifier is used to



generate a dense classification score map where a normalized
score [0–1] for each pixel reflects its probability of horizon-
ness. The dense image is taken as a dense graph and dynamic
programming is applied to find a shortest path from left-
most column (graph stage) to right-most column (graph stage)
which conforms to a detected horizon boundary. It should be
noted that Ahmad et al. [2] further make their graph sparse by
keeping fixed number of minima for each stage; however for
our implementation dynamic programming is run on a dense
graph originally resulting from the classification score image.

B. Automatic Labeling Environment (ALE)

Automatic Labeling Environment [36] is an energy
minimization-based semantic segmentation framework
adopted for sky extraction by Saurer et al. [15]. Specifically,
the energy is predicted by a pixel-wise classifier trained on
contextual and superpixel feature representations. Multiple
bag-of-words representations over the random set of 200
rectangles, and superpixels are used for contextual part, and
superpixel part, respectively. The segmentation is obtained
by minimizing the energy using dynamic programming (DP).
With the personal advice of the authors, we implemented the
algorithm [15] into their Automatic Labeling Environment
(ALE) [36]. Similarly to the original paper [15] we set the
number of bag-of-words clusters to 512 and we train ALE
using CH1 dataset [15].

C. Fully Convolutional Neural Networks (FCNs)

We used two different types of FCN models. PASCAL-
context models were trained by the authors [21] on object and
scene labeling of PASCAL VOC, in three different resolution
capabilities (FCN32s, FCN16s and FCN8s with the highest
resolution). The models include both object and surface classes
(59 classes, including class “sky” and “mountain”). This
type of network predicts scores for each class at each pixel
location. SIFT Flow models were trained for joint geometric
(3 classes: “sky”, “horizontal”, “vertical”) and semantic (33
classes, including “sky” and “mountain”) class segmentation
and produces two separate scores. As all of the FCN models
were trained for multiclass segmentation, we evaluated several
methods to compute binary segmentations (sky vs non-sky)
from scores being output by the networks. For PASCAL-
context networks we compared scores for class 40 (mountain)
and class 50 (sky) for each pixel. If the first score was
higher the final class was set to “non-sky”, otherwise it
was set to “sky”. For SIFT Flow networks there are more
options, because the network provides two types of scores.
We segmented a pixel as “sky” in case the highest semantic
score was for class 28 (“sky”), otherwise it was segmented as
“non-sky”. Similarly for the geometric score, we segmented a
pixel as “sky” for case where the highest geometric score was
for class 1 (“sky”), non-sky was segmented otherwise.

For the best performing models we fine-tuned the weights
of the pretrained networks. The network structure and training
parameters were kept the same as for the original networks.
The CH1 dataset was used to provide input images and binary

labels (sky vs non-sky). For the PASCAL-context pretrained
network we modified binary labels so that the class indices
correspond to correct classes in the network (class 40 denotes
“mountain”, class 50 denotes “sky”). For the SIFT Flow
dataset, we had to convert source binary labels into two
different target labels (geometric and semantic). Semantic label
was set to class 28 (“sky”) where the original label denoted
sky, class 17 (“mountain”) was used otherwise. Similarly, the
geometric label was set to class 1 (“sky”) where the original
label denoted sky, class 3 (“vertical”) was used otherwise. We
expected such fine-tuned networks to perform better than the
original pretrained networks. First reason is that the network
is fine-trained with new unseen training data. The second is
that the network is forced by the new input labels to predict
only two classes (“mountain” and “sky”), so that such a
new network is specialized for the task of sky and non-sky
segmentation.

D. SegNet

Unfortunately, the publicly available models for SegNet
were trained on urban images, specifically for semantic road
scene segmentation. We have investigated different available
models, and adopted the best performing SegNet model
(“driving webdemo”) for our sky segmentation problem. As
mentioned earlier, SegNet is trained with urban imagery, using
it directly for mountainous sky segmentation does not make
sense. So, instead of using SegNet model directly, we first fine-
tuned it with CH1 data set. Another disadvantage of segnet
is that both input image and output segmentation have fixed
resolution (480x360), so we have to resize the input to this
size for training and later resized the 480x360 segmentations
to the original sizes of respective images.

IV. EXPERIMENTAL DETAILS

A. Data Sets

Our test set is comprised of 2895 mountainous images [37]
which have been acquired from Flickr and is a subset of an
even bigger data set which has been made publicly availabe
previously [38]. The GPS locations and camera intrinsic are
used to access the relevant Digital Elevation Maps (DEMs)
which are then rendered using a conventional OpenGL utility
to develop the ground truth segmentations. These ground truth
segmentations are used to compute the error metrics defined
next. For training DCSI[2], ALE[15] and fine-tuning FCNs[21]
and SegNet[22], we use the publicly available CH1 data
set [11]. It should be noted that both training and test sets
contain images with various resolutions. The deep-learning
platform Caffe has been extensively used for training the deep
architectures – FCN and SegNet.

B. Accuracy

We use pixel-wise mean accuracy to establish the per-
formance of the approaches being compared for sky seg-
mentation. Specifically, for each of the images we compute
what fractions of pixels have been correctly classified by an



Fig. 2. Some visual results for segmentation, green – correctly classified,
red – miss-classified: (0) sample images from our test set, (1) DCSI, (2)
ALE, (3) FCN32s-Pascal, (4) FCN16s-Pascal, (5) FCN8s-Pascal, (6) FCN8s-
Pascal-CH1, (7) FCN8s-SiftFlow-geometric (8) FCN8s-SiftFlow-semantic, (9)
FCN8s-SiftFlow-semantic-CH1 and (10) SegNet-CH1.

approach. The equation below shows the computation of mean
accuracy for the test set:

DC =
1

Nset

Nset∑
i=1

Nc
i

Nt
i
, (3)

where Nset is the total number of images in the data set,
Nc

i and Nt
i are the number of correctly classified pixels and

number of total pixels in the image i. For an ideal 100%
classification accuracy this measure should result in a perfect
1.

C. Average Absolute Pixel Distance

The second measure being computed is the average absolute
pixel distance between the ground truth and resultant segmen-

TABLE I
PERFORMANCE OF DIFFERENT FORMULATIONS ON OUR TEST SET (2895

IMAGES).

Approach Accuracy Pixel Distance
µ σ

FCN8s-Pascal 0.9083 29.886 50.721
FCN16s-Pascal 0.9071 30.187 50.616
FCN32s-Pascal 0.9015 31.160 50.714

FCN8s-SiftFlow-g 0.9266 37.028 56.481
FCN8s-SiftFlow-s 0.9438 37.937 67.608

Horizon-ALE-CH1 0.9428 44.669 87.430
Horizon-DCSI-CH1 0.8756 99.425 160.516

SegNet-CH1 0.8290 90.385 81.528
FCN8s-SiftFlow-s-CH1 0.9379 61.502 96.006

FCN8s-Pascal-CH1 0.9285 68.283 97.626

tation. This has previously been suggested by [2] and later
adopted by others [29]. If a method generates an accurate
solution the skyline should be consistent with the ground truth
i.e. the vertical distance of the pixels belonging to the two
boundaries should be minimized. This is measured through
absolute vertical pixel-wise distance. Mathematically:

S =
1

Nset

Nset∑
i=1

(
1

N

N∑
j=1

|Pd(j)
i − Pg(j)

i|

)
, (4)

where Pd(j) and Pg(j) are the positions (rows) of the detected
and true horizon pixels in column j and N is the number
of columns in the test image. One drawback of this measure
is the underlying assumption of having exactly one pixel at
each stage (column) which is not necessarily true for steep
peaks. However, since same measure is computed for all the
methods; the effect of this assumption should be averaged out.
A perfect alignment of detected skyline with the ground truth
skyline should result into a zero for this error measure.

V. RESULTS

In the first set of experiments, we report the results for
all the considered formulations without any post-processing.
For DCSI and ALE; the classifiers are trained on CH1 data
sets while different flavors of FCN models are either adopted
as-it-is for sky segmentation or have been further trained
through transfer learning on CH1 data set as noted in section
III-C. Table I lists both considered metrics for each of the
formulations. The number after FCN i.e. (8s,16s or 32s) iden-
tifies the resolution at which the coarse semantic information
has been fused with fine appearance information in the FCN
architecture, SiftFlow or Pascal key-word identifies which data
set has been used to train the model and an additional CH1
follows if the model has been fine-tuned further on CH1 data
set. In case of SiftFlow, it is further distinguished between
geometric (g) and semantic (s) models. Figure 2 shows some
visual results.

A. Post-Processing

Post-processing of the binary segmentation images can fur-
ther improve the segmentation quality. As seen from examples
in figure 2, some methods are able to find horizon accurately,



TABLE II
SEGMENTATION IMPROVMENT DUE TO POST-PROCESSING I

Approach Accuracy Pixel Distance
µ σ

FCN8s-Pascal 0.9108 32.161 57.510
FCN16s-Pascal 0.9086 32.888 58.193
FCN32s-Pascal 0.9011 33.534 57.588

FCN8s-SiftFlow-g 0.9296 34.975 53.334
FCN8s-SiftFlow-s 0.9446 31.399 55.052

Horizon-ALE-CH1 0.9403 43.959 86.038
Horizon-DCSI-CH1 0.8727 99.742 160.252

SegNet-CH1 0.8279 114.893 99.021
FCN8s-SiftFlow-s-CH1 0.9421 37.947 69.435

FCN8s-Pascal-CH1 0.9351 41.596 71.707

but resulting segmentation images are not physically possible
in reality. One example is to have large sky area surrounded
by non-sky area (“hole in an object”), which is rare to happen
in physical world. Another example is to have non-sky area
surrounded by sky (“flying object”). Several post-processing
methods that reflect physical world properties can be designed
to improve quality of the resulting segmentation images. We
adopted the following two simple post-processing approaches
to further enhance the segmentation results.

It should be noted that not all the methods would benefit
from such prost processing; specifically DCSI and ALE – as
these methods employ Dynamic Programming to find crisp
boundaries between sky and non-sky regions and mostly do
not suffer due to miss-classification holes. Nonetheless, all the
segmentations have been post-processed for consistency.

B. Post-processing I

The first post-processing method uses two basic binary
image processing operations. The first operation fills all holes,
sky areas that are fully surrounded by non-sky areas are
replaced by non-sky area. The second operation removes
small non-sky objects, specifically all small non-sky objects
that have area below 50% of the largest non-sky object are
removed, i.e. are replaced by sky label. The improvements
due to this post-processing are listed in table II.

C. Post-processing II

Similarly, two operations are used for the second post-
processing method. The first operation removes small non-
sky objects in the same way as in the first method. The
second operation is column horizon detection, which finds
first non-sky pixel label in a column from the top and sets
all pixels below as non-sky pixel, i.e. first non-sky pixel in a
column from the top defines the horizon. Table III shows the
improvements due to this post-processing approach.

D. Discussion

While looking at the results reported in table I and consid-
ering only the accuracy first, FCNs trained on SiftFlow clearly
outperform the rest of the formulations. Surprisingly, the
second best is the ALE approach which is a non-deep-learning
method. This could be due to the fact that ALE is a well

TABLE III
SEGMENTATION IMPROVMENT DUE TO POST-PROCESSING II

Approach Accuracy Pixel Distance
µ σ

FCN8s-Pascal 0.9551 32.161 57.510
FCN16s-Pascal 0.9539 32.888 58.193
FCN32s-Pascal 0.9520 33.534 57.588

FCN8s-SiftFlow-g 0.9491 34.975 53.334
FCN8s-SiftFlow-s 0.9563 31.399 55.052

Horizon-ALE-CH1 0.9411 43.959 86.038
Horizon-DCSI-CH1 0.8743 99.742 160.252

SegNet-CH1 0.8437 114.893 99.021
FCN8s-SiftFlow-s-CH1 0.9486 37.947 69.435

FCN8s-Pascal-CH1 0.9432 41.596 71.707

crafted approach for the problem of sky segmentation and may
not generalize well to other segmentation applications unlike
FCNs. The FCN8s – with the finest resolution outperforms the
others with coarser fusion (FCN16s, FCN32) which follows
the results reported by authors [21]. Interestingly, SegNet has
performed very poorly, even worse than the simple SVM based
DCSI method. This is contradictory to the results reported by
authors [22] for semantic road scene segmentation. It must be
due to the fact that SegNet models made publicly available
have been trained on urban street view data sets unlike FCNs.
Another drawback of SegNet being the need to have images
of fixed resolution which is not the case in FCN.

At first, the average absolute pixel error is not very consis-
tent with the accuracy measure. Based on this measure alone,
the poorly performing methods (i.e. DCSI and SegNet) can be
readily identified and follow the observations made based on
accuracy alone. However, from table I it follows that FCN8s-
Pascal performs better than FCN8s-SiftFlow which is not the
case considering accuracy. This interesting contradiction clears
out in table III when FCN models based on Pascal benefit from
post-processing II and both FCNs have very close average
pixel errors.

Post-processing has proven to be helpful for all the FCN
formulations while it does not have much effect on dynamic
programming based methods – DCSI and ALE which is
inevitable. Although both post-processing methods impacted
the segmentation results positively, the improvement due to
second method of post-processing has been overall more
effective.

VI. CONCLUSION

We have provided a quantitative comparison of four differ-
ent segmentation methods for mountainous sky segmentation:
two of these methods belong to classical feature learning
and patch-wise classifier training category while other two
are instances of deep-learning networks – recently proposed
for semantic segmentation. We train the classifiers for first
two methods using a publicly available data set, while deep-
learning architectures are fine-tuned using the same data set
through transfer learning. The segmentation results are further
post-processed to improve the segmentation. The formulations
are compared using mean classification accuracy and average



absolute distance of the segmented boundary from true hori-
zon. It should be mentioned that this is a first quantitative
comparison of autonomous non-linear skyline detectors on an
extensive data set.

The Fully Convolutional Network (FCN) has proven to be
best performing method for sky segmentation of mountainous
imagery with ALE being the close second best. An obvious fu-
ture direction would be investigating these segmentation meth-
ods and the data set for mountainous visual geo-localization.
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