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Abstract— The existing domain-specific methods for mining
information networks in machine learning aims to represent
the nodes of an information network into a vector format.
However, the real-world large-scale information network cannot
make well network representations by one network. When
the information of the network structure transferred from
one network to another network, the performance of network
representation might decrease sharply. To achieve these ends,
we propose a novel framework to transfer useful information
across relational large-scale information networks (FTLSIN).
The framework consists of a 2-layer random walks to measure
the relations between two networks and predict links across
them. Experiments on real-world datasets demonstrate the
effectiveness of the proposed model.

I. INTRODUCTION

INFORMATION networks [1] is a kind of structure-based
data, e.g., academic citation networks, which employ net-

work topologies to save a part of information directly. Large-
scale information network ranges the size from hundreds of
nodes to millions and billions of nodes [2]. The large volume
of nodes make complex connections over the network and
contains complex data structures than normal information
networks. To fully analyze such kind of information net-
works is a quite challenging problem especially in machine
learning.

Network representation, also known as network embed-
ding, allows analyzing the network structure and mining the
information behind the structure in a machine learning per-
spective [3], [4]. By generating a latent representation space
in relatively low dimensions from the interactions in high
dimensions, network representation inputs a structured data
of graph [5] and outputs the embeddings of the graph in a
specific dimensional space. It guarantees the correspondence
between community structure in the input graph and its em-
beddings. The main advantage of network representation is
that the learned representations encode community structure,
so it can be easily exploited by simple and standard classifiers
[6].
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For the purpose of using network analysis on structured
data, a series of models are proposed based on DeepWalk
[7], which trains a natural language model on the random
walks generated by the network structure. Denote a random
walk wvs that starts from a root node vs, DeepWalk slides
a window in a length of 2w + 1, and maps the central
node vi to its representation f(vi). Hierarchical Softmax fac-
tors out the probability distributions Pr(vi±d|f(vi)), where
d = {1, · · · , w}, corresponding to the paths staring at vi
and going over all other nodes in the random walk. The
representation f is updated to maximize the probability of
vi co-occurring with its context {vi±d, d = {1, · · · , w}}.
Random walk based DeepWalk shows promising results on
large-scale network representation if the datasets have a
satisfying structure.

LINE and Node2Vec are the other two structure-based net-
work representation models that improves the performance
of DeepWalk. LINE [2] preserves both local and global
network structure by first-order proximity and second-order
proximity respectively and suitable for all kinds of networks,
i.e., directed and undirected networks and weighted and
unweighted networks. Node2Vec [8] explores the diverse
neighborhoods of nodes in a biased random walk procedure
with search bias α.

Above mentioned models are inspired from recent ad-
vancements in unsupervised feature learning and the lan-
guage modeling from sequences of words to vectors or net-
works. They contributed to the network analysis by modeling
a stream of short random walks. Different from traditional
representation learning, the latent feature learning of network
representation captures neighborhood similarity and commu-
nity membership in topologies. The potential of these models
in real-world scenarios is their good performance in large
heterogeneous networks.

When one network lacks of connections, the existing net-
work representation methods cannot perform well in domain-
specific network representations. Meanwhile, the perfor-
mance of the domain-specific network representations meth-
ods decreases sharply when transferred from one network to
another relational network. If we develop a framework that
successfully combines the advantages of network representa-
tion and domain adaptation, structure transfer will extremely
benefit to real-world large-scale information network repre-
sentations.

In this paper, we consider the following challenges of
developing the framework for transferring the network struc-
tures across large-scale information networks.
• Challenge 1: How to effectively predict links between
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LARGE-SCALE INFORMATION NETWORK STRUCTURES TRANSFER FRAMEWORK

nodes across relational networks for the purpose of
improving performance of network representation in the
target network?

• Challenge 2: How to transfer the random walks in
the source network to the target network based on the
similarity measurement achieved in Challenge 1?

To this end, we propose a framework of transferring
structures across large-scale information networks (FTLSIN)
which implements an unsupervised feature learning for scal-
able networks. Our framework is built by a 2-layer random
walks to generate a neighborhood of nodes in the target
network with a secondary from the learned walks in the
source network which measures the similarity and predicts
links across networks. Experimental results on real-world
datasets empirically demonstrate that our framework achieves
better performances compared to the state-of-the-art network
representations.

II. PROBLEM STATEMENT

The problem of transferring structures across large-scale
information networks is formulated as follows. Suppose we
have a source domain Ds and a target domain Dt, where the
source domain has a source networks Gs = (V s, Es) with
its corresponding label space Y s, and the target domain has
a target network Gt = (V t, Et) with its label space Y t. Both
networks are unweighted. For a cross-domain classification
problem < Tt, Ts, (xttest, yttest) >, we firstly implement a
latent feature learning procedure from topology structures of
Gs and Gt as a maximum likelihood optimization problem
and then learn the labels Y t in the target domain with

standard classifiers as an evaluations of the cross-domain
network representations.

In this paper, let f : V → Rd be the mapping function
from nodes to feature representation, where d refers to the
lower-dimensions of our representation, fs are specially
designed for the source network and the target network
respectively, i.e., fs : V s → Rd and f t : V t → Rd. As
a sampling strategy, we define a neighborhood of nodes
NS(u) ⊂ V for every node in the source network and
in the target network, where NS(u

s) ⊂ V s, us ∈ V s,
NS(u

t) ⊂ V t and ut ∈ V t. By predicting the latent feature
space Rd, our proposed framework can be applied to any
(un)directed and (un)weighted network across domains.

III. LARGE-SCALE INFORMATION NETWORK
STRUCTURES TRANSFER FRAMEWORK

A. Skip-gram in FTLSIN

FTLSIN shown in Fig. 1 learns random walks by Skip-
gram and outputs the network representations from the
input of networks in source domain and target domain,
respectively. Skip-gram [9] is a language model exploiting
word orders in a sequence and assuming that words closer
are statistically more dependent or related. We employ the
Skip-gram architecture to FTLSIN which treats the nodes in
a sequence and fully uses the structures to make network
analysis.

Given a current node us in the source network within a
certain window, we have a FTLSIN Skip-gram for source



networks by maximizing the following log-likelihood func-
tion of fs in observing a neighborhood of NS(us):

max
fs

∑
us∈V s

logPr(NS(u
s)|fs(us)) (1)

Given a node ut in the target network with a certain
window, we have a FTLSIN Skip-gram for the target network
by maximizing the following log-likelihood function of f t

in observing a neighborhood of NS(ut):

max
ft

∑
ut∈V t

logPr(NS(u
t)|f t(ut)) (2)

Following the standard assumptions of Node2Vec model
[8], conditional independence and symmetry in feature space
are defined in Eqs. (3) and (4), respectively.

Pr(NS(u)|f(u)) =
∏

ni∈NS(u)

Pr(ni|f(u)) (3)

Pr(ni|f(u)) =
exp (f(ni) · f(u))∑
v∈V exp (f(v) · f(u))

(4)

In our proposed FTLSIN Skip-gram (see in Algorithm
2), the network neighborhood strategy applied on the target
network can be different from the ones on source networks.
Meanwhile, the window length and optimization function
fs and f t set in FTLSIN Skip-gram also can differ from
networks.

B. 2-layer Random Walks in FTLSIN

The FTLSIN 2-layer random walks consists of a bottom-
layer random walk and a top-layer random walk. In Fig. 1,
the 2-layer random walks measures the likelihood between
super-nodes {v′, x′} based on its learning of random walk
wsi . The top-layer maps two nodes {v, x} in the target
network to the corresponding super-nodes {v′, x′} in a source
network within a node mapping procedure and a walk
mapping procedure. The Algorithm of the 2-layer random
walks in FTLSIN is as shown in Algorithm 1.

Given a random walk of node in either a source network
us or a target network ut, u is in a fixed length of l, i.e., the
length of us is ls and the length of ut is lt. 2-layer random
walks allows ls different from lt.

Let vi denote the ith node in the walk, where the start
node is v0 = u and all the nodes in the walk follows the
distribution:

P (vsi = xs|vsi−1 = vs)

=

{
πvsxs

Z if (vs, xs) ∈ Es

0 otherwise
(5)

P (vti = xt|vti−1 = vt)

=

{
πvtxt

Z if (vt, xt) ∈ Et

0 otherwise
(6)

Algorithm 1 FTLSIN 2-Layer Random Walks
Input:

Gt = (V t, Et): a target network;
Gs = (V s, Es): a source network.

Output:
W t: a walk set of target network.

1: W s ← Apply bottom-layer random walk to process the
source network, Eqs. (5)-(8).

2: Gs = (Vs, Es,Gs,Fs) ← Samples the source network
to a super-graph with super-nodes.

3: for wsi in W s do
4: fnode ← Node mapping on wsi by Eq. (11).
5: wv′x′ ← Wwalk mapping on wsi and fnode by Eqs.

(12)-(13), where v′, x′ ∈ Vs.
6: end for
7: W t ← Apply bottom-layer random walk to process the

target network, Eqs. (5)-(10), where wvtxt = wv′x′ .
8: return W t

where πvsxs and πvtxt are the unnormalized transition prob-
ability between nodes vs and xs, and between nodes vt and
xt; and Z is the normalizing constant.

1) Bottom-layer Random Walk: The design of the bottom-
layer random walk is for the network representation both in
the target network and in the source network. We employ
parameters p and q to guide the walk by considering the
network neighborhood. In order to determine which node in
the neighborhood have a higher probability to be connected
into the random walk, the search bias α is employed into
Eqs. (7) and (9):

πvsxs = αpq(t
s, xs) · wvsxs (7)

where wvsxs is the weight on edge (vs, xs).

αpq(t
s, xs) =


1
p if dtsxs = 0

1 if dtsxs = 1
1
q if dtsxs = 2

(8)

where dtsxs is the shortest path between nodes ts and xs

through node vs.

πvtxt = αpq(t
t, xt) · wvtxt (9)

where wvtxt is the weight on edge (vt, xt).

αpq(t
t, xt) =


1
p if dttxt = 0

1 if dttxt = 1
1
q if dttxt = 2

(10)

where dttxt is the shortest path between nodes tt and xt

through node vt.



Algorithm 2 FTLSIN Skip-gram
Input:

W t: a target random walk set learning from Algorithm
1.

Output:
f t : V t → Rd: an optimized mapping function for
FTLSIN.

1: f t(0) ← Initialize the target network mapping function.
2: for wti in W t do
3: f t ← Apply Eq. (2)-(4) to optimize f t.
4: end for
5: return f t

2) Top-layer Random Walk: For the random walk in the
top-layer, we define a node mapping procedure and a walk
mapping procedure. The node mapping procedure starts from
one node v ∈ V t in the target network to a node set v′ ∈ V si
in the source network. The walk mapping procedure learns
from a walk ws ∈ {W s

i } in the source network to a new
walk wt ∈W t in the target network.

Following the assumption of transfer learning [10], the
scale of networks in the source domain is much larger than
the scale of the network in the target domain, i.e., |V si | �
|V t| or |Esi | � |Et|. The node mapping procedure links a
node in target network and a set of nodes in source network.
Thus, we employs the definition of super-graph and super-
node to process the node mapping procedure. Specifically,
the node set v′ is denoted as a super-node.

A super-graph [11] is represented as G = (V, E ,G,F),
where V is a finite set of graph-structure nodes. E ⊂ V × V
denotes a finite set of edges, and F : E → G is an injective
function from E to G, where G is the set of single-attribute
graphs. A node in the super-graph, represented by a single-
attribute graph, is called a super-node.

As above, our node mapping procedure measures the
likelihood of a node in the target network and a super-node
in the source network, i.e., fnode : vt → V si .

fnode =

{
1 if deg (vt) = deg (V si )

0 otherwise
(11)

In the walk mapping procedure, walk set of target network
W t is jointly determined by the node mapping function fnode
and weighted random walk kernel [11] on super-graph in
source network. The walks over the source network W s =
{wsi } is naturally within a super-graph. The edges forming
a wsi links two super-nodes, as shown in Fig. 1 (d).

Within the top-layer random walk, an edge weight in a
target walk (wv′x′ in wti) is formed by two terms in Eq.
(12). The former term is contributed by the virtual weight in
the target network wv′tx′t , and the latter term is contributed
by the learning weight from a walk mapping wtvv′xx′ .

wv′x′ = β · wtvv′xx′ + (1− β) · wv′tx′t (12)

where β = |V t|/(|V si |+ |V t|).

wt
vv′xx′ = max

fwalk

∑
Ws

wi
∈Ws

∑
vs∈v′,
xs∈x′

logP (xs|vs) (13)

where P (xs|vs) = 1/dvsxs .

IV. EXPERIMENTS

A. Datasets

We select two academic citation networks as the datasets.
Both of them are for the multi-class classification problem.
Nodes are denoted as papers in these networks.

TABLE I
DATASET STATISTICS

Domain Network Num. of Num. of Num. of
Nodes Edges Labels

Source DBLP 60,744 52,890 4
Target M10 10,310 77,218 10

DBLP dataset [12] (source network), consisting of bib-
liography data in computer science has been used widely
in network and graph analysis [13], [14]. Each paper may
cite or be cited by other papers, which naturally form a
citation network. The network in this dataset abstracts a list
of conferences from 4 research areas, i.e., database, data
mining, artificial intelligence and computer vision.
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TABLE II
MULTI-CLASS CLASSIFICATION RESULTS ON M10 NETWORK IN TARGET DOMAIN

Model Statistic 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

DeepWalk mean 0.1758 0.1833 0.1897 0.2049 0.2051 0.2216 0.2236 0.2420 0.2431
variance 0.0086 0.0100 0.0122 0.0126 0.0128 0.0111 0.0170 0.0133 0.0220

LINE mean 0.2338 0.2362 0.2623 0.2821 0.3269 0.3244 0.3561 0.3508 0.4128
variance 0.0102 0.0170 0.0110 0.0141 0.0150 0.0087 0.0193 0.0184 0.0486

Node2Vec mean 0.3342 0.4166 0.4714 0.5213 0.5550 0.5843 0.6216 0.6353 0.6535
variance 0.0099 0.0110 0.0153 0.0127 0.0176 0.0092 0.0215 0.0115 0.0324

FTLSIN mean 0.3530 0.4374 0.4980 0.5519 0.5876 0.6179 0.6580 0.6712 0.6967
variance 0.0043 0.0049 0.0063 0.0050 0.0065 0.0072 0.0074 0.0078 0.0183

Macro-F1

DeepWalk mean 0.2523 0.2667 0.2768 0.2945 0.2935 0.3077 0.3101 0.3294 0.3359
variance 0.0117 0.0051 0.0072 0.0120 0.0081 0.0086 0.0158 0.0123 0.0220

LINE mean 0.3160 0.2984 0.3421 0.3596 0.4070 0.4275 0.4498 0.4277 0.4773
variance 0.0113 0.0127 0.0144 0.0249 0.0382 0.0548 0.0383 0.0302 0.0486

Node2Vec mean 0.4326 0.4748 0.5338 0.5900 0.6092 0.6388 0.6866 0.6981 0.6568
variance 0.0147 0.0156 0.0153 0.0153 0.0290 0.0314 0.0202 0.0572 0.0261

FTLSIN mean 0.4662 0.5094 0.5747 0.6354 0.6557 0.6863 0.7377 0.7488 0.6908
variance 0.0057 0.0120 0.0121 0.0107 0.0128 0.0147 0.0143 0.0153 0.0200

CiteSeer-M10 dataset [12] (target network) is a subset
of CiteSeerX data which consists of scientific publications
from 10 distinct research areas, i.e., agriculture, archaeology,
biology, computer science, financial economics, industrial
engineering, material science, petroleum chemistry, physics
and social science.

B. Setups

Our experiment evaluates the latent feature representations
on standard supervised learning task: linear SVM classifica-
tion. We choose the linear classifier instead of non-linear
classifier or sophisticated relational classifiers in order to
reduce the impact of complicated learning approaches on
the classification performance. For evaluations, we randomly
partition the dataset in the target domain into two non-
overlapping sets for training and testing by 9 groups of
training percents, {0.1, 0.2, · · · , 0.9}. We repeat the above
steps for 10 times and thus receive 10 copies of training
data and testing data. The reported experimental results are
the average of the ten runs and their variance.

C. Benchmark Models

Fig. 2 and Fig. 3 show power law distributions [15] on the
experiment datasets and their random walks, which obey the
assumptions of the random walk that if the degree distribu-
tion of a connected graph follows a power law distribution,
the frequency which the nodes appear in the short random
walks will also follow a power law distribution [7].

We implement the following random walk based domain-
specific network representation models for comparison. The
benchmark models are applied with the FTLSIN Skip-gram
for source networks in Eqs. (1), (3)-(4).

1) DeepWalk [7]: This approach learns d-dimensional
feature representations by simulating uniform random walks.
The sampling strategy in DeepWalk can be seen as a special
case of FTLSIN with bottom-layer random walk in p = 1
and q = 1.

2) LINE [2]: This approach learns d-dimensional feature
representations in two separate phases. In the first phase,
it learns d/2 dimensions by BFS-style simulations over
immediate neighbors of nodes. In the second phase, it learns
the next d/2 dimensions by sampling nodes strictly at a 2-
hop distance from the source nodes.

3) Node2Vec [8]. This approach learns d-dimensional fea-
ture representations by BFS-style simulations over immediate
neighbors of nodes. The sampling strategy in Node2Vec is
also a special case of FTLSIN with bottom-layer random
walk in p = 1 and q = 1.

D. Parameters Setting

The parameter settings used for FTLSIN are in line with
typical values used for DeepWalk, LINE and Node2Vec. Spe-
cially for source and target networks, we set the dimensions
of feature representation as d = 128, set the walk length
as l = 80, set the number of walks of every source node
as k = 10, and set the window size as r = 10. In this
way, the total number of walks over a input network is
w = SampleSize × k, and the shape of walk sets are in
w × l. The parameters of search bias α is set in p = 1,
q = 1.

E. Experimental Results

The node feature learning by network representations are
input to a one-against-all linear SVM classifier [16]. We
use Macro-F1 and Micro-F1 for comparing performance and
the results are shown in Table II. These two measures are
popular just like the classification accuracy performance in
data mining areas [17], [18], [19].

Representation Analysis. Fig. 4 (a) illustrate the feature
spaces of dblp by FTLSIN bottom layer random walk, Fig.
4 (b) illustrate the feature spaces of dblp by FTLSIN 2-layer
random walks. These two illustrations show almost the same
distributions in feature spaces and get good mappings in a
low dimension than PCA, LLE and Laplacian based network
representaitons.
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SPACE.

Effectiveness of search priority in random walks. In
Table II, DeepWalk and LINE show the worse performance
than our FTLSIN and Node2Vec, which can be explained by
its inability to reuse samples, a feat that can be easily done
using the random walk. The outstanding of Node2Vec among
benchmark models indicates the exploration strategy is much
better than the uniform random walks learned by DeepWalk
and LINE. Meanwhile, the poor performance of DeepWalk
and LINE is mainly because the network structure is rather
sparse, with noises and only contains limited information.
FTLSIN and Node2Vec are both good performing on M10
network with above advantages, as parameter of search bias
α adds the flexibility in exploring local neighborhoods prior
to global network.

Importance of information from source domain. Ta-
ble II shows that FTLSIN outperforms the domain-specific
benchmark models, which uses topological information from
the source domain to learn the network representation in the
target domain. When we add a top-layer in 2-layer random
walks, the information in the source network are transferred
to the source network by adjusting the weights on the edges
of the target network.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a solution for a new scenario in
network representation, that is transferring structures across
networks with 2-layer random walks. Our framework effec-
tively improves the performance of latent feature learning in
large-scale citation networks. Meanwhile, it reduces learning
difficulties of data sparsity and noises. Future works include

FTLSIN with multiple labels and deep network representa-
tion [20], [21].
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