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Abstract— Apprenticeship learning is a learning scheme based
on the direct imitation of humans. Inverse reinforcement learning
is used to learn a reward function from human data. Coupling
Inverse reinforcement learning with reinforcement learning has
demonstrated production of human-competitive policies. How-
ever, obtaining human subjects with the right level of skills for
complex tasks can be a challenge. We propose a new learning
scheme called Apprenticeship Bootstrapping to learn a composite
task using human demonstrations on sub-tasks. The scenario is
a ground-air interaction task with an Unmanned Aerial Vehicle
that needs to maintain 3 autonomous Unmanned Ground Vehicles
within range of an imaging sensor. For validation, we show that
the bootstrapped policy performs as good as a policy learnt from
a human performing the composite task. The method offers a
clear advantage when skilled humans are available for simpler
tasks that form the building blocks for a more complex task,
where availability of experts is limited.

Index Terms— Inverse Reinforcement Learning, Learning by
Imitation, UAVs, UGVs, Ground-Air Interaction

INTRODUCTION

In reinforcement learning (RL) [1], an agent executes ac-
tions and receives feedback signals in the form of a reward,
indicating the degree of a successful action. The agent attempts
to learn a policy (a state-action map) that maximizes its own
accumulated reward function over time. The success of a
classical RL agent depends on a successful hand-design of
the reward function that can guide the search process towards
optimal policies.

Inverse Reinforcement Learning (IRL) replaces hand-
designed reward functions by learning the reward function
from human-generated policies. The underlying assumption is
that the human-generated policies are generated from experts;
thus, are somehow optimal. The machine-induced reward
function is then used by an RL algorithm to find a near-optimal
machine-policy that is closest to the expert’s policy.

By using demonstrations from humans, Ng and Russell [2]
developed three algorithms for IRL that vary in the state space
representation and sample size: tabulated reward functions
over a finite state space, linear approximation of the reward
function over infinite state space, and a partial sample of
observed trajectories. They used linear programming to max-
imally discriminate between sub-optimal policies and the ob-
served policy. The key finding of their study is a demonstration
of the existence of multiple reward functions that can lead to
the same optimal policy.

In [3], Abbeel and Ng proposed apprenticeship learning to
find an approximate policy that is close enough to the observed
one. This approach avoids the need to recover the reward
function explicitly. Instead, a state’s reward is represented by
a sum of its linearly weighted features.

In 2015, the Google’s DeepMind group proposed the Deep
Q-Network (DQN) algorithm [4], [5]. The work demonstrated
that DQN agents are able to successfully learn from complex
state spaces, with the performance of DQN outperforming all
classical RL algorithms. The DQN agent achieved a profes-
sional skill-level when tested on 49 Atari games.

While in the general case DQN does not necessarily need
human demonstrations, in the example above, the success of
DQN was pertinent to the existence of a large collection of
human-played Atari games, which allowed the research team
to replace the classic human-designed reward function to train
an RL algorithm with an automatically derived reward function
from human demonstrations. Unfortunately, this is not a simple
endeavor in some real-world applications such as the control
of autonomous systems. When designing a new task for an
autonomous system, there is no guarantee that a human expert
is available, let alone exists, to perform these machine tasks.

Research in [6], [7], [8], [9], [10], [11] has shown significant
applications of RL for successful development of autonomous
systems. Apprenticeship learning in conjunction with IRL
was then successfully applied to design a controller for a
helicopter [12].

Recently, there has been an increasing amount of research
focusing on coordinating UAVs and UGVs to execute complex
tasks, such as in surveillance [13], [14], [15]. This non-trivial
ground-air interaction problem comes in different forms [16],
[17], but one important common aim in many applications is
to design an autonomous controller for the UAV to support
the UGVs in their mission’s objective. This controller can
either replace or augment a human controlling the UAV,
extending the horizon to supervisory control of the UAV, or to
fully autonomous operations. The asymmetry in the behavioral
characteristics and dynamics of UAVs and UGVs makes the
problem non-trivial. The UAV is far faster and has a broader
view than UGVs [18]. It is suitable to sense and supply a larger
map of the environment [19] from the UAV(s). In contrast,
the UGVs are suitable for resolving small-scale spatial goals
that may require closer inspections of objects. This asymmetry
makes the learning problem challenging.



A primary challenge in the literature presented above is
what to do if a human expert is not available to create a dataset
for apprenticeship learning in new and complex control tasks
and/or platforms. We present “Apprenticeship Bootstrapping”
(ABS) for situations where an expert may not be available
to build a database of demonstrations for a complex task.
However, we assume that we have access to experts on the
sub-skills level required to perform sub-tasks independently.

ABS, as the name indicates, uses IRL to approximate the
reward functions over the sub-tasks, then use an RL with
these reward functions to bootstrap a control policy for the
composite task.

We use a ground-air interaction scenario, where a UAV
attempts to maintain a group of mobile autonomous UGVs
within its camera range. This task is decomposed into three
sub-tasks: climbing (i.e. increasing the UAV height) when
UGVs disperse to increase the radius needed to bring the
UGVs within range; descending (i.e. decreasing the UAV
height) when UGVs group together to decrease the radius
needed to bring the UGVs within range; and lateral movements
to track the UGVs as they move.

A human performed each sub-task separately then the
success of ABS was tested by comparing the controller learnt
from bootstrapping from the individual sub-tasks (we call it
Primitive Scenario) with a controller that learnt from data
collected from a human performing the composite scenario
(we call it Composite Scenario) whereby all three sub-tasks
co-existed. Data from all four scenarios (3 primitive and
1 composite) were collected. The proposed approach was
successful and produced policies that are comparable to those
learned directly from the data collected on the composite
scenario.

APPRENTICESHIP BOOTSTRAPPING VIA INVERSE
REINFORCEMENT LEARNING ALGORITHM

In the reinforcement learning framework, the RL agent
needs to discover an optimal control policy which maximizes
a reward-based criterion. However, in real-world scenarios,
defining the reward function is challenging. Inverse Rein-
forcement Learning (IRL) recovers/approximates the reward
function by learning it from human demonstrations.

ABS via IRL [3] assumes that the reward function, R(s), is
a linear function represented as a weighted, w, sum of a state
feature vector φ(s) = {φ(s1), . . . , φ(si), . . . , φ(sK)}:

R(s) = wT · φ(s) =

K∑
k=1

wkφk(s),∀s ∈ S (1)

IRL assumes that the human expert is working with the
optimal policy; thus, there is an optimal weight vector w∗

such that the optimal reward R∗(s) is

R∗(s) = w∗ · φ(s),∀s ∈ S (2)

IRL uses human demonstrations to then find the weight
vector w that approximates w∗.

For a fixed policy, its value is defined as follows:

V π(s0) = w · E

[ ∞∑
t=0

γtφ(st) | π

]
(3)

Meanwhile, the feature expectations vector under a policy π
is defined as:

µ(π) = E

[ ∞∑
t=0

γtφ(st) | π

]
(4)

If the dynamic model is unknown, the feature expectations
vector µ(π) can be seen in Equation 5:

µ(π) =
1

m

m∑
i=1

∞∑
t=0

γtφ(s
(i)
t ) (5)

where m is the number of trajectories.
When the feature mapping function, φ, and demonstrations

are given, the Deep Q-learning (DQN) algorithm [4], [5] is
used to discover π̃ in order to make µ(π̃) as close as possible
to µ(πE).

ABS modifies the algorithm presented in [3] as shown in
Algorithm 1. The main modifications center around using sub-
tasks to approximate the reward signal needed for a subset of
the state vector. These incomplete approximations are then
fused through an expectation function to approximate the
overall reward function for an RL to discover a policy over
the composite task. The primary assumption we make is that
there exists a human who can perform the sub-tasks. Each
sub-task encode sub-skills for the composite task. However,
the fusion of these sub-skills is left to the RL agent to learn
how to switch and combine them. The modifications are shown
in italics, while the remainder of the algorithm is identical to
the one presented in [3].

It is important to emphasize that in our case, the sub-
tasks are orthogonal. Therefore, taking the sum of feature
expectations vector will take the union of the state space.
In 1, the authors explained that averaging policies’s feature
expectation is equivalent to calculating the feature expectation
of a distribution over policies. However, in our case each sub-
task is defined with a different state space and actions; in other
words, the sub-spaces are non-commensurable. When we aver-
age the policies’ feature expectations, the non-commensurable
state spaces are morphed into a composite state representing
the overall state space needed for conducting the overall task.

Theoretical Basis of ABS

In Q-learning, a strategy is a sequence of transitions from
a starting state to a goal state. This sequence can be obtained
by using an appropriate action selection algorithm such as
ε-greedy. A strategy is a skill that an agent learns to adopt
when it is faced with the context imposed by the starting state
and the sub-sequent contexts/states it encounters. A human
in IRL is assumed to be skilled to be capable of producing
such a strategy. However, this assumption comes with practical
implications; the most important one is that a human with such
skills is available. In practice, in complex tasks this human



may not be available because the task is new or because it
is expensive to access someone with such high skills. This
motivates ABS, where by decomposing the skill into sub-skills
that require less skilled humans, we can bootstrap the higher
skills from these building blocks.

The sub-skills represent a decomposition of the action space.
Not all actions are needed for a sub-skill. It may also involve a
decomposition of the state space since sub-skills are associated
with simpler contexts that represent partial representations
of the original context. Below, we will explain the above
formally.

Define S = {S1, S2, ..., SN} and A = {A1, A2, ..., AL} to
be the original complex state and action spaces of a complex
task, respectively. Here, Sn and Al represent the sub-state and
sub-action spaces.

In the original IRL [3], the reward function, R(s), is
calculated through the features of each state as described in
Equation 1. The feature function is used to extract K features
over states: φ : S → [0, 1]K . We can define Kn to be the
number of features associated with sub-state space n with
K =

⋃N
n=1Kn.

Let φn(s) be the feature vector of the sub-state space n,
where φn(s) = {φn1 , φn2 , ..., φnKn

} ∀s ∈ Sn. To synchronize all
feature vectors in all sub-state spaces, we will rewrite φn(s) as
in Equation 6 by setting the features of other sub-state spaces
to zero values as follows:

φn(s) = {0, ..., 0, φnKn−1+1, φ
n
Kn−1+2, ..., φ

n
Kn−1+Kn

, 0, ..., 0}.
(6)

Supposing that the composite task might be divided into
H sub-tasks. Let D = {D1, D2, ..., DH} be a set of demon-
strations of all sub-tasks, where Dh is a set of h sub-task
demonstrations. Each set of h sub-task demonstrations, Dh, is
comprised of state-action pairs (st, at). To form the set Dh,
in the sub-state space Sh, the expert is required to perform
actions in the sub-action space Ah; meanwhile Sh ∈ S is one
of the sub-state spaces Sn in the whole complex state space,
and Ah ∈ A is one of sub-action spaces Al in the whole
complex action space.

In Abbeel and Ng 2004, the aim was to find a feature
expectations vector of a π policy, µ(π), which is close to the
expert feature expectations vector µE . The feature expectations
vector is calculated as in Equation 5. Let µDh

E be the expert
feature expectations vector of the sub-task h, and then µDh

E is
calculated as in Equation 7

µDh

E =
1

mh

mh∑
i=1

∞∑
t=0

γtφ(s
(i)
t ) (7)

where mh is the number of trajectories, and st ∈ Sh.
If µPrimitiveE is the expert feature expectations vector, which

is calculated through the set of the expert demonstrations
performed in sub-tasks, then µPrimitiveE is as being represented
in Equation 10

µPrimitiveE =
1

H

H∑
h=1

µDh

E (8)

=
1

H ×mh

H×mh∑
i=1

∞∑
t=0

γtφ(s
(i)
t ) (9)

=
1

M

M∑
i=1

∞∑
t=0

γtφ(s
(i)
t ) (10)

where M is the number of trajectories of demonstrations of
all sub-tasks, M = H ×mh and st ∈ S.

In Equation 10, the feature vector φ(s
(i)
t ) is calculated as in

Equation 6. This is consistent with the original mathematical
proof of the original IRL algorithm when the reward function
has still been calculated through the extracted features of the
whole state space of the complex task. Besides, a sufficient
combination among sub-action spaces is provided in the rein-
forcement learning step. This combination covers all possible
actions in the complex task.

Therefore, using µPrimitiveE still guarantees that the ob-
tained policy is identical or even better than the policy learned
from demonstrations performed in the complex task. This
guarantee also demonstrated that the proposed changes in
Algorithm 1 do not affect the correctness of the original
IRL. The results in the next sections show that our proposed
algorithm is able to find policies close to the human policy
and even better than the original IRL policy obtained in the
complex UAV and UGVs scenario.

ENVIRONMENT AND TASK DESCRIPTION

The simulations are conducted with three UGVs: UGV1,
UGV2, and UGV3, and a single cooperating UAV. The aim
is for the UAV to maintain all UGVs within Field of View
(FoV) of the UAV’s image sensor without losing any UGV
from the FoV or creating a FoV that is much larger than what
is needed to accommodate the smallest manifold containing
the three UGVs. To collect human demonstrations, the system
allows a human to teleoperate the UAV from a distance. A
pictorial representation of the system is shown in Figure 1.

In all scenarios, UGVs start from their base, where we
always assume that the initial location of the UAV is at the
center of the UGVs’ base. A number of manoeuvre profiles are
designed for the UGVs. The task for the UAV is decomposed
into two objectives. In the first objective, the UAV needs to
minimize the distance between its own center of mass and
the center of mass of the UGVs within its FoV. The second
objective is to minimize the difference between the radius
of the UAV’s camera FoV and the ideal radius needed. We
define the ideal radius as the radius of the smallest circle
to encapsulate the manifold formed by the UGV formation.
While the UAV has two cameras: a forward-looking camera
and a top-down view camera, we only refer to the latter in
this paper and don’t use the former.

The above environment is built using the Gazebo simu-
lator [20], ROS framework [21] and OpenAI Gym [22]. A



Fig. 1. The model of the UAV and UGVs Coordination Task

Algorithm 1 Apprenticeship Bootstrapping (ABS) via Inverse
Reinforcement Learning Algorithm; a modification of the
algorithm presented in [3] with the additional steps shown
in italics.
Input: : A feature mapping φ, and sub-task demonstrations ,
{D1, D2, D3, ..., DH}.

Output: : A number of policies {π(i) : i = 0..n}.
1: Randomly choose policy π(0), estimate µ(0) = µ(π(0))

via Monte Carlo, and set i = 1.
2: Initializing the parameters of DQN.
3: for each sub-task do
4: Calculating the expert feature expectations vector µDh

E

from h sub-task demonstrations, Dh, based on Equation 5
5: end for
6: Calculating the total expert feature expectations vector,
µPrimitiveE as described in Equation 10.

7: Set w(1) = µPrimitiveE − µ(0) and µ̄(0) = µ(0).
8: Set t(1) = ‖µPrimitiveE − µ(0)‖2.
9: if t(i) ≤ ε then

10: terminate
11: end if
12: while t(i) > ε do
13: Using DQN to compute the optimal policy π(i) with

R = (w(i))Tφ.
14: Compute µ(i) = µ(π(i)) and set i = i+ 1.
15: Set a = µ(i−1) − µ̄(i−2).
16: Set b = µE − µ̄(i−2).
17: Set µ(i−1) = µ̄(i−2) + xT y

xT x
x.

18: Set w(i) = µE − µ̄(i−1).
19: Set t(i) = ‖µE − µ̄(i−1)‖2.
20: end while

schematic diagram of the architecture to integrate the three
systems together is presented in Figure 2.

Fig. 2. The simulation environment protocol

Gazebo simulator [20] is used to design the task scenario.
Tum-Simulator [23], which is a drone Gazebo simulator pack-
age, is used. In this paper, this package is simulated for the
Parrot AR Drone 2. The unmanned ground vehicles simulator
package is the Husky simulator [24], which simulates a Husky
medium size robot mounted with Microsoft Kinect and laser
rangefinder sensors.

The control interface agent is programmed in Python to be
compatible with OpenAI Gym [22]. When collecting human
demonstrations, the control interface agent receives a real
video stream from the UAV bottom-viewing camera, and
simultaneously communicates the human’s actions back to
Gazebo. The human controls the drone using a Keyboard. The
human gets to see the image from the UAV top-down camera
alone to have a fair setup comparable to the IRL Controller.

The Robot Operating System (ROS) [21] framework is used
as an interface between the control interface agent and the
Gazebo simulator environment. The actions and states are sent
and received through ROS messages. We use ROS Indigo
installed on Ubuntu 14.04.

The collected human demonstrations are then used by the



IRL training algorithm. Once training is complete, the same
control interface agent is used, but this time with the human
being replaced with the trained IRL for testing.

The UGVs’action space consists of 2 continuous real-valued
actions representing the linear velocity, V , and the angular
velocity (yaw rate), ω. The manoeuvre profile for the UGVs
is prescripted according to the scenario being tested.

The UAV actions space consists of 24 discrete actions
with each action representing the linear velocity including
longitudinal, lateral, and altitude and is denoted using the
values (p, r, a), respectively. We use 0.5 (m/s) for longitudinal
velocity, 0.5 (m/s) for lateral velocity, and 1 (m/s) for altitude
when the UAV attempts to move forward, turn left, or climb.
Negative values were used for moving backward, turning
right, and descending. Both longitudinal and lateral velocities
were increased or decreased by 0.3 (m/s) when the maneuver
involves a speed change.

The state vector of the environment is a 6-D tuple of the
continuous variables presented in Table I.

TABLE I
THE STATES SPACE

State ID State Name State Description

1-2 (cx, cy) Center of the UAV from bottom
camera

3-4 (UGV x,UGV y) UGV Center of Mass within the
UAV image

6 rai Ideal UGV radius within image
7 raa Actual UGV radius within image

Meanwhile, (cx, cy) are received from the UAV down-
facing camera. (UGV x,UGV y) and (rai, raa) are calculated
based on a pinhole camera model. raa is the distance from
(UGV x,UGV y) to the furthest UGV position within the
bottom image.

The state space is limited to the four values
(cx, cy, UGV x,UGV y) for the Fixed-Altitude setup,
the last two (rai, raa) for the Climb and Descend setups, and
all 6 values are used for the 2 remaining setups.

The first objective is given in Equation 11, where ||.||
denotes the second norm. The second objective is given in
Equation 12. Both objectives are to be minimized as being
indicated by the down-facing arrow.

↓ distance error =

∫
t

||(cx, cy)− (UGV x,UGV y)|| (11)

↓ radius error =

∫
t

(rai − raa)2 (12)

The DQN architecture used in this paper is given in Fig-
ure 3. The network consists of an input layer, two fully-
connected hidden layers, and a fully-connected output layer.
The number of nodes in each hidden layer is dependent on
each setup, which is described in the Experiments section.
The states defined in Table I are used as inputs, while the
outputs, as discussed above, are discrete actions.

Fig. 3. The Deep Q-Network structure.

Human Demonstrations Scenarios

We use four maneuvers in this paper: Lateral-Movements-
Fixed-Altitude maneuver, Climb-Only maneuver, Descend-
Only maneuver, and Lateral-Movements-With-Climb-Descend
maneuver. The first three maneuvers are what we call primitive
manoeuvres, while the fourth maneuver is a composite and
more complex manoeuvre requiring switching between the
three primitive ones. There are 6 basic actions to control the
UAV: roll actions (Move Left, Move Right), pitch actions
(Move Forward, Move Backward), and yaw actions (Climb,
and Descend). The formation of UGVs in each of the three
primitive maneuvers is shown in Figure 4.

Fig. 4. UGVs Formation in the Three Primitive Scenarios.

In the Lateral-Movements-Fixed-Altitude maneuver, UGVs
are allowed to move forward, turn left, and turn right.
However, they need to move as a group with synchronized
homogeneous action set to maintain their formation intact.
This fixes the manifold of the UGV formation over the
course of the scenario. In this scenario, the human needs to
focus on four basic actions of moving right/left and moving
forward/backward. The actions space is of 8 discrete actions
including 4 basic actions and 4 speed-up basic actions.

In the Climb-Only maneuver, three distinct phases are
followed. In the first and third phase, UGVs move forward
with fixed formation and the same linear velocity. In the
second phase, UGV2 and UGV3 separate from UGV1. They
separate in opposite directions, which cause the radius required
to bring them back to the UAV camera FoV to increase. This
necessitates a UAV “climb” action. We label this behavior of



the UGVs “separation,” as the UGVs get spread away from
each other similar to the separation/repulsion force in a swarm
Boid model.

The Descend-Only maneuver is identical to the Climb-Only
maneuver except for the second phase, where UGV2 and
UGV3 converge on the position of UGV1, reducing the radius
required to bring them back to the UAV camera FoV. This
necessitates a UAV “descend” action. We label this behavior
of the UGVs “cohesion,” as the UGVs get attracted to each
other similar to the cohesion/attraction force in a swarm Boid
model.

In both Climb-Only and Descend-Only maneuvers, the
forward movement of the UGVs would mean that the human
needs to only control the height of the UAV; climbing it in the
first maneuver and descending it in the second. The actions
space in both of the maneuvers is comprised of three basic
actions including climb-forward, descend-forward, and fixed-
altitude-forward.

The last maneuver, Lateral-Movements-With-Climb-
Descend, is a combination of the above three. A scenario
consists of 4 periods. Four movement patterns of the UGVs
are labelled 1 to 4, representing Separation-Left, Cohesion-
Right, Separation-Right, and Cohesion-Left manoeuvres,
respectively.

Each scenario consists of four periods, where UGVs move
according to a manoeuvre drawn randomly from the above four
basic manoeuvres. For example, a scenario that follows 1-2-
3-4 will start by by having the UGVs separate while turning
left, then when this manoeuvre gets completed, UGVs start
converging on each other while turning right, followed by
turning right again while separating, and lastly turning left
while converging on each other.

In this setup, the human needs to combine actions by
moving the UAV in appropriate directions and climbing and/or
descending it as necessary to achieve the mission objective;
therefore, the actions space is composed of all 24 discrete
actions.

In the rest of the paper, we will use the following short nam-
ing style for four maneuvers: Fixed-Altitude, Climb, Descend,
and Combined, respectively.

EXPERIMENTS

Demonstrations from the human subject are collected for
all setups; while the number of episodes are 23 episodes
with 6742 instances, 21 episodes with 2520 instances, 24
episodes with 3164 instances, and 20 episodes with 2613
instances, respectively. Variations in the number of episodes,
and consequently number of instances, were necessary because
the four scenarios are of different lengths to complete each
maneuver.

For each of the three first maneuvers, the original IRL in
[3] is used. In the fourth maneuver, two tests were conducted.
The first (composite scenario) used the human subject data
from the fourth maneuver and the original IRL. The second
(primitive scenario) used ABS and the human subject from the

three primitive maneuvers. We analyze and compare all five
scenarios.

The Deep Q-Network is trained with a replay memory size
of 100,000 state-action pairs, the discount factor γ = 0.99,
mini-batch size 32, and the learning rate 0.00025. During
training, the ε− greedy is decreased linearly from 1 to 0.05,
and fixed at 0.05 thereafter. The epsilon decay is 0.995 for
every episode. Tensorflow and Keras libaries [25] were used
to design the deep Q-network. The deep network was trained
on an NVIDIA GeForce GTX 1080 GPU. Because there
are differences in the number of states and discrete actions
in different scenarios, the number of nodes in each hidden
layer for each setup is different. The first and second hidden
layers have 100 and 50 units, respectively, for the first three
experiments; while in the last two, 300 units are used for both
hidden layers. In all experiments, the number of episodes in
the DQN step is 100. The feature mapping φ transfers each
state to a binary array.

After 16 IRL iterations for the first three experiments (about
12 training hours), and 50 IRL iterations for the two last
experiments (around 48 hours), the IRL agents were tested
using the testing scenarios. In each experiment, the agent
is tested 5 times on generated cases. For the Fixed-Altitude
maneuver, the Climb maneuver and the Descend maneuver,
the UGVs movement testing paths are nearly fixed in every
episode; however, variations among the maneuvers are caused
by uncertainties in the behavioral envelope of the UAV dy-
namics. For the Combined maneuver, five testing cases are
generated, and used in both composite and primitive scenarios.

RESULTS AND EVALUATION

To evaluate performance, we calculate the distance between
the UAV Center of mass (cx, cy) and the center of UGVs’
mass (UGV x,UGV y), as well as the difference between the
actual radius rai and the ideal radius raa.

In Tables II and III, we present the average and standard
deviation of these two metrics for each experiment. The
errorbars in these tables are large because of the way the
human is tasked. In each sub-task, the human focuses on the
sub-task, while the performance is measured on all sub-tasks.
For example, if the human is tasked to only control height,
the human will only be allowed to adjust height, causing
higher variations of distance errors. The human performance
propagates to the performance of IRL.

In Table II, the IRL agents are able to align the UAV with
the UGV’s center of mass with performance nearly equivalent
to the human subject in the Fixed-Altitude setup, and better
performance in both the Climb and Descend setups. With
respect to the radius, the IRL agents also managed to perform
better than the human subject in the Climb and Descend
setups.

Table III shows that both ABS and original IRL agents
are able to perform nearly equivalent to the human subject.
Despite that the reward functions used in ABS are based on
an observed state space that is a subset of the overall state-



TABLE II
AVERAGE AND STANDARD DEVIATIONS OF ERRORS IN ALL TESTING EXPERIMENTS USING PRIMITIVE SKILLS. RESULTS HIGHLIGHTED IN BOLDFACE

ARE DIFFERENT FROM HUMAN’S RESULTS AND THE DIFFERENCES ARE STATISTICALLY SIGNIFICANT AT α = 0.05.

Experiment ID
Human Original IRL

Distance Errors Radius Errors Distance Errors Radius Errors
MSE µ± σ MSE µ± σ MSE µ± σ MSE µ± σ

Fixed-Altitude 16.9 ± 11 5.1 ± 1.8 26.7 ± 11.8 28.0 ± 20.6
Climb 33.9 ± 20.3 3 ± 2.4 27.7 ± 18.3 2.5 ± 2.3
Descend 77.2 ± 65.9 3.8 ± 2.7 54.8 ± 45.5 1.9 ± 2.1

TABLE III
AVERAGE AND STANDARD DEVIATIONS OF ERRORS IN ALL TESTING

EXPERIMENTS IN THE COMBINED EXPERIMENTS. RESULTS HIGHLIGHTED
IN BOLDFACE ARE DIFFERENT FROM HUMAN’S RESULTS AND THE

DIFFERENCES ARE STATISTICALLY SIGNIFICANT AT α = 0.05.

Experiment ID Distance Errors Radius Errors
Human Performance 21.2 ± 13.1 6.1 ± 5.4

Original IRL 33.7 ± 22.5 12.6 ± 9
AB 23.3 ± 13.2 12.6 ± 6.5

space used in the original IRL. ABS seemed to have favored
the distance metric more than the original IRL did.

It is worth mentioning that despite the variations discussed
above, in all experiments, all three agents (human and arti-
ficial) always maintained the UGVs within the range of the
camera in all maneuvers and all test cases.

To better understand the phenotypic differences between
the human performance and IRL agents, we visualize the
behaviour of the UAV when it is under human control and
compare it with the behaviour when it is under IRL control in
each scenario. For space limitations, we restrict the visualiza-
tion to those presented in Figure 5. Comparing the ABS and
original IRL reveals similar observed behaviors in the manner
by which the UAV is flying.

In Figure 5, as expected, the IRL trajectory is qualitatively
similar to human trajectory. The AB trajectory, however,
has smoother oscillation but with larger magnitude. This
smoother oscillation is desirable as too much oscillations
generate inefficient flights; possibly outside the performance
envelop of the UAV. However, this comes with a cost, where
distance error increases. The more the UAV attempts to have
a smoother trajectory, the less it is able to quickly adjust to
the UGVs and the greater the distance error. The averaging
of feature expectations vector favors the smoother trajectory.
It is possible to control the trade-off between smoothness and
distance errors by changing the fusion function.

CONCLUSION AND FUTURE WORK

In this paper, an apprenticeship bootstrapping method is
proposed. It is aimed at problems requiring high levels of
skills that a human expert may not be readily to provide
demonstration data for the machine learning algorithm to train
from. However, we assume that there are human experts who
can perform the sub-skills that compose the overall high skill-
level task and generate demonstration data for these sub-skills.

We have tested the apprenticeship bootstrapping method on
a ground-air tracking task, where an unmanned aerial vehicle

(UAV) attempts to maintain a mobile group of unmanned
ground vehicles (UGVs) within its camera range. We used
a human to generate the ground truth for training and testing
using four maneuvers: Lateral-Movements-Fixed-Altitude ma-
neuver, Climb-Only maneuver, Descend-Only maneuver, and
Lateral-Movements-With-Climb-Descend maneuver. The first
three maneuvers define the low-level skills required to perform
the fourth maneuver; these are: the UAV needs to either track
UGVs by moving forward, climbing and descending. In the
fourth maneuver, the UGVs move in more complex maneuvers
where all three forms of behaviour (lateral tracking, climbing
and descending) are used simultaneously.

In the first three maneuvers, the original IRL is used to learn
from human demonstrations. In the fourth setup, two exper-
iments are conducted to assess our proposed apprenticeship
bootstrapping. The first experiment uses the original IRL for
the human demonstrations collected in this setup. Meanwhile,
in the second experiment, the Apprenticeship Bootstrapping is
used to learn from sub-task human demonstrations.

The results revealed that IRL agents reached a standard
close to human performance in all experiments. For Climb
and Descend maneuvers, the IRL agents are able to adjust the
altitude better than the human subject. Most significantly, the
results show that the Apprenticeship Bootstrapping agents per-
form in a comparable manner to humans and are competitive
to agents trained on data collected from humans performing
the more complex task.
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