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Abstract—Smart Grid technologies enable the intelligent 

integration and management of distributed energy resources. 

Also, the advanced communication and control capabilities in 

smart grids facilitate the active participation of aggregators at 

different levels in the available electricity markets. The portfolio 

optimization problem consists in finding the optimal bid allocation 

in the different available markets. In this scenario, the aggregator 

should be able to provide a solution within a timeframe. Therefore, 

the application of metaheuristic approaches is justified, since they 

have proven to be an effective tool to provide near-optimal 

solutions in acceptable execution times. Among the vast variety of 

metaheuristics available in the literature, Differential Evolution 

(DE) is arguably one of the most popular and successful 

evolutionary algorithms due to its simplicity and effectiveness. In 

this paper, the use of DE is analyzed for solving the portfolio 

optimization problem in electricity markets. Moreover, the 

performance of DE is compared with another powerful 

metaheuristic, the Particle Swarm Optimization (PSO), showing 

that despite both algorithms provide good results for the problem, 

DE overcomes PSO in terms of quality of the solutions. 

Keywords—Differencial Evolution; Portfolio Optimization; 

Electricity Markets.   

I.  INTRODUCTION 

Electric systems in developed countries have been evolving 
to what is known as Smart Grids (SG). The concept of SG is 
typically used generically, although many definitions are found 
in the literature. An SG is defined as an "electricity network that 
can intelligently integrate the actions of all users connected to 
it: generators, consumers and those that do both in order to 
efficiently deliver sustainable, economic and secure electricity 
supplies. A smart grid employs innovative products and services 
together with intelligent monitoring, control, communication, 
and self-healing technologies" [1]. Given this definition, it can 
be noticed that an SG is not limited to the technical aspects of 
the intelligent grid, but also to a set of market solutions that can 
lead to the construction of a market into the grid [2]. 

In the context of SGs, there is a so-called aggregator entity 
that might act as a single entity on behalf of other SG players, 
with the aim of providing them with aid for the electricity 
negotiations [3]. The aggregators will try to negotiate the energy 
needed to suppress the energy needs of their households. To this 
end, aggregators try to carry out the negotiation actions in order 
to take profit from them. In this way the aggregators can be 

classified as sellers, buyers, or both (when they sell and buy). 
The aggregators also have the possibility to make multiple offers 
of purchase and sale in the market in order to obtain the best 
desired option. 

The theory of portfolios, although it has appeared in the field 
of economics and finance, is a technique that enables analyzing 
the best combination between existing assets and markets, in 
order to obtain the best results by making diverse offers in 
multiple markets [4]. Nowadays, portfolio theory has been 
applied to electric system problems, and is widely used by 
private investors in order to evaluate the viability of their 
investment (e.g., the technology to be used, location and 
diversification of the sale of production, and so on) [5]. This 
theory is a very effective tool for dealing with the possible 
uncertainties that may exist, e.g., renewables, price expected for 
electricity, the electricity produced/consumed, and so on. 

Roques et al. [5] applied the portfolio theory to identify the 
efficient combination of its investment between generation 
technologies (e.g., coal, nuclear, and combined cycle power 
plants). In this study, the authors considered the impact that the 
uncertainties (as is the case of the price of fuel, electricity and 
CO2) might cause in the portfolio solution. The same study is 
carried out by Muñoz et al. [6], although in this case the 
investment refers to renewable production projects with 
different results for the generation of the final product. Both 
studies, [5] and [6], intend to inform the investor how to proceed 
to obtain the best return. 

Considering the approach to the problem from the 
perspective of the aggregator, there are also some studies, such 
as the work done by Liu and Wu [7], where the allocation of 
electricity by a producer is discussed, allowing different types of 
commercial negotiations in the risk-free contracts, riskier 
contracts and the spot market. In this approach, it is possible to 
plan for different time horizons (one day, one week, one year, or 
serval years). Lorca and Prina [8] also address the problem from 
a manager perspective considering an energy producer that has 
a generation of thermal units in which it is possible to sell its 
generation in spot markets, and bilateral contracts (forwards 
contracts and contract for difference). The optimization problem 
is solved using a stochastic optimization model. 

Another approach from the aggregator’s point of view is 
presented in [9]. In this work, the authors consider an aggregator 
that can perform both actions on the market: purchases and sales. 
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In the example presented by the authors, it is possible to sell 
electricity in five different markets and it is possible to buy in a 
market only. In order to optimize the problem, the authors use 
the Particle Swarm Optimization (PSO) and conclude that this 
method proved to be effective in solving the problem. The 
solution to the problem of portfolios using metaheuristics is 
quite popular. For instance, in [9], a PSO algorithm is used to 
solve the problem of portfolios applied to the problem of 
allocation of electricity in the electricity markets. Another 
application of metaheuristics in the resolution of the problem of 
portfolios in the electricity markets is present in [10], where the 
author uses the Genetic Algorithms (GA) to respond to the 
problem of the allocation of electricity in different markets. 

In this paper, the application of portfolios will be used as a 
decision and support tool in an aggregator perspective, where 
special attention is paid to market prices to achieve profits in the 
sale and purchase of electricity. In order to solve the problem of 
portfolio optimization, we propose the use of a metaheuristic 
technique, namely Differential Evolution (DE). DE is also 
compared with the PSO, showing that, even when both 
heuristics present a satisfactory performance, DE can overcome 
the results of PSO. 

The paper is organized into six different sections, starting 
with the introduction section where a short review of the current 
state of art is made, as well as the contextualization of the 
portfolios problem to the electricity markets. The second section 
presents the problem description. In the third section, we present 
the metaheuristics used to solve the problem as well as all the 
strategies used. In the fourth section the case study is presented, 
followed by the results in the fifth. Finally, conclusions are 
addressed in the sixth section. 

II. PROBLEM DESCRIPTION  

In this paper, the allocation of electricity in different markets 
to achieve the maximum possible profits for the energy 
aggregator is studied. It is assumed that a Virtual Power Player 
(VPP) [3] that has an aggregation of production and the 
possibility to buy and sell electricity in the market. Eq. (1) 
represents the profits or return expected by the VPP after market 
transactions. We divided the equation into three lines for better 
understanding. The initial line refers to the return of sales of 
electricity in the different markets; the second line to the 
purchase cost in the respective markets; and the third line to the 
cost of production of the generation of energy (i.e., by renewable 
generation): 

𝑀𝑎𝑥 (𝑅𝑒𝑡𝑢𝑟𝑛)

=

[
 
 
 
 
 
 
 
 
 
∑(𝑆𝑝𝑜𝑤(𝑀,𝑑,𝑝) × 𝑝𝑠(𝑀,𝑑,𝑝) × 𝑏𝑖𝑛𝑆(𝑀,𝑑,𝑝))

𝑁𝑀

𝑀=1

−

∑(𝐵𝑝𝑜𝑤(𝑀,𝑑,𝑝) × 𝑝𝑏(𝑀,𝑑,𝑝) × 𝑏𝑖𝑛𝐵(𝑀,𝑑,𝑝)) −

𝑁𝑀

𝑀=1

∑(𝑃𝑟𝑜𝑑(𝐺,𝑑,𝑝) × 𝑝𝑔(𝐺,𝑑,𝑝))

𝑁𝐺

𝐺=1 ]
 
 
 
 
 
 
 
 
 

 (1) 

∀ 𝑑 ∈ 𝑁𝑑𝑎𝑦, ∀ 𝑝 ∈ 𝑁𝑝𝑒𝑟, 𝑏𝑖𝑛𝑆𝑀 ∈ {0,1}, 𝑏𝑖𝑛𝐵𝑀 ∈ {0,1} 
 

The index 𝑀 represents the market and can range from 1 up 
to 𝑁𝑀; 𝐺 represents the considered generator and can range from 
1 up to 𝑁𝐺; index 𝑑 represents the day and can range from 1 up 
to 𝑁𝑑𝑎𝑦  (total number of days); 𝑝 represents the referred period, 

and can range from 1 up to 𝑁𝑝𝑒𝑟 (number total of periods). The 
variable 𝑆𝑝𝑜𝑤, represent the power selling, 𝑝𝑠 represent the 
selling price, 𝑏𝑖𝑛𝑆 represent the binary variable which is active 
if the sale is execute, 𝐵𝑝𝑜𝑤 represent the power buying, 𝑝𝑏 the 
price for buying, 𝑏𝑖𝑛𝐵 represent the binary variable which is 
active if the buy is execute, 𝑃𝑟𝑜𝑑 represent the production and 
𝑝𝑔 represent the generation price.   

Market prices, as in the case of Eq’s. (2) and (3), are obtained 
by forecasts techniques that allows to reach a value by means of 
a historical price.  

𝑝𝑠(𝑀,𝑑,𝑝) = 𝑃𝑟𝑖𝑐𝑒(𝑆𝑝𝑜𝑤(𝑀,𝑑,𝑝)) (2) 

𝑝𝑏(𝑀,𝑑,𝑝) = 𝑃𝑟𝑖𝑐𝑒(𝐵𝑝𝑜𝑤(𝑀,𝑑,𝑝)) (3) 

Eq. (2) and Eq. (3) represent the prices for selling and buying 
energy respectively. Two methods for obtaining the prices have 
been used in this paper. In the first method, the prices are 
indifferent to the quantity traded, while in the second method the 
prices can be affected by the amount. The specifics about such 
methods can be found in [11].  

Eq. (4) represents the cost of production for a thermoelectric 
type generator: 

𝑝𝑔(𝐺,𝑑,𝑝) = 𝑎 × 𝑃𝑟𝑜𝑑𝐺,𝑑,𝑝
2 + 𝑏 × 𝑃𝑟𝑜𝑑𝐺,𝑑,𝑝 + 𝑐 (4) 

where indices 𝑎, 𝑏 and 𝑐 represent the coefficient of total cost 
production. 

Additionally, the problem is also subject to some constraints, 
namely: 

Balance constraint: states that the sum of the electricity sale 
into the markets must be equal to the electricity purchased plus 
the electricity generated: 

∑ 𝑆𝑝𝑜𝑤(𝑀,𝑑,𝑝)

𝑁𝑢𝑚𝑀

𝑀=1

= ∑ 𝐵𝑝𝑜𝑤(𝑀,𝑑,𝑝)

𝑁𝑢𝑚𝑀

𝑀=1

+ ∑ 𝑃𝑟𝑜𝑑(𝐺,𝑑,𝑝)

𝑁𝑢𝑚𝐺

𝐺=1

 (5) 

-- Restrictions to buy and sell simultaneously in some 
markets: 

𝐵𝑝𝑜𝑤(𝑀,𝑑,𝑝) = {
0              𝑖𝑓 𝑀 = 1
𝐵𝑝𝑜𝑤(𝑀,𝑑,𝑝)    𝑜. 𝑤. (6) 

𝑏𝑖𝑛𝑆(𝑀,𝑑,𝑝) + 𝑏𝑖𝑛𝐵(𝑀,𝑑,𝑝) ≤ 1;             𝑀 = {2,3} (7) 

In this restriction, Eq. (6) refers to the impossibility of 
purchasing electricity in market number 1 (Particularly for this 
case). Eq. (7) refers to markets 2 and 3, where in this case the 
sum of the respective binary must be less than or equal to 1.  

To solve the optimization problem, we will use the DE 
metaheuristics, which will be compared to a resolution using 
another metaheuristic, the PSO. 

III. DIFFERENTIAL EVOLUTION 

DE is a popular search strategy used to optimize functions of 

the form 𝑓(𝑥1, 𝑥2, … , 𝑥𝐷), where 𝐷 is the dimension of the 

problem (i.e., number of variables). The basic version of DE 

uses a population of individuals (Pop) in which each induvial 



 

 

represents a solution to the problem encoded as 𝑥⃗𝑖,𝐺 =

[𝑥1,𝑖,𝑔; … ; 𝑥𝐷,𝑖,𝑔], where 𝑔 is the generation number, 𝑖 =

[1, … , 𝑁𝑃] is the index of a given individual, and NP is the size 

of the population. DE iterates by creating new solutions using 

mutation and crossover operators. After that, the algorithm 

keeps the individuals with better fitness by evaluating them in 

an objective function, and replacing the worst individuals in Pop. 

The process is repeated for a fixed number of generations (GEN) 

or until a computational condition is reached. The reader can be 

referred to [12] for a detailed explanation of the algorithm. 

A. Encoding of the Individuals 

The encoding of the solutions is crucial for the success of the 
algorithm. Therefore, for this problem the solutions are encoded 
as vectors of the form: 

𝑥⃗ = [{𝐵𝑝𝑜𝑤1, … , 𝐵𝑝𝑜𝑤𝑁𝑀
}, {𝑆𝑝𝑜𝑤1, … , 𝑆𝑝𝑜𝑤𝑁𝑀

}, 

{𝑏𝑖𝑛𝐵1, … , 𝑏𝑖𝑛𝐵𝑁𝑀
}, {𝑏𝑖𝑛𝑆1, … , 𝑏𝑖𝑛𝑆𝑁𝑀

}, {𝑃𝑟𝑜𝑑1, … , 𝑃𝑟𝑜𝑑𝑁𝐺
}] 

(8) 

where {𝐵𝑝𝑜𝑤1, … , 𝐵𝑝𝑜𝑤𝑁𝑀
}/{𝑆𝑝𝑜𝑤1, … , 𝑆𝑝𝑜𝑤𝑁𝑀

} is a group 

of continuous variables representing the amount of energy to 

buy/sell in each market, {𝑏𝑖𝑛𝐵1 , … , 𝑏𝑖𝑛𝐵𝑁𝑀
}/

 {𝑏𝑖𝑛𝑆1, … , 𝑏𝑖𝑛𝑆𝑁𝑀
} are binary variables to enable the 

possibility to trade in specific markets, and {𝑃𝑟𝑜𝑑1, … , 𝑃𝑟𝑜𝑑𝑁𝐺
} 

are the power of available dispatchable generators. Therefore, an 
individual 𝑥⃗ has a dimension 𝐷 = 4 ∙ 𝑁𝑀 + 𝑁𝐺. This encoding 
allows a direct evaluation of each individual in Eq. (1) 

B. Initialization 

There are diverse ways in which the initial population can be 

generated, however, random initialization is the preferred one 

due to its simplicity. According to that, for each individual, each 

variable is initialized randomly into the allowed bounds as: 

𝑥⃗𝑗,𝑖,𝐺 = 𝑟𝑎𝑛𝑑𝑗[𝑥𝑙𝑏𝑗, 𝑥𝑢𝑏𝑗]      ∀𝑗 (9) 

where 𝑟𝑎𝑛𝑑𝑗[𝑥𝑙𝑏,𝑗 , 𝑥𝑢𝑏,𝑗] is a random number within the lower 

(𝑥𝑙𝑏,𝑗) and upper (𝑥𝑢𝑏,𝑗) bounds of variable 𝑗th of any individual 

𝑖 ∈ 𝑃𝑜𝑝.  

In order to start the search, it is necessary an initial starting 

solution for the metaheuristic. The initial solution is created 

based on random variables, but ensuring that it will never go 

outside the search limits. We call this process “direct-repair” 

generation. The initial solution is created applying the following 

rules: 

Step 1: a random value is assigned to the generation 

according to: 

𝐺𝑒𝑛𝑝 = 𝑟𝑎𝑛𝑑 × 𝑀𝑎𝑥(𝑃𝑟𝑜𝑑𝑇ℎ𝑒𝑟𝑚) + 𝑃𝑟𝑜𝑑𝑝
𝑃𝑉    (10) 

Since a rand is a random value between [0,1], Eq. 10 

guarantees that this value lies into the limits of thermal 

generation. 

Step 2: four binary variables are generated for the purchase: 

  

𝑏𝑖𝑛𝐵𝑝 = ⌊

𝑟𝑎𝑛𝑑([0,1])

𝑟𝑎𝑛𝑑([0,1])

𝑟𝑎𝑛𝑑([0,1])

𝑟𝑎𝑛𝑑([0,1])

⌋   (11) 

 

Step 3: We calculate randomly the value of energy to buy 

into the markets according to the limits:  

 

𝐵𝑝𝑜𝑤𝑝 = 𝑟𝑎𝑛𝑑(1,4). 𝑏𝑖𝑛𝐵𝑝 . 𝑀𝑎𝑥(𝐵𝑝𝑜𝑤)   (12) 

Step 4: With the definition of energy to buy, we calculate the 

required energy to buy to meet the balanced constraint:  

  𝑃𝑜𝑤 𝑆𝑒𝑙𝑙𝑝 = 𝑠𝑢𝑚(𝐵𝑝𝑜𝑤𝑝) + 𝐺𝑒𝑛𝑝 (13) 

Step 5: We create the binary values for the selling markets: 

 

𝑏𝑖𝑛𝑆𝑝 =

[
 
 
 
 
 

𝑟𝑎𝑛𝑑([0,1]) 

1 − 𝐵𝑖𝑛𝑝
𝐵𝑢𝑦(1)

 1 − 𝐵𝑖𝑛𝑝
𝐵𝑢𝑦(2)

𝑟𝑎𝑛𝑑([0,1])

𝑟𝑎𝑛𝑑([0,1]) ]
 
 
 
 
 

   (14) 

It is imperative to ensure that at least one of the binary 

markets takes the value of one, in position 3 and 4 an operation 

is performed that will prevent both binary buying and selling of 

these positions take the same value, so it is only possible to make 

purchase or sale or any of the options.  

Step 6: a vector with random numbers is multiplied by the 

binary variable of each market: 

  𝑆𝑝𝑜𝑤𝑝 = 𝑟𝑎𝑛𝑑(1,4). 𝑏𝑖𝑛𝑆𝑝 (15) 

Step 7: a distribution of the total available sales quantity is 

carried out for the different markets, where the quantity of each 

market is divided by the sum of all the quantities. 

  𝑆𝑝𝑜𝑤𝑝 =

[
 
 
 
 
 
 
  𝑆𝑝𝑜𝑤𝑝(1) 𝑠𝑢𝑚(𝑆𝑝𝑜𝑤𝑝)⁄

 𝑆𝑝𝑜𝑤𝑝(2) 𝑠𝑢𝑚(𝑆𝑝𝑜𝑤𝑝)⁄

 𝑆𝑝𝑜𝑤𝑝(3) 𝑠𝑢𝑚(𝑆𝑝𝑜𝑤𝑝)⁄

 𝑆𝑝𝑜𝑤𝑝(4) 𝑠𝑢𝑚(𝑆𝑝𝑜𝑤𝑝)⁄

 𝑆𝑝𝑜𝑤𝑝(5) 𝑠𝑢𝑚(𝑆𝑝𝑜𝑤𝑝)⁄ ]
 
 
 
 
 
 

 (16) 

 

  𝑆𝑝𝑜𝑤𝑝 =  𝑆𝑝𝑜𝑤𝑝 . 𝑃𝑜𝑤 𝑆𝑒𝑙𝑙𝑝 (17) 

Step 8: finally, the initial solution is constructed: 

𝑥𝑖𝑛𝑖𝑡 = [𝑆𝑝𝑜𝑤𝑝 , 𝐵𝑝𝑜𝑤𝑝, 𝐺𝑒𝑛𝑝 − 𝑃𝑟𝑜𝑑𝑝
𝑃𝑉 , 𝑃𝑟𝑜𝑑𝑝

𝑃𝑉  ] (18) 

where it is constituted by 5 variables of sale of electricity, 4 of 

purchase, one of thermal generation and another one of PV 

generation. 

C. Mutation DE Strategies  

One of the key elements of the success of DE relays in its 

easy mutation function used to generated new individuals. The 

basic DE operator is known as DE/rand/1 and is defined as: 

𝑚⃗⃗⃗𝑖,𝑔 = 𝑥⃗𝑟1,𝑔 + 𝐹(𝑥⃗𝑟2,𝑔 − 𝑥⃗𝑟3,𝑔) (19) 

where 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 ∈ {1,2, … , 𝑁𝑃} are randomly 
chosen indices from the population mutually different from each 
other and from current target vector 𝑖, and 𝐹 (mutation parameter) 
is a real number in the range [0,1] that scales the difference 

between vectors (𝑥⃗𝑟2,𝐺 − 𝑥⃗𝑟3,𝐺) having a direct impact in the 

exploitation/exploration capabilities of the algorithm. This 
function gives place to the mutant vector 𝑚⃗⃗⃗𝑖,𝐺.  

Additionally, different works have proposed modifications 

to the basic DE operator (i.e., Eq. (19)) to tackle problems with 

distinctive characteristics. Those modifications have given place 



 

 

to the so-called DE strategies analyzed in this work [13]. In this 

paper, additionally to the application of DE/rand/1, we explore 

the effectiveness of three more DE strategies: 

1)  DE/target-to-best/1 

This strategy has similar convergence properties as the PSO 

algorithm and its name, “target-to-best”, is given due to the base 

vectors are chosen to lie on the line defined by the target vector 

𝑥⃗𝑖,𝑔 and the best-so-far vector 𝑥⃗𝑏𝑒𝑠𝑡,𝑔 as follows: 

𝑚⃗⃗⃗𝑖,𝑔 = 𝑥⃗𝑖,𝑔 + 𝐹(𝑥⃗𝑏𝑒𝑠𝑡 − 𝑥⃗𝑖,𝑔) + 𝐹(𝑥⃗𝑟1.𝑔 − 𝑥⃗𝑟2,𝑔) (20) 

2) DE/rand/1 with Dither  

For this strategy, a simple random perturbation on the 𝐹 

parameter, known as dither in the literature, is incorporated into 

the standard mutation operator as follows:  

𝑚⃗⃗⃗𝑖,𝑔 = 𝑥⃗𝑟1,𝑔 + 𝑟𝑎𝑛𝑑(𝐹, 1) ∗ (𝑥⃗𝑟2,𝑔 − 𝑥⃗𝑟3,𝑔) (21) 

where 𝑟𝑎𝑛𝑑(𝐹, 1) is a random number in the range [𝐹, 1]. 
The so-called dither variation has proved to improve the 

performance of DE in different problems [14].  

3) DE/rand/1/either-or algorithm 

This strategy creates the mutant individual either by a 

DE/rand/1 scheme with probability 𝑃𝐹, or as a randomly 

recombinant scheme with probability1 − 𝑃𝐹: 

𝑚⃗⃗⃗𝑖,𝑔 = {
𝑥⃗𝑟1,𝑔 + 𝐹(𝑥⃗𝑟2,𝑔 − 𝑥⃗𝑟3,𝑔)         𝑖𝑓(𝑟𝑎𝑛𝑑 < 𝑃𝐹)

𝑥⃗𝑟1,𝑔 + 𝑘(𝑥⃗𝑟2,𝑔 + 𝑥⃗𝑟3,𝑔 − 2𝑥⃗𝑟1,𝑔)      𝑜. 𝑤.
 (22) 

where 𝑘 is a scale factor similar to parameter 𝐹. Price et al. 

recommended a value of 𝑘 = 0.5(𝐹 + 1) and 𝑃𝐹 = 0.4 [11]. It 

is worth to notice that this strategy has shown competitive 

results against classical DE strategies [14]. 

D. Crossover 

The crossover operator is applied to create the trial vector 

𝑡𝑖,𝐺 according to: 

𝑡𝑗,𝑖,𝑔 = {
𝑚⃗⃗⃗𝑗,𝑖,𝑔            if (𝑟𝑎𝑛𝑑 < 𝐶𝑟 ∨ (𝑗 = Rnd)

𝑥⃗𝑗,𝑖,𝑔                       o.w.                                
 (23) 

where 𝐶𝑟 represents the probability of choosing the 𝑗th 

element of 𝑚⃗⃗⃗𝑖,𝑔 otherwise from the target vector 𝑥⃗𝑖,𝑔. A random 

integer value Rnd is chosen in the interval [1, D] to guarantee 

that at least one element is taken from 𝑥⃗𝑖,𝑔. 

E. Boundary Constraints 

Mutation strategies (Sec. IVB) might generate individuals 
with values that violate the variables’ boundary constrains. To 
address this issue, boundary control strategies are used to repair 
infeasible individuals. In this paper, we use a boundary control 
technique known as bounce-back [15]. In contrast to random 
reinitialization (the most used control technique), bounce-back 
uses the information on the progress towards the optimum 
region by reinitialized the variable value between the base 
variable value and the bound being violated as follows: 

𝑡𝑗,𝑖,𝑔 = {

rand(𝑥𝑙𝑏𝑗, 𝑥⃗⃗𝑗,𝑖,𝑔)   if  𝑡𝑗,𝑖,𝑔 < 𝑥𝑙𝑏𝑗

rand(𝑥⃗⃗𝑗,𝑖,𝑔, 𝑥𝑢𝑏𝑗)  if  𝑡𝑗,𝑖,𝑔 > 𝑥𝑢𝑏𝑗

𝑡𝑗,𝑖,𝑔            𝑜. 𝑤.

 (24) 

This boundary control method showed to be effective for the 
application studied in this paper. Other repair methods can be 
analyzed in future work. 

F. Fitness and Selection 

The individuals should be evaluated according a fitness 
function including objective function and constraints violations. 
For this reason, the true fitness of an individual is calculated 
using a constraint-handled method based on penalties as: 

𝑓′(𝑋⃗) = 𝑓(𝑋⃗) + ∑max [0, 𝑔𝑖]

𝑁𝑐

𝑖=1

∙ 𝜌𝑖 (25) 

where 𝑓(𝑋⃗) is the value of the individual evaluated in Eq. (1), 
while 𝑔𝑖 are the values obtained from Eq. (5-7) when those 
constraints are violated. 𝜌𝑖 are weighted values to modify the 
importance of the constraints under analysis. In addition to this 
constraints-handling method, we introduce a direct repair 
method (see Sect. IVG) that reset the individual to a feasible 
zone when a constraint violation is found. 

Selection follows a simple rule of elitist done by comparing 

the fitness between the trial matrix 𝑡𝑖,𝑔, and the target matrix 𝑥⃗𝑖,𝑔 

in the objective function: 

𝑃𝑜𝑝𝑖,g+1 = {
𝑡𝑖,𝑔      if 𝑓′(𝑡𝑖,𝑔) ≤ 𝑓′(𝑥⃗⃗𝑖,𝑔)

𝑥⃗⃗𝑖,𝑔                    o. w.              
 (26) 

where 𝑃𝑜𝑝𝑖,𝑔+1 is the next generation population, that 

changes by accepting or rejecting new individuals, and 𝑓′(. ) is 
the fitness function used to measure the performance of an 
individual (i.e., Eq. (1) plus the constraints violation values).  

G. Constraint-Handling and Direct-Repair methods 

As it was explained in the previous subsection, a constraint-
handling method based on a penalty function was used due to its 
simplicity. However, using domain knowledge about the 
problem, we propose a different constraint-handling method 
based on direct-repair. This method is very simple to implement 
and is based on the ad-hoc initialization procedure presented in 
Sect. IVB.  

ALGORITHM 1: DE PSEUDOCODE 

INITIALIZE 

Set control parameters 𝐹 ∈ [0,1], 𝐶𝑟 ∈ [0,1], and 𝑁𝑃. 
Create initial Pop with heuristic method (Sect. 

IV.B.). 

Evaluate fitness of Pop (Eq. (1)). 

IF Direct-repair is used THEN 

   Apply direct-repair to unfeasible individuals            

Sect. IVG) 

   Evaluate fitness of the repaired individual 

END IF 

FOR 𝑔 = 1 to GEN  
    FOR 𝑖 = 1 to 𝑁𝑃 
       Select individuals from Pop 

       Mutation strategy (any from Eq. (19-22)) 

       Recombination (Eq. (23)) 

       Verify boundary constraints 

       IF Boundary constraints are violated THEN 

       Apply boundary control 

       END IF 

       Evaluate fitness of 𝑡𝑖,𝑔 (Eq. (1)). 
       IF Direct-repair is used THEN 

Apply direct-repair (Sect. IVG) 

END IF 

       Apply selection operator (Eq. (26)) 

       Update Pop (and 𝑥𝑏𝑒𝑠𝑡 for DE/target-to-best) 

    END FOR 

END FOR 



 

 

Basically, if in the evaluation process constraints violations 
are identified, the individual is randomly repaired using the 
initialization process from IVB. Such initialization process 
guarantee that the individual does not present any constraint 
violations, resulting in the convergence of individuals to the 
feasible zone. A pseudocode of DE algorithm, including in red 
the direct-repair method, is presented in algorithm 1. 

IV. CASE STUDY 

This section presents the case study. The optimization 
problem was solved using DE metaheuristic and compared with 
PSO to prove the veracity of the results. All approaches have 
been implemented in MATLAB software (version – R2016a), 
on a computer with 1 processor Intel® w3565 3.2GHz, with 4 
Cores, 8 GB of RAM and operating system Windows 10 64bites. 

The portfolio to be optimized refers to a VPP (with prosumer 
capabilities in the market), which has a thermal production 
generator and an aggregate of photovoltaic energy production. 
The historical price that was used to train the forecasting 
methods was obtained from the historical data of the MIBEL 
market [16]. TABLE 1 defines the problem parameters used to 
solve the problem. 

TABLE 1. INPUT DATA 

Variable Value 

𝑁𝑢𝑚𝑀 – Number of Markets 5 

𝑁𝑝𝑒𝑟 – Number of periods 24 

𝑁𝑑𝑎𝑦 – Number of days 1 

𝑀𝑎𝑥(𝑃𝑟𝑜𝑑) – Maximum of production (kW) 172.57 

𝑀𝑎𝑥(𝑃𝑟𝑜𝑑𝑇ℎ𝑒𝑟𝑚) – Maximum of thermoelectric 

production (kW) 
50.00  

𝑀𝑎𝑥(𝑃𝑟𝑜𝑑𝑃𝑉) – Maximum of photovoltaic production 

(kW) 
122.57 

𝑀𝑎𝑥(𝐵𝑝𝑜𝑤(𝑀)) – Maximum of purchase in each market 

(kW) 
25.00 

𝑎 4.45 

𝑏 0.207 

𝑐 0.024 

It is imperative to define a maximum purchase per market, 
otherwise the model will buy infinitely in the cheapest market to 
sell where the price is maximum. The quantity for selling is 
always limited due to the restriction Eq. (5). With the number of 
markets equal to five, by restriction number (6), in the market 
number 1 is impossible to sell, by equation number (7) is only 
possible the sale or the purchase or no action. In the market 1,2,3 
prices do not depend on the quantity traded, in the market 4,5 
prices are influenced by the quantity traded.  

V. RESULTS 

This section is divided into two parts. The first part is 
devoted to the tuning and performance of DE strategies for this 
particular problem (Sect. VI.A). In the second part, a comparison 
between DE and PSO is presented. 

A. DE parameter tuning 

For conducting the parameter tuning, we performed an 
analysis inspired in [13]. In the first stage, we fix the number of 

generations to 𝐺𝐸𝑁 = ⌊
10000

30
⌋ = 333, and the population size to 

𝑁𝑃 = 30. After that, we performed a swept of the parameters 𝐹 

and 𝐶𝑟, in the range [0.1,1] and steps of 0.1 for both parameters. 
Such swept allow us to test all possible combinations of 
parameters and determine the most suitable combination of 𝐹 
and 𝐶𝑟 that leads to good performance. We did ten trials for the 
standard DE/rand/1 algorithm and the three DE strategies 
introduced in Sect. IVC. Moreover, we also tested the DE 
strategies using constraint-handling and the direct-repair method 
from Sect. IVG.  

Figure 1 shows heatmaps resulting for the experimental 
swept test. Lighter parts represent better average profits for the 
aggregator, while darker zones represent poor performance of 
the algorithms. 

  
a) e) 

  
b) f) 

  
c) g) 

  
d) h) 

Fig. 1. Swet testing of four DE strategies using constraint handling penalties 

and direct-repair method. Ten trials and a fixed value of NP=30, 

GEN=10000/30, was considered. Constraint handling: a) DE/rand/1, b) 
DE/target-to-best/1, c) DE/rand/1 with dither, d) DE/rand/1/either-or. Direct-

repair: e) DE/rand/1, f) DE/target-to-best/1, g) DE/rand/1 with dither, h) 

DE/rand/1/either-or. 

From Fig. 1a)-d), we can appreciate the effect of parameters 
𝐹 and 𝐶𝑟 when constraints handling is used. It can be observed 
that, despite the selected DE strategy, a high value of 𝐶𝑟 results 
in better profits. The algorithms are less sensitive to 
parameter 𝐹, since it can be appreciated that when the value of 



 

 

𝐶𝑟 is well-chosen, 𝐹 parameter can take a wider range of values 
without affecting the performance of the algorithm. Similar 
behavior can be observed in Fig. 1e)-h), where the DE strategies 
with direct-repair method where tested. A wider light area can 
be appreciated, with higher values of profits compared with DE 
strategies using constraint handling technique. 

Table 2 presents the range of values for parameters 𝐹 and 𝐶𝑟 
where DE strategies showed good performance. As additional 
information, the fitness for the most suitable set of parameters 
when constraint handling was used was around 840 m.u., while 
by using the direct-repair method the fitness was around 1080 
m.u. (not showed in the table). This gives us some insides on the 
effectiveness of the direct-repair method. 

TABLE 2. RECOMMENDED RANGES OF VALUES FOR PARAMETERS F AND CR 

Strategy 
Constraint Handling Direct repair 

𝑭 𝑪𝒓 𝑭 𝑪𝒓 

DE/rand/1 [0.4,0.8] [0.9-1] [0.6,0.9] [0.8,1] 

DE/target-to-best/1 [0.2,0.7] [0.9-1] [0.1,0.9] [0.8,1] 

DE/rand/1 with dither [0.1,0.7] 1 [0.1,0.9] [0.8,1] 

DE/rand/1/either or [0.4,0.7]] 1 [0.3,0.9] [0.8,1] 

In the second stage of parameter tuning, we fixed the best 
values for 𝐹 and 𝐶𝑟 for each strategy found at stage one, and we 
varied 𝑁𝑃 parameter and the number of generations to see the 
effect on DE strategies performance. Tables 3 and 4 show the 
profits when NP is varied in the range [10,50] in steps of 10. It 
is important to clarify that for this test, the number of fitness 
function evaluations have been fixed to 10,000, so that the 
number of generations was set to GEN = 10,000/NP 

Tables 3 and 4 shows the average profits of ten trials with 
constraint-handling method and direct-repair method. Notice 
that the major the number of individuals, the best the 
performance of the strategies. We have highlighted (in bold) the 
best strategy for each NP value. It is worth to noticed that, when 
direct-repair method is used, all the strategies found higher 
profits compared to constraint-handling method despite the 
number of individuals used. This highlights the importance of 
the incorporation of domain knowledge in the metaheuristic 
frameworks, leading to best results. 

TABLE 3. CONSTRAINT-HANDLING NP TUNING 

DE Strategy NP=10 NP=20 NP=30 NP=40 NP=50 

DE/rand/1 639.03 746.39 839.27 869.85 887.07 

DE/target-to-best/1 663.57 748.36 829.93 876.36 905.96 

DE/rand/1 with dither 650.43 767.67 828.29 882.60 903.31 

DE/rand/1/either or 647.38 741.93 837.33 892.80 891.75 
 

TABLE 4. DIRECT-REPAIR NP TUNING 

Strategy NP=10 NP=20 NP=30 NP=40 NP=50 

DE/rand/1 1014.4 1071.7 1080.8 1088.7 1079.0 

DE/target-to-best/1 1009.9 1073.3 1094.9 1098.8 1095.8 

DE/rand/1 with dither 1002.0 1076.2 1084.5 1082.6 1082.1 

DE/rand/1/either or 993.9 1073.7 1080.5 1082.7 1079.5 

To summarize, the information obtained from the parameter 
tuning analysis, Table 5 presents our selection of parameters to 
compete against PSO. Since the best results were found with 
DE/target-to-best/1 strategy (overall), we decided to use such 
strategy with different combinations of parameters in the 

comparison against PSO. We label the selected combination as 
shown in Table 5. 

TABLE 5. DE/TARGET-TO-BEST/1 SELECTED SETTINGS  

Label Boundary Method F Cr NP Ave. Fitness Std 

DE1 
Constraint Handling 

2 10 10 663.57 101.88 

DE2 5 10 50 905.96 114.62 

DE3 
Direct Repair 

9 9 10 1009.87 39.64 

DE4 7 10 50 1095.81 30.79 

B. Comparison of DE strategies and PSO 

TABLE 6 presents the characteristic of the different methods 
applied, namely the namely the DE target-to-best strategies and 
the traditional PSO algorithm. The parameters for PSO are: a 
linear decreasing inertia, c1=1 and c2=1, resulting from a former 
study in [9].     

TABLE 6. METHODS DESCRIPTION 

Method Label C.H. D.R. It. 
Nº 

Ind./Par. 

DE 

DE1 X  1000 50 

DE2  X 1000 50 

DE3 X  5000 10 

DE4  X 5000 10 

PSO 

PSO1 X  1000 50 

PSO2  X 1000 50 

PSO3 X  5000 10 

PSO4  X 5000 10 
* In all versions, 50000 evaluations were performed. 

In Table 6, we present different labels according to different 
considerations, for instance the use of C.H. and D.R. 
(representing Constraint-handling and Direct-repair 
respectively). The number of iterations was set to 1000 and 
5000, and the number of individuals for DE and number of 
particles for PSO was fixed to 50 and 10. Despite we vary the 
size of the population and generations, the number of 
evaluations was fixed to 50,000. We performed 100 trials for 
each experiment. The reported results correspond to the average 
over the 100 trials. 

TABLE 7 shows the objective function results for the 
different methods applied to the problem. In the table are 
presented the values for maximum, minimum, mean and 
standard deviation (STD) profits of the 100 simulations.  

TABLE 7. OBJECTIVE FUNCTION RESULTS 

Method 
Objective function (m.u.) 

Maximum Minimum Mean STD 

DE1 1075.287 681.0024 919.7595 101.9695 

DE2 1160.087 1080.934 1086.212 20.08141 

DE3 954.8617 390.7376 634.2682 101.5183 

DE4 1128.371 987.1924 1054.51 27.94936 

PSO1 937.3555 509.7173 722.8751 98.32423 

PSO2 1072.948 978.2433 1021.064 24.6777 

PSO3 1005.304 391.2469 603.7921 119.2348 

PSO4 1057.836 980.0274 1017.561 22.32771 

As it is possible to observe, the methods that use direct-repair 
have higher values in relation to the methods that use constraint-
handling. The DE2 method presents the best results in general, 
while the PSO2 was the one that registers the best results among 
the PSO tested methods. The STD values for the methods that 



 

 

use constraint-handling are considerably higher than the values 
resulting from the methods that use direct-repair. This indicates 
that such methods present less variability, considering that the 
STD is a measure that indicates the dispersion of the solutions 
around the mean. The methods that use 50 individuals/particles 
have better mean results than the methods that use 10 
individuals/particles although they did the same number of 
evaluations. 

Fig. 2 shows the average convergence of the method (i.e., the 
mean value over the 100 simulations for each iteration). Since it 
is only possible compare the methods with the same numbers of 
iterations, Fig. 2a presents the convergence of the methods using 
1000 iterations and 50 individuals, while Fig. 2b shows the 
convergence for methods using 5000 iterations and 10 
individuals. As it is possible to observe, methods that used the 
direct-repair have a better convergence overall. DE2 with direct-
repair presents the best convergence properties. Despite PSO2 
presents worse converge capabilities than DE2, it is better than 
the methods that use the constraint-handling. 

 
a) 

 
b) 

Fig. 2 . Convergence capabilities of the tested methods. a) mean results for 1000 

iterations and 50 individuals b) mean results for 5000 itertions and 10 

individuals. 

Fig. 2 also shows that PSO1 method does not show 
significant variation throughout the search, which means that the 
particles get stuck it the point where they initially felt. It can be 
concluded that the methods are benefited from a larger number 
of individuals/particles when constraint-handling is used. In 
general, the DE4 (i.e., using 10 individuals and 5000 iterations) 

was the method that presents better convergence capabilities 
among all the tested algorithms.  

Fig. 3 shows how the price varies in a trading period 
depending on the quantity that is traded. It has already been 
mentioned that there are markets where the price of electricity is 
constant (1,2 and 3), and variable (4 and 5). These same markets 
are used to sell and buy electricity. 

 

Fig. 3. Eletricity prices of the five considered markets.  

TABLE 8, shows the results of the variables that indicate the 
amount of sales in each market. It is expected that electricity will 
be sold in the markets where the price is higher. The values 
presented in the table correspond to the maximum value of the 
objective function presented in TABLE 7. The method DE2 was 
the one that presented the highest maximum in the set and makes 
the sale of the electricity in the market number 4. The same 
happens with the DE4 that also sells most of the electricity in the 
market 4, but also sells in market 1 and 4 in smaller quantity. 
The third is the PSO2, that sells electricity in market 4, although 
compared to DE2, in less quantity. 

TABLE 8. SALES RESULTS IN DIFERENT MAKETS  (MW) 

Method 
Markets Sell 

1 2 3 4 5 

DE1 77.254 0.000 0.000 0.150 18.723 

DE2 0.000 0.000 0.000 123.591 0.000 

DE3 84.630 0.000 0.000 0.842 3.260 

DE4 1.873 0.000 0.000 115.051 2.413 

PSO1 61.641 0.000 0.000 0.000 29.132 

PSO2 0.000 0.000 0.000 117.459 0.000 

PSO3 86.683 0.000 0.000 0.000 0.000 

PSO4 0.000 0.000 0.000 112.396 0.000 

TABLE 9 shows the results of the purchase of electricity in 
the different markets as well as the amount of electricity that was 
generated. As can be observed, in all cases there was electricity 
generation. In the case of DE2, the total quantity of electricity is 
bought in all markets and as the possibility to see in TABLE 8,  
the markets 4 and 5 was used to buy also electricity, that means 
that both actions were performed in markets 4 and 5. The model 
sells the electricity in the same market that it bought, although 
with different price as it is possible to see from Fig. 3. The case 
of DE4 is similar DE2. DE4 also did purchases in all markets, 
with the particularity of buying less electricity in market 5, and 
also generating less electricity. The PSO2 performs similar 
actions to those of DE2 and DE4, buying electricity in all 
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markets and selling into market 4. It can be observed that, in 
markets 2, 3, 4 and 5, the best performing methods always seek 
to buy the maximum amount of electricity because there is a 
market where the sale of the sum of this electricity is profitable 
(i.e., market 4). The value of the objective function (presented in 
TABLE 7) is obtained by performing the balance of the three 
actions, in which the value of the purchases and generation 
contributes negatively. 

TABLE 9. BUYS RESULTS IN DIFFERENT MARKETS (MW) 

Method 
Markets Buy 

Gen. 
2 3 4 5 

DE1 25.000 24.935 25.000 0.000 21.191 

DE2 25.000 25.000 25.000 25.000 23.590 

DE3 12.881 23.873 22.171 9.107 20.699 

DE4 25.000 25.000 25.000 23.514 20.822 

PSO1 18.297 22.597 23.554 0.000 26.324 

PSO2 22.565 24.818 22.957 22.062 25.058 

PSO3 24.755 16.244 24.192 0.000 21.492 

PSO4 23.239 24.594 22.854 17.170 24.540 

The method DE2 shows the highest value in purchase and 
sale actions. Those values in combination with a medium 
generation value (compared with the other approaches) gives as 
a result the highest profits from the tested algorithms.  

VI. CONCLUSION 

The problem of portfolio optimization that was created in the 
field of economics and finance has the possibility of being 
extended to other areas such as the electricity market. With this 
theory, it is possible to plan the negotiations by the players in 
order to find solutions that can bring benefits. In this paper, to 
solve the portfolio optimization problem in electricity markets, 
two different techniques, the DE and the PSO, are used. Several 
studies have showed that the performance of the standard DE is 
highly related to the adoption of a proper set of control 
parameters, namely the parameters F and Cr. We showed 
through a systematic parametric analysis such impact in the 
quality of the solutions, and determined the best set of 
parameters needed to achieve satisfactory performance of 
different DE strategies. From the results obtained, the DE 
algorithms presents better results when comparing to the PSO, 
reaching the maximum values and relatively higher average 
profits in the analyzed case study. 

 As future work, it is intended to build a multi-period model, 
which allows to obtain the portfolio for all periods. It is also 
intended to add batteries that will serve to the aggregator to 
accumulate energy. 
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