
Interpretable Deep Convolutional Neural Networks
via Meta-learning

Xuan Liu∗, Xiaoguang Wang∗†, Stan Matwin∗‡
∗Institute for Big Data Analytics

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
Email: xuan.liu@dal.ca

†Alibaba Group, Hangzhou, China
Email: xiaoguang.wxg@alibaba-inc.com

‡Institute of Computer Science
Polish Academy of Sciences, Warsaw, Poland

Email: stan@cs.dal.ca

Abstract—Model interpretability is a requirement in many
applications in which crucial decisions are made by users
relying on a model’s outputs. The recent movement for “al-
gorithmic fairness” also stipulates explainability, and therefore
interpretability of learning models. And yet the most successful
contemporary Machine Learning approaches, the Deep Neural
Networks, produce models that are highly non-interpretable. We
attempt to address this challenge by proposing a technique called
CNN-INTE to interpret deep Convolutional Neural Networks
(CNN) via meta-learning. In this work, we interpret a specific
hidden layer of the deep CNN model on the MNIST image
dataset. We use a clustering algorithm in a two-level structure
to find the meta-level training data and Random Forest as base
learning algorithms to generate the meta-level test data. The
interpretation results are displayed visually via diagrams, which
clearly indicates how a specific test instance is classified. Our
method achieves global interpretation for all the test instances on
the hidden layers without sacrificing the accuracy obtained by the
original deep CNN model. This means our model is faithful to the
original deep CNN model, which leads to reliable interpretations.

Index Terms—interpretability, Meta-learning, deep learning,
Convolutional Neural Network, TensorFlow, big data

I. INTRODUCTION

With the fast development of sophisticated machine learning
algorithms, artificial intelligence has been gradually penetrat-
ing a number of brand new fields with unprecedented speed.
One of the outstanding problems hampering further progress
is the interpretability challenge. This challenge arises when
the models built by the machine learning algorithms are to
be used by humans in their decision making, particularly
when such decisions are subject to legal consequences and/or
administrative audits. For human decision makers operating
in those circumstances, to accept the professional and legal
responsibility ensuing from decisions assisted by machine
learning, it is critical to comprehend the models. This is
generally true for areas like criminal justice, health care,
terrorism detection, education system and financial markets.

To trust the model, decision makers need to first under-
stand the model’s behavior, and then evaluate and refine the
model using their domain knowledge. Even for areas like

book or movie recommendations [1] and automated aids [2],
explanations for a recommendation and an error made could
increase the trust and reliance on these systems. Furthermore,
the European General Data Protection Regulation, forthcoming
in June, 2018, stipulates the explainability of all automatically
made decisions concerning individuals, and that includes the
decisions made with or assisted by machine learning models.
Hence, there is a growing demand for interpretability of the
machine learning algorithms.

In this paper, we define interpretability of a model as
the ability to provide visual or textual presentation of the
connections between input features and the output predictions.

To realize the goal of interpretability, there are usually two
approaches. One is to design an algorithm that is inherently
interpretable, while achieving competitive accuracy of a com-
plex model. The examples are Decision Trees [3], Decision
Lists [4], and Decision Sets [5], etc. The disadvantage of this
approach is that there is a trade off between interpretability
and accuracy: it is not easy to learn an interpretable (so
presumably simple) model expressing a complex process with
a very high accuracy. The other approach which does not
sacrifice accuracy takes the opposite approach: it first builds a
highly accurate model without worrying about interpretabilty,
and subsequently uses a separate set of re-representation
techniques to assist the user in understanding the behavior
of the algorithm. One of the techniques could be to use the
aforementioned relatively simple and interpretable algorithms
to explain the behavior of a complex model and the reasons
why a given classifier, treated as a black box, classifies a
given instance in a particular way, e.g. LIME [6], BETA [7],
TREPAN [11].

Deep learning methods have been lately very successful in
image processing and natural language processing. It could
be categorized as a representation learning approach [12],
which learns refined features that could improve a model’s
generalization ability. Deep learning, however, is highly non-
interpretable.

In this paper we are reporting a work in progress where
we try to interpret the inner mechanisms of deep learning.

ar
X

iv
:1

80
2.

00
56

0v
2 

 [
cs

.L
G

] 
 1

9 
A

ug
 2

01
8



Our method: CNN-INTE is inspired by [8]. We design and
implement a tool that helps the user understand how the hidden
layers in a deep CNN model work to classify examples. And
the results are expressed in graphs which indicate sequential
separations of the true class and the hypothesis. The main
contributions of our method is as follows:

• Compared to LIME [6] which provides local interpreta-
tions for the entire model in specific regions of the feature
space, our method provides global interpretation for any
test instances on the hidden layers in the whole feature
space.

• Compared to models which apply inherently interpretable
algorithms, e.g. [5], our method has the advantage of
not compromising the accuracy of the model to be
interpreted. This produces more reliable interpretation.

• In contrary to [6] and [7] which treat the model to be in-
terpreted as black box, we interpret the inner mechanisms
of deep CNN models.

• The experiments are implemented in the TensorFlow [9]
platform, which makes our model scalable to big datasets
more easily. Scalability is an issue pointed out as future
work in [6] and [7] but not realized yet.

II. RELATED WORK

To resolve the problems for “trusting a prediction” and
“trusting a model”, two methods are proposed in [6] to explain
individual predictions and understand a model’s behavior
respectively: Local Interpretable Model-agnostic Explanations
(LIME) and Submodular Pick LIME (SP-LIME). The main
idea for LIME is to use inherently interpretable models g
to interpret complex models f locally. They designed an
objective function to minimize the unfaithfulness (when g is
approximating f in a local area) and the complexity of g.
Although it was stated in their paper that in the objective
function g could be any interpretable models, they set g as
sparse linear models in their paper. Based on the individual
explanations generated by LIME, they design an submodular
pick algorithm: SP-LIME to explain the model as a whole
by picking a number of representative and non-redundant
instances.

It was suggested in [10] that coverage, precision and
effort should be used to evaluate the results of the model
interpretation. Although LIME achieves high precision and
low effort, the coverage is not clear. In other words, LIME
is able to explain why a specific prediction is made using
the weights of the local model g, but can’t indicate to what
local region the explanation is faithful. To solve this problem,
the Anchor Local Interpretable Model-Agnostic Explanations
method (aLIME) was introduced in [10]. In aLIME, the if-then
rules are used instead of using the weights in a linear model to
explain a specific prediction (as was executed in LIME). The
idea is based on the Decision Sets algorithm from [5]. These
if-then rules are easy to comprehend and has good coverage.

It was pointed out that there is a trade off between inter-
pretability and accuracy for machine learning algorithms [5].
In terms of inherently interpretable models, rule-based models,

e.g. Decision Trees and Decision Lists are often preferred, as
they can find a balance between these two factors. Decision
lists are usually considered more interpretable than decision
trees, as they use the if-then-else statements with a hierar-
chy structure. But this structure reduces to some extent the
interpretability, as to interpret an additional rule all previous
rules should be reasoned about. Also new rules down the list
are applied to much narrow feature spaces, which makes the
multi-class classification difficult where the minority classes
deserves equally good rules. This motivates the proposal of the
Decision Sets algorithm in [5], which produces the isolated if-
then rules, where each rule could be an independent prediction.
To realize this, an objective function takes into account both
interpretability (expressed by precision and recall of rules)
and accuracy (expressed by size, length, cover and overlap).
They showed that solving the objective function is a NP-
hard problem, and finds near-optimal solutions of it. However,
Decision set’ accuracy only approaches random forest, and its
expressive power just catches up with decision tree.

Another model agnostic explanation approach is the
Black Box Explanations through Transparent Approximations
(BETA), introduced in [7]. Different from LIME which aims
for local interpretation, BETA is a framework which attempts
to produce global interpretation for any classifier which are
treated as black box classifiers. Based on their previous work
on Decision Sets, the authors designed a framework with two
level decision sets to taking into account fidelity (faithfulness
to the black box model), unambiguity (single and deterministic
explanations for each instance), interpretability (complexity
minimized) and interactivity (user specified explorations of the
feature’s subspace). In this two level structure, the outer if-then
rules are the “neighborhood descriptors” and the inner if-then
rules are “decision logic rules” (how the black box model
labels an instance under the outer if-then rules). Similar to
[5], an objective function is built and near-optimal solutions
are found.

Two tools are introduced in [23] to provide intuitive under-
standings about the inner workings of deep neural networks
(DNNs). The first tool directly plots the activations on each
layer of a specific trained DNN. The second tool visualizes
the features computed by each neurons on each layer of a
DNN. Although the tools introduced in [23] also interpret
DNNs, they are totally different approachs from ours. They
visualize the values of the intermediate results directly within a
DNNs while we visualize the behavior of a hidden layer via an
inherently interpretable algorithm: Decision Tree. Therefore,
they aims to improve the architecture of DNNs and provide
inspirations for transfer learning, discriminative networks and
generative models. And we focus on interpreting how the
hidden layers classify test instances to ensure trust on a trained
DNN.

III. METHODOLOGY

Our methodology could be classified as the post-hoc inter-
pretation [14], where a trained model is given and the main
task is to interpret it. This method is close to the second



approach mentioned in the fourth paragraph of the introduction
section, but is also different in many ways. First, the model to
be interpreted here is not treated as a black box as we directly
interpret the hidden layers of a deep CNN. Second, compared
to LIME [6] which only has local interpretability, our method
achieves global interpretability. Similar to LIME, we also
provide qualitative interpretation with graphs to visualize the
results. As our method interprets deep CNN via Meta-learning,
we first briefly introduces deep CNN, meta-learning and then
discuss our framework in details.

A. Deep Convolutional Neural Network

This section introduces the deep CNN model we are going
to interpret. As we implement our program using TensorFlow,
we use its TensorBoard function to draw the structure of the
deep CNN we construct in Fig. 1. Deep CNN is now the most
advanced machine learning algorithm for image classification.
It takes advantage of the two-dimensional structure of the input
images. It uses a set of filters to filter the pixels of the raw
input images to generate higher level representations to be
learnt by the model in order to improve the performance.

There are three major components of deep CNN: convolu-
tional layer, pooling layer and fully connected layer (same as
in regular neural networks). A deep CNN model is usually
a stack of these layers. In the convolutional layer, a filter is
used to compute dot products between the pixels of the input
image at specific position and the values of the filter, producing
one single value in the output feature map. The convolution
operation is completed after the filter is slided across the width
and height of the input image. Following the convolutional
layer, an activation function, often a rectified linear unit
(ReLU) [15], is applied to inject nonlinearities into the model
and speed up the training process. Following ReLU is the
pooling layer which is a non-linear down-sampling layer. A
common algorithm for pooling is the max pooling algorithm.
In this algorithm, each sub-region of the previous feature map
is turned into a single maximum value in this region. Max
pooling reduces computation and controls overfitting. In order
to calculate the predicted class, after performing max pooling,
the feature map needs to be flattened and feed into a fully
connected layer. In the last layer: the output layer, a softmax
classifier is applied for prediction.

The structure of the deep CNN model we designed is
illustrated in Fig. 1, “Placeholder” represents for the interface
to input the training data. “Reshape” is needed first to convert
the input one-dimensional image data into two dimensional
data. In our experiment, we use the MNIST dataset [16].
The 784 input features are converted into a two-dimensional
28 × 28 image. Our model has two series of a convolutional
layer followed by a pooling layer: “conv1”-“pool1”-“conv2”-
“pool2”, which are followed by one fully connected layer
“fc1”. As a fully connected network is susceptible to suffer
from overfitting, the “dropout” operation [17] applied after
“fc1” aims to reduce it. In this operation, a probability
parameter p is set to keep a specific neuron with probability p
(or drop it with probability 1-p). The “Adam optimizer” [18],

Fig. 1. Structure of our deep CNN model generated by TensorFlow’s
TensorBoard .

rather than a standard Stochastic Gradient Descent optimizer
is used to train the model via modifying the variables and
reducing the loss. “fc2” is the output layer with 10 neurons:
each represents one of the classes: 0-9.

B. Meta-learning

Meta-learning is an ensemble learning method which learns
from the results of the base classifiers. It has a two-level
structure, where the algorithms used in the first level are called
base-learners and the algorithm in the second level is called
the meta-learner. The base-learners are trained on the original
training data. The meta-learner is trained by the predictions of
the base classifiers and the true class of the original training
data. When training the meta-learner, the “Class-combiner”
strategy [13] is applied here, where the predictions includes
just the predicted class (instead of all classes, as in the
“Binary-class-combiner”).

To understand the meta-learning algorithm intuitively, Fig. 2
illustrates a simplified training process for meta-learning [19].



Fig. 2. Meta-learning training process.

The numbers 1, 2, 3, 4 represent the four steps of training. In
the 1st step, the base learning algorithms 1 to m are trained
on the training data. In the 2nd step, a validation dataset is
used to test the trained classifiers 1 to m. In the 3rd step,
the predictions generated in step 2 and the true labels of the
validation dataset are used to train a meta-learner. Finally, in
the 4th step, a meta-classifier is produced and the whole meta-
learning training process is completed.

Once the training process is accomplished, the test process
is much easier to execute. Fig. 3 presents a simplified test
process [19]. In the 1st step, the test data is applied on the base
classifiers to generate predictions which combined with the
true labels of the test data comprises the meta-level test data
in 2nd step. In the 3rd step, the final predictions are generated
by testing the meta-level classifier with the predictions in the
2nd step and the accuracy could be calculated.

C. Framework

Our framework is named as CNN-INTE which stands for
Convolutional Neural Network Interpretation. It is similar to
meta-learning, but different in a few ways. In this work, we
interpret the first fully connected layer “fc1” of the deep CNN
model illustrated in Fig. 1.

The training process is shown in Fig. 4. In the 1st step, the
original training data is used to train a CNN model. In the
2nd step, the parameters generated in the 1st step are used
to calculate the values for the activations of the first fully
connected layer: fc1. In the 3rd step, a clustering algorithm is
used to cluster the data generated in step 2 into a number of
groups which we define as factors henceforth. In the 4th step,
the data belonging to each of the factors are clustered again
generating a number of clusters each assigned a unique ID. In
the 5th step, these IDs are grouped together as the training
features in the meta-level, using the labels of the original
training data as label for the meta-learner. In the 6th step,
the features of the original training data and the IDs (set as
labels) in step 4 are used to train a number of random forests
[21].

Now we discuss the training process in more details. As-
sume the training data T has N numbers of instances and
layer “fc1” has H neurons. The labels of the training data are
Ty = {l1, l2, ..., lN}. Once the deep CNN model is trained, for

Fig. 3. Meta-learning test process.

Fig. 4. CNN-INTE training process.

each training instance ti, we calculate the activations at each
hidden neuron on this layer. Hence, we obtain a matrix S with
size H ×N . To construct the meta-level training data, we use
a clustering algorithm to cluster S along the hidden layer axis
into several factors F = {f1, f2, ..., fK}. How to set the value
of K is tricky. In our experiments, this value is determined
as the one which produces the best accuracy performance for
the meta-learning algorithm. We also discussed how to avoid
this problem in section V. Then within each of the factors, we
cluster the data again, this time along the axis of the instances.
The clustering results are the IDs each instance belongs to. For
instance, if the number of clusters is 10, after the second level
clustering each instance will have an ID number between 0-9.
All the IDs combined with the true labels of the training data
builds up the meta-level training data.

To present the technical details of the CNN-INTE training
process, we provide the pseudo code in Algorithm 1. Line 1-3
is the initialization of the algorithm. In line 4, the activations S
are clustered into K factors, where K is the number of clusters
set in the first level clustering algorithm Cl. In lines 5-7 the
same clustering algorithm Cl is applied on all the factors to
generate K sets of ID numbers. Lines 8-9 uses the generated
ID numbers and the true labels of the original training data to
train the meta-learner: Cm. Till now, the training process is not
done yet. We still need to generate the base models to be used
in the test process. Lines 10-12 uses the features of the original
training data and the ID numbers to train K base models.
The output of the training process would be the meta-lever
classifier: M̃ and K base models: B = {M1,M2, · · · ,MK}.

Fig. 5 is a toy example that illustrates the above process.
In this example, there are 5 hidden neurons and 6 training
instances. We set the number of clusters for both the first and



Algorithm 1 CNN-INTE Training Process
1: Input: activations: S; training data: T ; Meta learning

algorithm: Cm; Clustering algorithm: Cl; Base learning
algorithms: {C1, C2, · · · , CK}

2: E = ∅
3: Scv = ∅
4: {f1, f2, · · · , fK} = Cl(S)
5: for k = 1 · · ·K do
6: IDsk = Cl(fk)
7: end for
8: Scv = {IDs1, IDs2, · · · , IDsK , Ty}
9: M̃ = Cm(Scv)

10: for k = 1 · · ·K do
11: Mk = Ck(Tx, IDsk)
12: end for
13: E = ({M1,M2, · · · ,MK} , M̃)
14: Output: Ensemble E

second level clustering as 3. Hence, the matrix S with size
5× 6 is first clustered into 3 factors {f1, f2, f3} horizontally.
For each factor, the activations are again clustered into three
clusters vertically, e.g. F1 is clustered into {C11, C12, C13}. If
we set the ID numbers for these cluster as {0, 1, 2}, then the
corresponding ID numbers for t1 to t6 in factor f1 according
to Fig. 5 are {0, 0, 1, 1, 2, 2}. Hence, the meta-level training
features are expressed as0 0 1 1 2 2

0 0 0 1 1 2
0 1 1 1 2 2


This data combined with the corresponding training labels of
the original training data is used to train the meta-learner.
Here the meta-learner we used is the Decision Tree [3], an
inherently interpretable algorithm. Its tree structure provides
an excellent visual explanation of the predictions.

The test process of the meta-model is exactly the same as
the meta-learning test process, which is shown in Fig. 6.

Fig. 5. Toy example for the generation of Meta-level training data.

Fig. 6. CNN-INTE test process.

In the test process, we use the original test data to test the
base classifiers generated in the meta-level training process to
obtain the meta-level test data’s features. The base-learner we
applied is random forest. The number of base models is equal
to the number of factors. Hence, we have K base models:
B = {M1,M2, ...,MK}. In the toy example, there are three
factors which lead to three base models. The training data for
the first base model corresponding to f1 are

(t1− l1) 0
(t2− l2) 0
(t3− l3) 1
(t4− l4) 1
(t5− l5) 2
(t6− l6) 2

Here ti−li represents for the features of the original training
instance i. Once we obtain the K base models, we can use the
original test data to test them to produce the meta-level test
data. These data are then feed into the trained decision tree
model to interpret individual test predictions.

IV. EXPERIMENTS

The dataset we use is the MNIST database of handwritten
digits from 0 to 9 [16]. We extracted 55,000 examples (the
original dataset has 60,000 examples for training) as the
training data and 10,000 examples as the test data. Each of
the examples represents for the 28 × 28 images with pixels
flattened as 784 features. The experiments are performed on
the TensorFlow platform.

A. Experimental Setup

First of all, we need to train a nice deep CNN model. We
first reshape the input training data into 55000 images each
with size 28 × 28. Training all the data on every epoch is
expensive, which requires lots of resources of the computer
and may lead to the termination of the program. Here we
apply stochastic training: on the first epoch, we select a mini-
batch of the training data and perform optimization on this
batch; once we loop through all the batches, we randomize
the training data and start a new epoch. In our experiment, we
set the epoch e = 1000, batch size b = 50. Stochastic training
is cheap and achieves similar performance to using the whole
training data in every epoch. For each mini-batch, in the first
convolutional layer, we apply 32 filters (or kernels) each with
size 5×5, which generates 32 feature maps. In the first pooling
layer we apply filters with size 2× 2. The stride size is set as



2. The second convolutional layer use 64 filters with the same
size as the first convolutional layer. The second pooling layer
has the same parameters as the previous one. Immediately after
this pooling layer is the first fully connected layer: fc1. We
set the number of neurons for this layer as 128. To reduce
overfitting we also set the dropout [17] parameter d = 0.5,
which means a neuron’s output has 50% probability to be
dropped. The last layer is the second fully connected layer (or
the “readout layer”), which has 10 neurons with each neuron
outputs the probability of the corresponding digits 0-9. The
test accuracy of this trained CNN model on the test data is
93.9%.

Now comes the key part for setting up interpretation. we
define interpretability of a model as the ability to provide
visual or textual presentation of the connections between input
features and the output predictions. We first feed the trained
fully connected layer fc1 with the original training data, which
would produce a data S with size of 128 × 55000. We then
cluster S into several factors. The clustering algorithm we
applied is the k-means algorithm [20]. The number of factors
is equal to the number of clusters which we set as 8 in this
level. Hence, S is now turned into a list F = {f1, f2, ..., f8}
with size 8 × 55000 having each row representing the data
belonging to each factor. In the second level clustering, for
each factor in F we use the k-means algorithm again to cluster
them into a number of clusters. We set the number as 10 in our
experiment as the number of classes for the original training
data is 10. Hence each cluster will be assigned a unique ID
number between 0 and 9. Then we use the IDs belonging
to each training instances and the true labels of the original
training data to train a decision tree algorithm. Due to the
limitation of the space, we are unable to show the structure
of the trained decision tree here. We set the maximum depth
of the decision tree as 5. Although deeper decision tree would
generate better accuracy, it makes it harder to interpret with
too many tree levels.

To obtain the test data for decision tree, we first use the
original training data’s feature as features and the IDs for each
factor in F as labels to train the corresponding random forest
algorithm [21], generating 8 base models. For random forest,
we set the number of trees as 20 and the maximum nodes as
2000. Finally we use the original test data to test the 8 trained
base models. The generated predictions become the features
of meta-level test data with sizes of 10000 × 8. Using the
meta-level test data on the trained decision tree produces an
accuracy of 92.8% with tree depth=5. This value is comparable
to the test accuracy on the trained deep CNN model: 93.9%.
It should be noted that the decision tree’s accuracy could be
further improved by increasing the depth of tree and tuning
other related parameters.

B. Experimental Results

To interpret the deep CNN model’s behavior on the test data,
we intend to use diagrams generated by our tool: CNN-INTE
to examine individual predictions on the test data. Hence,
we provide qualitative interpretations visually. We arbitrarily

selected two test instances that were correctly classified by the
decision tree and one test instance that was wrongly classified.
It should be noted that this tool could be used on any test
instances globally and not just limited to the three cases we
provide. The details of the selected test instances are shown
in Table I. Here “f0-f7” represents the features of the meta-
level test data, “label” is the test label in the original test data,
“pred” is the prediction generated by the decision tree on the
meta-level test data. “True1” and “True2” represents for the
two correctly classified instances and “Wrong1” is the wrongly
classified instance.

In order to examine the classification process visually, we
check each feature values according to the trained structure
of the decision tree and plot the graphs of the activations
corresponding to the true label and the hypothesis. The in-
terpretation result for instance “True1” is shown in Fig. 7. As
the true label for this instance is 3, all other classes could be
regarded as hypothesis and this is why there are no graphs for
“Hypothesis: 3” in Fig. 7. Each row represents the examination
of the feature values corresponding to different factors in
different levels of the trained decision tree, e.g. the first row
represents the root level of the decision tree. Since we set the
depth of the decision tree as 5, there are 5 rows in all. Each
column stands for the query of if the test instance belongs to
the corresponding hypothesis over the nodes visited.

Take the column of “Hypothesis:0” as an example, the goal
is to find if the label of the test instance is 0. In the 1st
row we extract the activations corresponding to “f6” which
satisfies the condition that f6 6 4.5 (this is determined by the
trained decision tree) and draw a graph between activations
that belongs to label=0 (hypothesis) and label=3 (true). Then
we check the graph to evaluate if the data corresponding to
the true class could be separated from the hypothesis. The
answer is no because the hypothesis represented as blue points
overlaps with the true class shown as red points. Hence, we
need to query the trained decision tree further. The values of
the factors we need to check is: f6 6 2.5 for 2nd row; f6 6 0.5
for 3rd row; f7 6 0.5 for 4th row; f1 6 0.5 for 5th row. In
this process, we noticed that in the 4th row the true class and
the hypothesis class are successfully separated as only the red
points corresponding to the true label are left. Therefore, we
don’t need to examine further and that’s why the graph for the
5th row is not displayed. We highlight the graph with green
rectangles if the final results are separable and red vice versa.
The same idea is applied on other hypothesis. We also draw
the graphs for instances “True2” and “Wrong1” in Fig. 8 and
Fig. 9 respectively.

TABLE I
INSTANCES SELECTED FROM THE META-LEVEL TEST DATA

Features and labels
f0 f1 f2 f3 f4 f5 f6 f7 label pred

True1 4 0 7 7 0 0 0 0 3 3
True2 5 0 0 5 9 5 3 6 0 0

Wrong1 5 6 7 9 6 4 7 9 5 9



V. CONCLUSION AND FUTURE WORK

In this work, we present an interpretation tool CNN-INTE,
which interprets a hidden layer of a deep CNN model: to
find out how the learned hidden layer classifies new test
instances. Although we just show the results for the first fully
connected layer before the read-out layer, the approach could
be applied on any hidden layers. The interpretation is realized
by finding the relationships between the original training data
and the trained hidden layer “fc1” via meta-learning. We
used two-level k-means clustering algorithm to find the meta-
level training data and random forests as base models for
generating meta-level test data. The visual results generated
by our program clearly indicate why a test instance is truly or
wrongly classified by checking if there are any overlaps of the
corresponding activations. For future work, we plan to initiate
quantification of the interpreted results. In our experiments,
one of the things we find tricky is the setting of the number
of clusters for the k-means algorithm. In the future, we plan
to replace the k-means algorithm with DBSCAN [22] which
doesn’t need specifying the number of clusters. As stated in
[5], “decision sets” seems to be a better option than decision
tree as a inherently interpretable algorithm, so we also plan
to replace decision tree with decision sets. Last but not least,
it would be quite meaningful to apply this tool on real world
applications with more complex data where interpretations are
demanded either between the training data and the hidden layer
or between the hidden layer and the predictions.

ACKNOWLEDGMENT

The authors acknowledge the support of the Province of
Nova Scotia, of Dalhousie University, and of the the Natural
Sciences and Engineering Research Council of Canada under
the CREATE program grant.

REFERENCES

[1] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pp. 241–250,December 2000.

[2] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P.
Beck. “The role of trust in automation reliance,” Int. J. Hum.-Comput.
Stud., vol.58, no.6, pp.697–718, 2003.

[3] J. Ross Quinlan, C4. 5: programs for machine learning, Elsevier, 2014.
[4] R. L. Rivest, “Learning decision lists,” Machine learning, vol.2, no.3,

pp.229–246, 1987.
[5] H. Lakkaraju, S. H. Bach, and J. Leskovec, “interpretable decision sets:

A joint framework for description and prediction,” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1675–1684, ACM, August, 2016.

[6] M. T.Ribeiro, S.Singh and C.Guestrin, “Why should i trust you? :
Explaining the predictions of any classifier,” In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1135–1144, ACM, August, 2016.

[7] H. Lakkaraju, E.Kamar, R.Caruana and J.Leskovec, “Interpretable &
Explorable Approximations of Black Box Models,” KDD’17 workshop,
2017.

[8] J. J.Thiagarajan, B.Kailkhura, P. Sattigeri , and K. N.Ramamurthy,
“TreeView: Peeking into Deep Neural Networks Via Feature-Space Par-
titioning,” 30th Conference on Neural Information Processing Systems
(NIPS), 2016.

[9] M.Abadi,et al. “TensorFlow: A System for Large-Scale Machine Learn-
ing,” In OSDI, Vol. 16, pp. 265–283, 2016.

[10] M. T.Ribeiro, S.Singh and C.Guestrin, “Nothing Else Matters: Model-
Agnostic Explanations By Identifying Prediction Invariance,” 30th Con-
ference on Neural Information Processing Systems (NIPS), 2016.

[11] M. Craven and J. W. Shavlik, “Extracting tree-structured representations
of trained networks,” In Advances in neural information processing
systems, pp. 24–30, 1996.

[12] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT press,
2016.

[13] P. K. Chan and S. J. Stolfo, “Experiments on multistrategy learning by
meta-learning,” In Proceedings of the second international conference
on information and knowledge management, pp. 314–323, ACM, De-
cember, 1993.

[14] G. Montavon, W. Samek, and K.R. Müller, “Methods for interpreting and
understanding deep neural networks,” Digital Signal Processing, 2017.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” In Proceedings of the 27th international conference on
machine learning (ICML-10), pp. 807–814, 2010.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 86(11), pp.
2278–2324, November, 1998.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, 15(1), pp. 1929–1958,
2014.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] X. Liu, X. Wang, S. Matwin, and N. Japkowicz, “Meta-learning for
large scale machine learning with MapReduce,” In Big Data, 2013 IEEE
International Conference on, pp. 105–110, IEEE, October, 2013.

[20] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society, Series
C (Applied Statistics), 28(1), pp. 100-108, 1979.

[21] A. Liaw and M. Wiener, “Classification and regression by randomFor-
est,” R news, 2(3), pp. 18–22, 2002.

[22] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” In Kdd,
Vol. 96, No. 34, pp. 226-231, August, 1996.

[23] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-
standing neural networks through deep visualization,” arXiv preprint
arXiv:1506.06579, 2015.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.06579


Fig. 7. Example of a correctly classified test instance: True1.

Fig. 8. Example of a correctly classified test instance: True2.



Fig. 9. Example of a wrongly classified test instance: Wrong1.


	I Introduction
	II RELATED WORK
	III Methodology
	III-A Deep Convolutional Neural Network
	III-B Meta-learning
	III-C Framework

	IV Experiments
	IV-A Experimental Setup
	IV-B Experimental Results

	V Conclusion and future work
	References

