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Abstract—In the machine learning fields, Recurrent Neural
Network (RNN) has become a popular architecture for sequential
data modeling. However, behind the impressive performance,
RNNs require a large number of parameters for both training
and inference. In this paper, we are trying to reduce the number
of parameters and maintain the expressive power from RNN
simultaneously. We utilize several tensor decompositions method
including CANDECOMP/PARAFAC (CP), Tucker decomposition
and Tensor Train (TT) to re-parameterize the Gated Recurrent
Unit (GRU) RNN. We evaluate all tensor-based RNNs perfor-
mance on sequence modeling tasks with a various number of
parameters. Based on our experiment results, TT-GRU achieved
the best results in a various number of parameters compared to
other decomposition methods.

I. Introduction

In recent years, RNNs have achieved many state-of-the-arts
on sequential data modeling task and significantly improved
the performance on many tasks, such as speech recognition [1],
[2] and machine translation [3], [4]. There are several reasons
behind the RNNs impressive performance: the availability of
data in large quantities and the advance of modern computer
performances such as GPGPU. The recent hardware advance
allows us to train and infer RNN models with million of
parameters in a reasonable amount of time.

Some devices such as mobile phones or embedded systems
only have limited computing and memory resources. There-
fore, deploying a model with a large number of parameters
in those kind of devices is a challenging task. Therefore, we
need to represent our model with more efficient methods and
keep our model representational power at the same time.

Some researchers have conducted important works to bal-
ance the trade-off between the model efficiency and their
representational power. There are many different approaches to
tackle this issue. From the low-level optimization perspective,
Courbariaux et al. [5] replace neural network weight parame-
ters with binary numbers. Hinton et al. [6] compress a larger
model into a smaller model by training the latter on soft-target
instead of hard-target. RNNs are composed by multiple linear
transformations and followed by non-linear transformation.
Most of RNN parameters are used to represent the weight
matrix in those linear transformations and the total number
of parameters depends on the input and hidden unit size.
Therefore, some researchers also tried to represent the dense
weight matrices with several alternative structures. Denil et al.

[7] employed low-rank matrix to replace the original weight
matrix.

Instead of using low-rank matrix decomposition, Novikov
et al. [8] used TT format to represent the weight matrices
in the fully connected layer inside a CNN model. Tjandra
et al. [9] applied TT-decomposition to compress the weight
matrices inside RNN models. Besides TT-decomposition, there
are several popular tensor decomposition methods such as CP
decomposition and Tucker-decomposition.

However, those methods have not been explored for com-
pressing RNN weight matrices, thus we are interested to see
the extensive comparison between all tensor-decomposition
method performances under the same number of parame-
ters. In this paper, we utilized several tensor decomposition
methods including CP-decomposition, Tucker decomposition
and TT-decomposition for compressing RNN parameters. We
represent GRU RNN weight matrices with these tensor de-
composition methods. We conduct extensive experiments on
sequence modeling with a polyphonic music dataset. We
compare the performances of uncompressed GRU model and
three different tensor-based compressed RNN models: CP-
GRU, Tucker-GRU and TT-GRU [9] on various number of
parameters. From our experiment results, we conclude that TT-
GRU achieved the best result in various number of parameters
compared to other tensor-decomposition method.

II. Recurrent Neural Network

RNNs are a type of neural networks designed for modeling
sequential and temporal data. For each timestep, the RNN
calculate its hidden states by combining previous hidden states
and a current input feature. Therefore, RNNs are able to
capture all previous information from the beginning until
current timestep.

A. Elman Recurrent Neural Network

Elman RNNs are one of the earliest type of RNN models
[10]. In some cases, Elman RNN also called as simple RNN.
Generally, we represent an input sequence as x = (x1, ..., xT ),
hidden vector sequence as h = (h1, ..., hT ) and output vector
sequence as y = (y1, ..., yT ). As illustrated in Fig. 1, a simple
RNN at t-th time-step is can be formulated as:

ht = f (Wxhxt + Whhht−1 + bh) (1)
yt = g(Whyht + by). (2)
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where Wxh represents the weight parameters between the
input and hidden layer, Whh represents the weight parameters
between the previous and current hidden layers, Why represents
the weight parameters between the hidden and output layer,
and bh and by represent bias vectors for the hidden and
output layers. Functions f (·) and g(·) are nonlinear activation
functions, such as sigmoid or tanh.

Figure 1. Recurrent Neural Network

B. Gated Recurrent Neural Network

Learning over long sequences is a hard problem for stan-
dard RNN because the gradient can easily vanish or explode
[11], [12]. One of the sources for that problem is because
RNN equations are using bounded activation function such
as tanh and sigmoid. Therefore, training a simple RNN is
more complicated than training a feedforward neural network.
Some researches addressed the difficulties of training simple
RNNs. From the optimization perspective, Martens et al.
[13] utilized a second-order Hessian-free (HF) optimization
rather than the first-order method such as stochastic gradient
descent. However, to calculate the second-order gradient or
their approximation requires some extra computational steps.
Le et al. [14] changed the activation function that causes the
vanishing gradient problem with a rectifier linear (ReLU) func-
tion. They are able to train a simple RNN for learning long-
term dependency with an unbounded activation function and
identity weight initialization. Modifying the internal structure
from RNN by introducing gating mechanism also helps RNNs
solve the vanishing gradient problems. The additional gating
layers control the information flow from the previous states
and the current input [15]. Several versions of gated RNNs
have been designed to overcome the weakness of simple RNNs
by introducing gating units, such as Long-Short Term Memory
(LSTM) RNN and GRU RNN.

1) Long-Short Term Memory RNN: An LSTM [15] is a
gated RNN with memory cells and three gating layers. The gat-
ing layers purpose is to control the current memory states by
retaining the important information and removing the unused
information. The memory cells store the internal information
across time steps. As illustrated in Fig. 2, the LSTM hidden
layer values at time t are defined by the following equations

[2]:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (3)
ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (4)
ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) (5)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (6)
ht = ot � tanh(ct) (7)

where σ(·) is sigmoid activation function and it, ft, ot and ct are
respectively the input gates, the forget gates, the output gates
and the memory cells. The input gates retain the candidate
memory cell values that are useful for the current memory
cell and the forget gates retain the previous memory cell values
that are useful for the current memory cell. The output gates
retain the memory cell values that are useful for the output
and the next time-step hidden layer computation.

Figure 2. Long Short Term Memory Unit.

2) Gated Recurrent Unit RNN: A GRU [16] is one variant
of gated RNN. It was proposed an alternative to LSTM. There
are several key differences between GRU and LSTM. First, a
GRU does not seperate the hidden states with the memory cells
[17]. Second, instead of three gating layers, it only has two:
reset gates and update gates. As illustrated in Fig. 3, the GRU
hidden layer at time t is defined by the following equations
[16]:

rt = σ(Wxr xt + Whrht−1 + br) (8)
zt = σ(Wxzxt + Whzht−1 + bz) (9)
h̃t = f (Wxhxt + Whh(rt � ht−1) + bh) (10)
ht = (1 − zt) � ht−1 + zt � h̃t (11)

where σ(·) is a sigmoid activation function, f (·) is a tanh
activation function, rt, zt are the reset and update gates, h̃t is the
candidate hidden layer values, and ht is the hidden layer values
at time t-th. The reset gates control the previous hidden layer
values that are useful for the current candidate hidden layer.
The update gates decide whether to keep the previous hidden
layer values or replace the current hidden layer values with
the candidate hidden layer values. GRU can match LSTM’s
performance and its convergence speed sometimes surpasses
LSTM, despite having one fewer gating layer [17].



Figure 3. Gated Recurrent Unit

III. Tensor RNN

In this section, we explain our approaches to compress the
parameters in the RNN. First, we define the tensorization
process to transform the weight matrices inside the RNN
model into higher order tensors. Then, we describe two tensor
decompositions method called as CANDECOMP/PARAFAC
(CP) decomposition and Tucker decomposition. Last, we ex-
plain about tensorization and RNN parameters compression
with the tensor decomposition methods.

A. Vector, Matrix and Tensor

Before we start to explain any further, we will define
different notations for vectors, matrices and tensors. Vector
is an one-dimensional array, matrix is a two-dimensional
array and tensor is a higher-order multidimensional array. In
this paper, bold lower case letters (e.g., b) represent vectors,
bold upper case letters (e.g., W) represent matrices and bold
calligraphic upper case letters (e.g., W) represent tensors. For
representing the element inside vectors, matrices and tensors,
we explicitly write the index in every dimension without bold
font. For example, b(i) is the i-th element in vector b, W(p, q)
is the element on p-th row and q-th column from matrix W
and W(i1, .., id) is the i1, .., id-th index from tensor W .

B. Tensor decomposition method

Tensor decomposition is a method for generalizing low-
rank approximation from a multi-dimensional array. There are
several popular tensor decomposition methods, such as Canon-
ical polyadic (CP) decomposition, Tucker decomposition and
Tensor Train decomposition. The factorization format differs
across different decomposition methods. In this section, we
explain briefly about CP-decomposition and Tucker decompo-
sition.

1) CP-decomposition: Canonical polyadic decomposition
(CANDECOMP/PARAFAC) [19]–[21] or usually referred to
CP-decomposition factorizes a tensor into the sum of outer
products of vectors. Assume we have a 3rd-order tensor W ∈

Rm1×m2×m3 , we can approximate it with CP-decomposition:

W ≈

R∑
r=1

g1,r ⊗ g2,r ⊗ g3,r (12)

Figure 4. CP-decomposition for 3rd-order tensor W

where ∀r ∈ [1..R], g1,r ∈ R
m1 , g2,r ∈ R

m2 , g3,r ∈ R
m3 , R ∈ Z+ is

the number of factors combinations (CP-rank) and ⊗ denotes
Kronecker product operation. Elementwise, we can calculate
the result by:

W(x, y, z) ≈
R∑

r=1

g1,r(x) g2,r(y) g3,r(z) (13)

In Figure 4, we provide an illustration for Eq. 12 in more
details.

2) Tucker decomposition: Tucker decomposition [21], [22]
factorizes a tensor into a core tensor multiplied by a matrix
along each mode. Assume we have a 3rd-order tensor W ∈

Rm1×m2×m3 , we can approximate it with Tucker decomposition:

W ≈ G0 ×1 G1 ×2 G2 ×2 G3 (14)

where G0 ∈ R
r1×r2×r3 is the core tensor, G1 ∈ R

m1×r1 ,
G2 ∈ R

m2×r2 , G3 ∈ R
m3×r3 are the factor matrices and ×n is

the n-th mode product operator. The mode product between
a tensor G0 ∈ R

n1×n2×n3 and a matrix G1 ∈ R
m1×n1 is a tensor

Rm1×n2×n3 . By applying the mode products across all modes,
we can recover the original W tensor. Elementwise, we can
calculate the element from tensor W by:

W(x, y, z) ≈
r1∑

s1=1

r2∑
s2=1

r3∑
s3=1

G0(s1, s2, s3)

G1(x, s1) G2(y, s2) G3(z, s3) (15)

where x ∈ [1, ..,m1], y ∈ [1, ..,m2], z ∈ [1, ..,m3]. Figure 5 gives
an illustration for Eq. 14

Figure 5. Tucker decomposition for 3rd-order tensor W

C. Tensor Train decomposition

Tensor Train decomposition [18] factorizes a tensor into
a collection of lower order tensors called as TT-cores. All
TT-cores are connected through matrix multiplications across
all tensor order to calculate the element from original tensor.



Assume we have a 3rd-order tensor W ∈ Rm1×m2×m3 , we can
approximate the element at index x, y, z by:

W(x, y, z) ≈
r1∑

s1=1

r2∑
s2=1

G1(x, s1)G2(s1, y, s2)G3(s2, z) (16)

where x ∈ [1, ..,m1], y ∈ [1, ..,m2], z ∈ [1, ..,m3] and G1 ∈

Rm1×r1 ,G2 ∈ R
r1×m2×r2 ,G3 ∈ R

r2×m3 as the TT-cores. Figure 6
gives an illustration for Eq. 16.

Figure 6. Tensor Train decomposition for 3rd-order tensor W

D. RNN parameters tensorization

Most of RNN equations are composed by multiplication
between the input vector and their corresponding weight
matrix:

y = Wx + b (17)

where W ∈ RM×N is the weight matrix, b ∈ RM is the
bias vector and x ∈ RN is the input vector. Thus, most of
RNN parameters are used to represent the weight matrices.
To reduce the number of parameters significantly, we need
to represent the weight matrices with the factorization of
higher-order tensor. First, we apply tensorization on the weight
matrices. Tensorization is the process to transform a lower-
order dimensional array into a higher-order dimensional array.
In our case, we tensorize RNN weight matrices into tensors.
Given a weight matrix W ∈ RM×N , we can represent them
as a tensor W ∈ Rm1×m2×..×md ×n1×n2×..×nd where M =

∏d
k=1 mk

and N =
∏d

k=1 nk. For mapping each element in matrix W to
tensor W , we define one-to-one mapping between row-column
and tensor index with bijective functions fi : Z+ → Z

d
+ and

f j : Z+ → Z
d
+. Function fi transforms each row p ∈ {1, ..,M}

into fi(p) = [i1(p), .., id(p)] and f j transforms each column
q ∈ {1, ..,N} into f j(q) = [ j1(q), .., jd(q)]. Following this, we
can access the value from matrix W(p, q) in the tensor W
with the index vectors generated by fi(p) and f j(q) with these
bijective functions.

After we determine the shape of the weight tensor,
we choose one of the tensor decomposition methods
(e.g., CP-decomposition (Sec.III-B1), Tucker decomposition
(Sec.III-B2) or Tensor Train [18]) to represent and reduce the
number of parameters from the tensor W . In order to represent
matrix-vector products inside RNN equations, we need to
reshape the input vector x ∈ RN into a tensor X ∈ Rn1×..×nd and
the bias vector b ∈ RM into a tensor B ∈ Rm1×..×md . Therefore,

we can reformulate the Eq. 17 to calculate y(p) elementwise
with:

Y(fi(p)) =
∑

j1,.., jd

W (fi(p), j1, .., jd) X( j1, .., jd)

+ B(fi(p)) (18)

by enumerating all columns q position with j1, .., jd and fi(p) =

[i1(p), .., id(p)].
For CP-decomposition, we represent our tensor W with

multiple factors gmk,r, gnk,r where ∀k ∈ [1..d]∀r ∈

[1..R], (gmk,r ∈ R
mk , gnk,r ∈ R

nk ). From here, we replace
Eq. 18 with:

Y(fi(p)) =
∑

j1,.., jd

 R∑
r=1

d∏
k=1

gmk,r(ik(p))gnk,r( jk)

 X( j1, .., jd)

+ B(fi(p)). (19)

By using CP-decomposition for representing the weight matrix
W, we reduce the number of parameters from M × N into
R ∗ (
∑d

k=1 mk + nk).
For Tucker decomposition, we represent out tensor W

with a tensor core G0 ∈ R
r1×...×rd×rd+1×...×r2d where ∀k ∈

[1..d], rk < mk and ∀k ∈ [1..d], rd+k < nk and multiple factor
matrices GMk,GNk, where ∀k ∈ [1..d], (GMk ∈ R

mk×rk ,GNk ∈

Rnk×rd+k ). Generally, the tensor core ranks r1, r2, .., rd are cor-
responding to the row in tensor index and rd+1, rd+2, .., r2d are
corresponding to the column in tensor index. From here, we
replace Eq. 18 with:

Y(fi(p)) =
∑

j1,.., jd

r1,..,rd ,rd+1,..,r2d∑
s1,..sd ,sd+1,..,s2d

G0(s1, ..sd, sd+1, .., s2d)

d∏
k=1

GMk(ik(p), sk)GNk( jk, sd+k)

 X( j1, .., jd)

+ B(fi(p)).
(20)

By using Tucker decomposition for representing the weight
matrix W, we reduce the number of parameters from M × N
into
∑d

k=1(mk ∗ rk + nk ∗ rd+k) + (
∏2d

k=1 rk).
For the TT-decomposition, we refer to [9] on how to repre-

sent the tensor W and how to calculate the linear projection
to replace Eq. 18.

In this work, we focus on compressing GRU-RNN by
representing all weight matrices (input-to-hidden and hidden-
to-hidden) with tensors and factorize the tensors with low-rank
tensor decomposition methods. For compressing other RNN
architectures such as Elman RNN (Sec. II-A) or LSTM-RNN
(Sec. II-B1), we can follow the same steps by replacing all
the weight matrices with factorized tensors representation.

E. Tensor Core and Factors Initialization Trick

Because of the large number of recursive matrix multiplica-
tions, followed by some nonlinearity (e.g, sigmoid, tanh), the
gradient from the hidden layer will diminish after several time-
step [23]. Consequently, training recurrent neural networks



is much harder compared to standard feedforward neural
networks.

Even worse, we decompose the weight matrix into multiple
smaller tensors or matrices, thus the number of multiplica-
tions needed for each calculation increases multiple times.
Therefore, we need a better initialization trick on the tensor
cores and factors to help our model convergences in the early
training stage.

In this work, we follow Glorot et al. [24] by initializing
the weight matrix with a certain variance. We assume that
our original weight matrix W has a mean 0 and the variance
σ2

W . We utilize the basic properties from a sum and a product
variance between two independent random variables.

Definition III.1. Let X and Y be independent random variables
with the mean 0, then the variance from the sum of X and Y
is Var(X + Y) = Var(X) + Var(Y)

Definition III.2. Let X and Y be independent random variables
with the mean 0, then the variance from the product of X and
Y is Var(X ∗ Y) = Var(X) ∗ Var(Y)

After we decided the target variance σ2
w for our original

weight matrix, now we need to derive the proper initialization
rules for the tensor core and factors. We calculate the variance
for tensor core and factors by observing the number of sum
and product operations and utilize the variance properties from
Def. III.1 and III.2. For weight tensor W based on the CP-
decomposition, we can calculate σg as the standard deviation
for all factors gmk,r, gnk,r with:

σg =
4d

√
σ2
w

R
(21)

and initialize gmk,r, gnk,r ∼ N(0, σ2
g).

For weight tensor W based on the Tucker decomposition,
we can calculate σg as the standard deviation for the core
tensor G0 and the factor matrices GMk,GNk with:

σg =
(4d+2)

√
σ2
w∏2d

k=1 rk
(22)

and initialize G0,GMk,GNk ∼ N(0, σ2
g).

For weight tensor W based on the Tensor Train decompo-
sition, we refer to [9] for initializing the TT-cores Gi.

IV. Experiments

In this section, we describe our dataset and all model
configurations. We performed experiments with three different
tensor-decompositions (CP decomposition, Tucker decompo-
sition and TT decomposition) to compress our GRU and also
the baseline GRU. In the end, we report our experiment results
and finish this section with some discussions and conclusions.
Our codes are available at https://github.com/androstj/
tensor_rnn.

A. Dataset

We evaluated our models with sequential modeling tasks.
We used a polyphonic music dataset [25] which contains
4 different datasets1: Nottingham, MuseData, PianoMidi and
JSB Chorales. For each active note in all time-step, we set
the value as 1, otherwise 0. Each dataset consists of at least 7
hours of polyphonic music and the total is ± 67 hours.

B. Models

We evaluate several models in this paper: GRU-RNN
(no compression), CP-GRU (weight compression via CP de-
composition), Tucker-GRU (weight compression via Tucker
decomposition), TT-GRU [9] (compressed weight with TT-
decomposition). For each timestep, the input and output targets
are vectors of 88 binary value. The input vector is projected by
a linear layer with 256 hidden units, followed by LeakyReLU
[26] activation function. For the RNN model configurations,
we enumerate all the details in the following list:

1) GRU
• Input size (N): 256
• Hidden size (M): 512

2) Tensor-based GRU
• Input size (N): 256
• Tensor input shape (n1..4): 4 × 4 × 4 × 4
• Hidden size (M): 512
• Tensor hidden shape (m1..4): 8 × 4 × 4 × 4
a) CP-GRU

• CP-Rank (R): [10, 30, 50, 80, 110]
b) Tucker-GRU

• Core (G0) shape:
– (2 × 2 × 2 × 2) × (2 × 2 × 2 × 2)
– (2 × 3 × 2 × 3) × (2 × 3 × 2 × 3)
– (2 × 3 × 2 × 4) × (2 × 3 × 2 × 4)
– (2 × 4 × 2 × 4) × (2 × 4 × 2 × 4)
– (2 × 3 × 3 × 4) × (2 × 3 × 3 × 4)

c) TT-GRU
• TT-ranks:

– (1 × 3 × 3 × 3 × 1)
– (1 × 5 × 5 × 5 × 1)
– (1 × 7 × 7 × 7 × 1)
– (1 × 9 × 9 × 9 × 1)
– (1 × 9 × 9 × 9 × 1)

In this task, the training criterion is to minimize the negative
log-likelihood (NLL). In evaluation, we measured two different
scores: NLL and accuracy (ACC). For calculating the accuracy,
we follow Bay et al. [27] formulation:

ACC =

∑T
t=1 T P(t)∑T

t=1 (T P(t) + FP(t) + FN(t))
(23)

where T P(t), FP(t), FN(t) is the true positive, false positive
and false negative at time-t.

1Dataset are downloaded from: http://www-etud.iro.umontreal.ca/
∼boulanni/icml2012

https://github.com/androstj/tensor_rnn
https://github.com/androstj/tensor_rnn
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012


For training models, we use Adam [28] algorithm for
our optimizer. To stabilize our training process, we clip our
gradient when the norm ||∇w|| > 5. For fair comparisons, we
performed a grid search over learning rates (1e−2, 5e−3, 1e−3)
and dropout probabilities (0.2, 0.3, 0.4, 0.5). The best model
based on loss in validation set will be used for the test set
evaluation.

C. Result and Discussion

Figure 7. NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU on
Nottingham test set

Figure 8. NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU on
JSB Chorales test set

We report results of our experiments in Table. I. For the
baseline model, we choose standard GRU-RNN without any
compression on the weight matrices. For the comparison
between compressed models (CP-GRU, Tucker-GRU and TT-
GRU), we run each model with 5 different configurations and
varied the number of parameters ranged from 2232 up to
12184. In Figure 7-10, we plot the negative log-likelihood
(NLL) score corresponding to the number of parameters for
each model. From our results, we observe that TT-GRU
performed better than Tucker-GRU in every experiments with
similar number of parameters. In some datasets (e.g., Piano-
Midi, MuseData, Nottingham), CP-GRU has better results
compared to Tucker-GRU and achieves similar performance
(albeit slightly worse) as TT-GRU when the number of pa-
rameters are greater than 6000.

Figure 9. NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU on
PianoMidi test set

Figure 10. NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU
on MuseData test set

V. RelatedWork

Compressing neural network has been studied intensively
in the recent years. Some works have been proposed to
reduce the number of bits needed to represent neural network
weight values. Instead of using full precision 32-bit floating
points, Courbariaux et al. [29] and Gupta et al. [30] half
precision floating points is sufficient to represent the neural
network weights. Later, Courbariaux et al. [5] represented the
floating point numbers in the weight matrices into the binary
values and replace most arithmetic operations with bit-wise
operations.

“Distilling” the knowledge from a larger model into a
smaller model is popularized by Hinton et al. [6]. There
are several steps for knowledge distillation: 1) Train a large
neural network model with hard labels as the output target,
2) Using a trained large neural network, generate the soft
label from each input by taking the last softmax output with
higher temperature, 3) Train a smaller neural network with
the soft target as the output target. Tang et al. [31] adapt
knowledge distillation by using large DNN soft-targets to
assist the RNN model training. Kim et al. [32] proposed
sequence-level knowledge distillation for compressing neural
machine translation models.



Table I
Comparison between all models and their configurations based on the number of parameters, negative log-likelihood and accuracy of polyphonic test set

Dataset
Nottingham JSB PianoMidi MuseDataModel Config Param

NLL ACC NLL ACC NLL ACC NLL ACC
GRU

IN:256
OUT:512

1181184 3.369 71.1 8.32 30.24 7.53 27.19 7.12 36.30

Rank
10 2456 3.79 67.51 8.60 27.29 8.15 19.03 7.87 27.32
30 4296 3.48 69.85 8.49 28.33 7.68 25.03 7.27 36.19
50 6136 3.46 69.56 8.40 28.47 7.66 26.18 7.23 36.34
80 8896 3.43 69.73 8.41 27.88 7.61 28.28 7.19 36.57

CP-GRU
IN: 4,4,4,4

OUT: 8,4,4,4

110 11656 3.34 70.42 8.41 29.45 7.60 27.36 7.18 36.89
Cores
2,2,2,2 2232 3.71 68.30 8.57 27.28 7.98 20.79 7.81 29.94
2,3,2,3 4360 3.64 68.63 8.48 28.10 7.75 24.92 7.38 34.20
2,3,2,4 6408 3.55 69.10 8.44 28.06 7.73 25.66 7.69 32.50
2,4,2,4 10008 3.52 69.18 8.41 27.70 7.75 24.46 7.38 35.58

TUCKER-GRU
IN: 4,4,4,4

OUT: 8,4,4,4

2,3,3,4 12184 3.41 70.23 8.43 29.03 7.69 25.26 7.43 33.63
TT-rank
1,3,3,3,1 2688 3.49 69.49 8.37 28.41 7.60 26.95 7.49 34.99
1,5,5,5,1 4096 3.45 69.81 8.38 28.86 7.58 27.46 7.50 33.37
1,7,7,7,1 6016 3.40 70.72 8.37 28.83 7.57 27.58 7.23 36.53
1,9,9,9,1 8448 3.35 70.82 8.36 29.32 7.58 27.62 7.20 37.81

TT-GRU
IN: 4,4,4,4

OUT: 8,4,4,4

1,11,11,11,1 11392 3.38 70.51 8.37 29.55 7.58 28.07 7.16 36.54

Low-rank approximation for representing the weight param-
eters in neural network has been studied by [33], [7], [34]. The
benefits from low-rank approximation are reducing the number
of parameters as well as the running time during the training
and inference stage. Novikov et al. [8] replaced the weight
matrix in the convolutional neural network (CNN) final layer
with Tensor-Train [18](TT) format. Tjandra et al. [9] and Yang
et al. [35] utilized the TT-format to represent the RNN weight
matrices. Based on the empirical results, TT-format are able
to reduce the number of parameters significantly and retain
the model performance at the same time. Recent work from
[36] used block decompositions to represent the RNN weight
matrices.

Besides the tensor train, there are several tensor decompo-
sition methods that are also popular such as CP and Tucker
decomposition. However, both the CP and the Tucker de-
composition have not yet been explored for compressing the
RNN model. In this paper, we utilized the CP and the Tucker
decomposition to compress RNN weight matrices. We also
compared the performances between the CP, Tucker and TT
format by varying the number of parameters at the same task.

VI. Conclusion
In this work, we presented some alternatives for com-

pressing RNN parameters with tensor decomposition methods.
Specifically, we utilized CP-decomposition and Tucker decom-
position to represent the weight matrices. For the experiment,
we run our experiment on polyphonic music dataset with
uncompressed GRU model and three tensor-based RNN mod-
els (CP-GRU, Tucker-GRU and TT-GRU). We compare the
performance of between all tensor-based RNNs under various
number of parameters. Based on our experiment results, we
conclude that TT-GRU has better performances compared to
other methods under the same number of parameters.
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