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Abstract—The sense and avoid capability enables insects to fly
versatilely and robustly in dynamic and complex environment.
Their biological principles are so practical and efficient that
inspired we human imitating them in our flying machines. In
this paper, we studied a novel bio-inspired collision detector
and its application on a quadcopter. The detector is inspired
from Lobula giant movement detector (LGMD) neurons in the
locusts, and modeled into an STM32F407 Microcontroller Unit
(MCU). Compared to other collision detecting methods applied
on quadcopters, we focused on enhancing the collision accuracy in
a bio-inspired way that can considerably increase the computing
efficiency during an obstacle detecting task even in complex and
dynamic environment. We designed the quadcopter’s responding
operation to imminent collisions and tested this bio-inspired
system in an indoor arena. The observed results from the
experiments demonstrated that the LGMD collision detector is
feasible to work as a vision module for the quadcopter’s collision
avoidance task.

Index Terms—Bio-inspiration, LGMD, Collision avoidance,
Locusts vision, Quadcopter

I. INTRODUCTION

Quadcopter and its application has become ever more
promising, this is because of their ability of agilely flying in
real world and exploring extreme environment. Markets pursue
flying platform with more intelligence to accomplish robot
tasks. Thus, the ability to sense and avoid surroundings is
more and more vital for the quadcopter. Traditionally, UAVs
use global positioning system (GPS) or optic flow[1][2] to
navigate, and use ultra sonic, infrared, laser, or a cooperative
system to avoid obstacles as reviewed by [3]. However, it is
still challenging for quadcopters to fly automatically in an
unfamiliar environment. The SLAM algorithm[4][5] has made
progress to address this problem by learning a 3D map of the
whole view field, however, it requires too much computing
power which constrict this technology to be applied to smaller
quadcopters. Thus, we need to study more computing efficient
methods for small or micro quadcopters. Nature demonstrates
varieties of the successful mechanisms in collision avoidance
situation, i.e. the locust is known to have professional fly
skills and can fly in millions with out collision. There is a
highly specialized neuron in the lobula plate that responds
to image luminance, selectively to imminent collision or
approaching predators, which is so called: the lobula giant
movement detector (LGMD)[6][7]. This neural network has
been modeled[7][8] and promoted (e.g. [9][10][11][12]) by
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Fig. 1. Hardware presentation.

previous researchers. The LGMD collision detector has been
introduced to mobile robots[13], embedded systems[14][15],
cars[16][17], blimp[18], and so on[19]. Whereas, it hasn’t been
challenged to any faster or more agile aerial vehicles. The
LGMD neural network has been introduced to a quadcopter
platform[20] by Salt. They novelly put forth an spiking neuron
network (SNN) based LGMD model and applied an SNN
based vision sensor for vision input. However, few flight
experiments have been achieved. Our work is the first time
to use the LGMD neural network to achieve a quadcopter’s
avoiding flight control in real flight, and the results reflected
the LGMD detector’s features confronting obstacle in a com-
plex environment.

II. ALGORITHM DESCRIPTION

The LGMD algorithm used in this paper is inherited from
our previous model described in Yue and Rind[10] and Cheng
Hu[15][13] as Fig.2 shows, with some simplification and
approximation. The model is composed of five groups of cells,
which are P-cells (photoreceptor), I-cells (inhibitory), E-cells
(excitatory), S-cells (summing) and G-cells (grouping) and
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Fig. 2. [10] A schematic illustration of the LGMD based neuron network
for collision detection. There are five groups of cells and two single cells.
Photorecepter cells (P); Lateral inhibitory and excitatory cells (I and E);
Summing cells (S); Grouping cells (G); the LGMD cell and feed forward
inhibition cell (FFI); The input of the P cells is the luminance change,
Lateral inhibition is indicated with dotted lines and is delayed by one frame.
Excitation is indicated with black lines and without delay. The FFI is also
delayed by one frame.

also two individual cells, namely, the feed-forward inhibitory
and LGMD.

The first layer of the neuron network is composed of P cells,
which are arranged in a matrix, formed by the difference of
luminance between adjacent frames which are captured by the
camera. Comparing to the define in Yue and Rind[10], a little
tail for visual persistence is removed to reduce computation
power. The output of a P cell is given by:

Py(z,y) = Ly(x,y) — Li-1(,y) 1)

where Py (z,y) is the change of luminance of pixel(z,y) at
frame f, L¢(z,y) and Ly_q(z,y) are the luminance at frame
f and the previous frame.

The output of the P cells forms the input of the next layer
and is processed by two different types of cells, which are I
(inhibitory) cells and E (excitatory) cells. The E cells pass the
excitatory flow directly to S layer so that the E cells has the
same value to its counterpart in P Layer; While the I cells
pass the inhibitory flow convoluted by surrounded delayed
excitations:

Et(x,y) = Ps(z,y)
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where the W (i, j) denotes the local inhibition weight matrix
and r indicate the inhibition radius (set to be 2 in our test). In
the inhibition layer, It is notable that i and j are not allowed
to be equal to zero simultaneously. This means the inhibition

is only spread out to its neighbouring cells in the next layer
rather than to its direct counterpart in the next layer.

The I layer can also be treated as a simplified convolution
operation:

Uy =[Py ®[w]; 4)

where [w]sis the convolution mask representing the local
inhibiting weight distribution from the centre cell of P layer
to neighbouring cells in S layer, a neighbouring cell’s local
weight is reciprocal to its distance from the centre cell:
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The next layer is the Sum layer, where the excitation and
inhibition from the E and I layer is combined by linear
subtraction:

Where W; denotes the inhibition coefficient. However, the
excitation would be falsely strengthened by the inhibition flow
when using 6 if the inhibition has an opposite sign to the
excitation. So an additional condition is significant to constrict
the result:

Ef(x,y),
Sp(x,y),

The G layer is introduced to this module in order to reduce the
noise from the background. The expanded edges represented
by clustered excitations are enhanced to extract colliding ob-
jects against complex backgrounds. This layer allows clusters
of excitations in the S cells to easily pass to its corresponding
G cells and provide a greater input to the membrane potential
of the LGMD neuron compared with the excitation from a
single S cell. This mechanism is implemented with a passing
coefficient for each cell, which is defined by a convolution
operation in the S layer. The passing coefficient is determined
by its surrounding pixels, given by:

[Cel; = [S]y @ [we] (®)

if E¢(z,y) - If(x,y) <O
otherwise.

Sf(xvy) = { (7)

where w, represents the influence of its neighbours and this
operation can be simplified as a convolution mask:
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The excitation correspond to each cell becomes:

Gy(x,y) = Sy(z,y)Cep(z,y)w ! (10)
where w is a scale and computed at every frame:
w = 0.01 +max|[Ce]; - C, | (11



in which Cy, is a constant and max|[Ce]s| is the largest

absolute value of C.. The G layer is followed by a threshold
set to filter decayed excitations:

~ Gy(z,y), if Gy(z,y) > Tye

Gelx,y) = 12

£(@,9) {O, otherwise. 12

Where T, is the decay threshold. This grouping process can

not only enhance the edges of immanent objects, but also filter

out the sporadic excitation generated by background details.

The membrane potential of the LGMD cell K is calculated:

Kr=3_> |Gs(z.y) (13)
Ty
and then normalized by the equation:
tanh(y/ K¢ — NeennC
oy = PG/ Ky ~ nenCh) (14)
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where C7 and Cy are constants to shape the normalizing

function, limiting the excitation x; varies within [0, 1], ncey

represents the total number of pixels in one frame of image.
If the normalised value ~y exceeds the threshold, then a

spike is produced:
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An impending collision is confirmed if successive spikes last
consecutively no less than ng, frames:

if Ky > T,

15
otherwise. (13
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0, otherwise.
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Normally, the LGMD detector generate an “avoid” command
if the spike last a few frames(CfGMD = 1). However,
it is not surprised when turning or nodding, a whole-field
looming change will leads to false alarm. The feed forward
inhibition(FFI) copes with such saccade-like movement by
suppress the response to (Cf<*P). Given that the membrane
potential of FFI cell is proportional to the summation of
excitations in all cells with one frame delay:

Fr=3 > (IPr1(z,y)ngy

Once F; exceeds its threshold Trp; , spikes in the LGMD
are inhibited immediately, the quadcopter will not respond to
LGMD spikes in this case:

an
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In our case, the LGMD result(CfGM DYy and FFI result(CfF Iy
cooperate to decide the motion state of the quadcopter. The
command generated by FFI result has higher priority so that
it is able to suppress the response to LGMD in a saccadic-like
situation. Motion task switch is handled by a task scheduler
explained in Fig.5

The initial values for each parameters are listed in TABLE.1.

. (18)
otherwise.

TABLE I
INITIAL PARAMETERS OF LGMD BASED NETWORK

Name Value Description
Wr 1.0 Inhibition Coefficient of inhibition
layer
Cw 4 Grouping decaying
Trrr 90 Threshold of FFI output
Tde 500 Grouping layer threshold
Ts 35 Spiking threshold for LGMD
Neell 7128 Number of cells
Nsp 5 Minimal LGMD spike numbers
for a decision
[ 150 Constant for normalization
Co 80 Constant for normalization

III. SYSTEM OVERVIEW

In this section, the outline of the whole system is described.
To accomplish the obstacle detecting task, luminance informa-
tion is collected by the camera on the sense board, and then
input into the LGMD algorithm, the output is passed through a
USART port into the flight control to monitor avoiding tasks.

A. LGMD Vision Detector

The LGMD vision detector is designed to process image in-
formation and to simulate the LGMD neural network on board.
It is from the vision module of ’Colias’, an open-hardware
modular micro robot for swarm robotic applications[21][22].
The detector is mainly consist of a Micro-controller and a
CMOS camera. The LGMD algorithm mentioned in the pre-
vious part is designed into a 32-bit MCU STM32F407, which
clocked at 168 MHz to provides the necessary computational
power to have a real-time image processing. It contains 192
Kbyte SRAM that provides enough spaces for image buffing
and computing. Images are captured by a CMOS image sensor
OV7670 module, which is capable to operating up to 30
frames per seconds(fps) in VGA mode with output support
for RGB422, RGB565 and YUV422. The viewing angle is
approximately 70 degrees. As a trade-off for image quality
and data consumption, we choose a resolution of 72*99 pixels
at 30fps, with output format of 8-bit YUV422. The Detector
also provides USART interface to transmit results between the
flight control module .

B. Quadcopter Platform

In this paper, we used a DIY quadcopter with the skeleton
size of 33cm between diagonally rotors as the testbed for
the collision detector. The flight control module we used is
based on a STM32F407V and provides 5 USART interface
for extra peripheral. It is an open source flight control mod-
ule(http://www.anotc.com) which contains basic posture sta-
bilization algorithm and communication protocol against the
ground station, and could be easily modified to accommodate
our tasks. A Pix4Flow optic flow module[1] is introduced to
generate relative position information and help stabilize the
quadcopter. This module usually serve as an alternative of
GPS especially in indoor condition where GPS signal is weak
or constricted. The source data from the Pix4Flow module is
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Fig. 3. The structure of the quadcopter platform. The quadcopter is a
multi-sensor platform which includes an IMU(Inertial Measurement Unit),
an ultrasonic sensor, an optic flow sensor and the LGMD detector. The flight
control module works as the central controller to combine the other parts
together. It receives source data from the embedded IMU module(MPU6050),
the Pix4flow optic flow sensor, and the LGMD detector, calculates out the
PWM(Pulse-Width Modulation) values as the output to the four motors. It
also sends back real time data for analysis through the nRF24L.01 module
and sample images through the bluetooth.

velocity in two axis, this velocity works as the input of a new
cascaded PID loop to help nail the quadcopter. In our test,
we also integrated the velocity as the approximately position
information. The battery is 2200 mAh, which can endure 10-
12 minutes without drop-off.

C. Ground Station and Supporting Softwares

Data of the flight control could be transmitted between the
flight control module and the off board ground station(PC)
through a nRF24L.01 2.4GHz wireless module. In all the trials,
we set the data exchange rate at 100 Hz. In addition, we used
a pair of bluetooth module(HC-05) to transmit sample images
during trials. One of the bluetooth is connected to the LGMD
detector while another is connected to the computer.

D. Motion Control Mechanism

In this section, the logical bridge between the output of
the LGMD sensor and the UAVs action is elaborated. The
mechanism will include how the optic flow sensor is used to
estimate the UAVs position and to feedback the control loop.

1) Stabilizing Mechanism: The quadcopter is stabilized by
using the algorithm of a cascaded PID loop which is composed
of the angular control loop(outer loop) and the angular velocity
control loop(inner loop). Traditionally, the input of the outer
loop is the data from the remote control, which represents
expected angular of the quadcopter. The output of the outer
loop is cascaded to the inner loop as the expected angular
velocity. The structure of the PID loops is illustrated in Fig.4.

2) Hovering Methods: Generally, the basic cascaded PID
control works well to keep the posture of the quadcopter but
cannot nail it in the air. That’s because we cannot get the

Basic Cascaded PID control for an IMU system

: outer Loop PID inner Loop PID -
oy
Remote
control data H
D v ; : v__ 5
expected | nput/ el ) II’ [ expected angular l|=’ " PwM |
\ﬂ/ . angul‘ar velocity
A - g \_ velocity
Optic flow PID
Optic flow

data(velocity
infomation)

P
expected I
accelerate

D

Fig. 4. A schematic of the motion control mechanism. Traditionally, a
quadcopter can be stabilized through the basic cascaded PID control loop,
and we added the optic flow loop to help the quadcopter to nail itself and to
understand its position while executing tasks. Previously, the expected angular
is transformed from the Remote control data, and now, it is the algebraic
sum of the remote control data and the result of the optic flow PID. The
expected accelerate can be transformed to the expected angular because they
are relatively proportional while the quadcopter has an insignificant angle of
inclination.

accurate velocity of the quadcopter through the accelerom-
eter unless the accumulative error is insignificant. In our
test, considering to the indoors condition, to accomplish the
hovering function is necessary. Thus, an additional velocity
sensor is needed to revise the accumulative error caused by
the accelerator. A Pix4Flow sensor is used in our quadcopter.
This optic flow sensor supplies the optic flow velocity in two
axis, and can be integrated to reflect position information of
the quadcopter. We added a new PID control loop for optic
flow data, As the velocity information of the quadcopter, the
optic flow data is also cascaded to the angular control loop(the
outer loop).

3) Task Scheduler: When flying in the arena, the flight
is restricted in a 2-D plane. The quadcopter is challenged
to switch its motion state in response to impending collision
appropriately. The motion state is handled by a task scheduler,
which switches tasks among “cruise, avoid and slowdown,
depending on the decision made by the cooperation of LGMD
and FFI. The quadcopter will fly in straight line if it is clear on
the route, and will shift to the side by an approximate distance
to avoid the obstacles if the LGMD detected an potential
collision. The task flow is illustrated in Fig.5.

IV. EXPERIMENTS AND RESULTS

As discussed, this bio-inspired collision detector is tested
to verify its properties. 3 kinds of tests were implemented to
verify the superiority of the LGMD collision detector and its
compatibility with quadcopter.



Cruise

+FF! =
aon &8 Ty T
(f_", P=b

Avoiding

Fig. 5. Task scheduler schematic. The quadcopter works in ’cruise’ task in
normal situation, which is to fly straightly at an uniform speed, from the
start to the destination and vise versa after reach the destination. The task
state will change to the other two states in different conditions: a) If the
LGMD excitation exceeds the threshold and last ns, frames(which leads to:
CLGMD — 1), the scheduler will invoke the ‘avoid’ task which process
to stop fly ahead and then shift to the lateral side by a defined distance. b)
Disparately, once the FFI exceeds the threshold(which leads to: CJF I — 1),
which means huge image motion generated by the quadcopter’s own deviation,
the interaction to LGMD excitation should be inhibited. In this case, the
schedular invokes the ’slowdown’ task to weaken the camera’s shake.

A. Fixed Detector & Moving Object Tests

We first tested the performance of the LGMD Detector
confronting factors that cause to luminance change with the
detector stationary. Both video simulation and real moving
objects have been served as the target and the results are
shown in Fig.6 and Fig.7. While confronting the simulated
lateral shifting pattern, the responses of the LGMD cells
kept almost silent and far from the threshold while the FFI
spikes continuously kept at a high value. In this case, when
the FFI exceeds its threshold and the LGMD keeps low,
a slow-down command will be send to the flight control
module because this usually means huge image change is
generating by the quadcopter’s own deviation. When tested
by real moving object, the LGMD is selectively motivated
by the approaching jar instead of the lateral shifting one.
Compared to traditional frame difference methods, The LGMD
neural network is prevented from vulnerably being activated by
changing backgrounds. The LGMD collision detector’s superi-
ority in differentiating complex backgrounds and approaching
foregrounds comes from the lateral inhibition neural structure,
the experiments demonstrated that the LGMD neural network
is an ideal model in differentiating changing backgrounds and
approaching targets.

B. Features analysis & Parameters adjustment

Before the quadcopter is pushed to accomplish avoiding
tasks, we analyzed the features and characters of the LGMD
when the quadcopter is flying in the Arena. The detector’s
parameters are adjusted to the degree that it hardly alarms
falsely towards backgrounds despite surrounding obstacles.
The quadcopter is also tested to ensure that it responds differ-
ently when image motion is generated by itself deviation and

(a) A sample frame of the simu-
lated video

Simulated shifting gratings video test
T T

T
——LGMD Spike Value
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200 —=~LGMD Threshold
— —  FFI Threshold

(b) Spiking results in gratings simulation

Fig. 6. Neural responses for video simulation. A simulated lateral shifting
gratings pattern is presented in front of the detector’s camera, the result is
sent back through the nRF24101 module on the quadcopter at the frequency of
100Hz(the same as the following: Fig.7(c),Fig.7(d), Fig.8(b), Fig.10(b)). The
responses of the LGMD cells kept almost silent and far from the threshold
while the FFI spikes continuously kept at a high value. This result explains
the utility of the lateral inhibition layer, which is to suppress the response to
lateral shifting things and slowly changing backgrounds so that the LGMD
neural network only interests to quickly moving/approaching object.

by approaching object, see Fig.8. The experiment is carried
out while the quadcopter is hovering in the arena, an external
force is given to the quadcopter to make it rotates. The huge
image change exceeds the ability of the lateral inhibition cells,
so both the FFI and LGMD spikes exceeds their threshold
successively. We adjusted the threshold of FFI to make it easily
reached when face to such huge image change, so that the
FFI spikes increase so quickly to hit the line that the LGMD
spikes cannot stay sufficient frames upon the threshold. In this
case, The response of the LGMD is ignored and a slow down
command is generated to reduce influences from self-rotation
once the FFI hit the threshold line.

C. Obstacle Avoiding Test

Finally, we tested this bio-inspired method with the quad-
copter to challenge its performance in obstacle avoiding case.
The arena is indoors, as shown in Fig.9, flex banner with
special texture is put on the ground to enhance the accuracy
of the optic flow sensor. A box(pasted with textured paper)
is set in the middle of the room, as the ’obstacle’. Our task
is to let the quadcopter flies automatically approaching the
obstacle and avoid it automatically by the command generated
from the LGMD detector. In the experiments, we have carried
out 6 trials to collect the data. In each trial, the quadcopter
starts from flying towards the obstacle. Once it detected the
imminent collision, it shifted left to avoid the collision. The
trajectories of these trials have been extracted and overlaid on
a screenshot of the scene, as shown in Fig.11. Trajectories are
detected by a python program using background subtractor[23]
and template matching[24] method, and then printed onto a
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(b) Sample images for approaching object
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(c) Result of laterally shifting objects test.

Fixed detector & object test
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(d) Result of approaching objects test.

Fig. 7. Spiking results for moving object with the detector fixed. We put
a jar onto a small mobile robot(Colias) and let the robot moves laterally
or towards the camera from the same start point. As the result shows, the
spike value keeps at a low level when face to lateral shifting object, while
increases quickly towards approaching object. In the approaching object test,
the imminent collision is detected at around 460(10ms), and the spike value
increases continuously until the jar hit the camera at around 600(10ms).

-

(a) Sample frames of the surroundings
during self-rotation

Spikes during a self-rotation
T T T

(b) Spiking results caused by self-rotation

Fig. 8. Self-rotation test. In this case, We give an external force to the
quadcopter, and make the quadcopter rotates while its hovering in the air.
The both line exceeds their threshold but the FFI spikes increase so quickly
to hit the line that the LGMD spikes cannot stay sufficient frames upon the
threshold. Thus, the response of the LGMD is ignored and a slow down
command is generated to reduce influences from self-rotation.

(a) Sample frames when heading the
obstacle

Cruise and obstacle avoiding test
T T

T T 3
—— FFI Spike Value
—+—LGMD Spike Value
~ =~ LGMD Threhold
~—~ FFI Threshold

+  Avoiding Behaviour Started Point
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(b) Spiking results in avoiding test

Fig. 10. Result of the obstacle avoiding test in the arena. The green line is
the output of the FFI layer; The blue line is the output of the G layer(LGMD
cell); The obstacle was first detected at the point marked with red star, and the
quadcopter succeeded to avoid the obstacle before colliding. The excitation
keeps a high level during the avoiding process, where we close the response
to the repeated excitation until an avoiding process finished.

screen shot from the overlook camera. In all the experiments,
the quadcopter had successfully avoided the obstacle with
the LGMD detector. A typical spiking result of the network
during an avoiding test is shown in Fig.10(b). Both FFI and
LGMD spike value increase while approaching the obstacle,
the LGMD spike climbs quickly and stayed enough frames
over the threshold. Thus, at the point marked with red star, the
LGMD detector generated an avoiding command and alarmed
the flight control module to execute the avoiding movement.

V. CONCLUSION

In the above sections, the bio-inspired vision detector is
challenged on a quadcopter platform to accomplish obstacle
avoiding task. The results shows the reliability and efficiency
of this novel method. The approaching selectivity (compared
to lateral shifting objects and changing backgrounds) and
computing efficiency are the main priority of this bio-inspired
method. The LGMD collision detector is capable to cope
with coming collisions for a quadcopter platform, and has the
potential to cooperate with the other current exiting collision
avoidance solutions.



Fig. 11. Automatically flying trajectories during the obstacle avoidance
test. Several trajectories of the center point of the quadcopter were printed
onto the image with different color, the starting point is decorated by dots.
The trajectories show clearly that the quadcopter can avoid the obstacle
appropriately before striking it.
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