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Abstract—Speech recognition has become an important task
to improve the human-machine interface. Taking into account
the limitations of current automatic speech recognition systems,
like non-real time cloud-based solutions or power demand,
recent interest for neural networks and bio-inspired systems has
motivated the implementation of new techniques.

Among them, a combination of spiking neural networks and
neuromorphic auditory sensors offer an alternative to carry
out the human-like speech processing task. In this approach,
a spiking convolutional neural network model was implemented,
in which the weights of connections were calculated by training
a convolutional neural network with specific activation functions,
using firing rate-based static images with the spiking information
obtained from a neuromorphic cochlea.

The system was trained and tested with a large dataset
that contains ”left” and ”right” speech commands, achieving
89.90% accuracy. A novel spiking neural network model has been
proposed to adapt the network that has been trained with static
images to a non-static processing approach, making it possible
to classify audio signals and time series in real time.

Index Terms—speech recognition, audio processing, Spiking
Neural Networks, Convolutional Neural Networks, neuromorphic
hardware, deep learning.

I. INTRODUCTION

Voice commands are commonly used in multiple personal
virtual assistants [1], like Cortana in Microsoft Windows, or
Siri in iOS. Users are able to control their personal computers
or mobile phones by using natural language sentences, like
”Remind me to call Robert in the afternoon”, or more directly,
”Call Robert”. This kind of assistants are based on a field of
Artificial Intelligence (AI) called Natural Language Processing
(NLP) to identify what the user is saying [2], [3]. The audio is
processed and analyzed using Digital Signal Processing (DSP)
techniques, such as speech processing [4].

Speech recognition is the interdisciplinary sub-field of
speech processing, in which spoken sentences are recognized
and translated to text (or other data representation) using
specific methodologies. Typically, these methods identify each
spoken word in isolation, applying several processing steps to
obtain features that are then mapped to a specific word [5].

In recent years, the application of Artificial Neural Network
(ANN) to this field has become commonplace. Notably,
the combination of Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) has led to significant
progress in developing human-machine interface, as in [6],
[7], [8], [9]. Recently, the Google WaveNet system [10]
demonstrated significantly improved comprehension of entire
conversations as well as being able to generate human-like
speech from text, based on a CNN trained on raw audio voice
characterization.

Training CNNs is a relatively easy task. There exist several
frameworks and training mechanisms to achieve this. The most
used training algorithm (for ANN and CNN training) is the
well-known Levenberg-Marquardt back-propagation algorithm
[11]. In contrast, there is no established standard training
algorithm for Spiking Neural Networks.

Spike-Time-Dependant Plasticity (STDP) is a biological
process that is able to adjust the strength (weights) of the
connections between neurons based on the relative timing
of a particular neuron’s output and input spiking activity.
This process has been implemented in several simulators
and hardware platforms, including SpiNNaker [12], and has
become one of the most ubiquitous approaches for training
spike-based networks especially for unsupervised learning
[13]. STDP has proved to be very useful and robust for static
input signals like images [14], [15], but it is more difficult to
apply when it comes to processing time-varying signals such
as audio samples.

As an alternative to STDP, the weights of the connections
between neurons in a network could be set by hand or based
on particular statistical algorithms. This approach was taken
into account in papers like [16], in which the authors set the
weights using two different firing-rate based normalizations
for classifying between eight different pure tones. This option
is complex because it generally needs several trial-and-error
loops in order to find the best weight configuration, which can
take a long time. Also, this way of setting the weights of the
connections is too task specific and lacks the generality and
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Fig. 1: Neuromorphic Auditory Sensor (NAS) block diagram.

biological plausibility of STDP.
Due to the increasing interest in SNNs, numerous works

have tried to develop new frameworks or methods to
automatically train SNN models. The first approach is to
develop new STDP-based algorithms, as in [17], who used
the force firing technique for incremental learning, making it
possible to learn new patterns continually in real-time using
an unsupervised learning procedure. Also, in [18], the authors
used a new learning rule, named fatiguing STDP, which
combines the long-term STDP dynamics with a mechanism
of short-term synaptic fatigue dynamics.

There are many other bio-inspired techniques for training
neural models, such as the use of evolutionary algorithms [19]
to adjust the weights of the network.

In recent time, the difference in classification error between
deep SNNs and deep ANNs has diminished significantly [20].
These exciting results suggest that, if trained appropriately,
an SNN can be used for machine learning inference without
introducing penalties in data classification accuracy. Using a
deep SNN instead of a deep ANN alternative can provide a
machine learning system with power saving and input noise
tolerance benefits [21].

Additionally, such deep SNNs can be trained on input
data generated from a neuromorphic spiking sensor device,
unlocking the potential for a real-time inference system on
a spiking neuromorphic platform [22]. We believe that only
when these are combined the true strengths of a fully spike-
based processing system will be apparent.

The aforementioned developments in deep SNNs show
accurate classification of static input data (images) using a
deep convolutional SNN. We show in this work that we are
able to train a similarly structured network on time series
input data from a Neuromorphic Auditory Sensor (NAS) [23]
produced from a range of sound inputs. By using a technique
of generating a training dataset consisting of many overlapping
‘snapshots’ of the NAS output and a ‘time-buffering’ input to
the SNN, we are able to produce a robust inference on time
varying spiking inputs.

The rest of the paper is structured as follows: section II
presents an overview of the system architecture and the speech
commands database that was used in this work along with
how the train and test datasets were generated. Then, section
III describes the whole framework that was used to train and

simulate the SNN with the audio samples dataset that was
obtained from the previous section. Then, section IV describes
the results of both the training and the simulation. Up to this
point, this setup is used for training and testing the system
with static inputs (audio samples are converted into images),
so in section V we propose a novel SNN architecture to use
the network that was previously trained with static data in real
time using a live input from a neuromorphic cochlea. Finally,
the conclusions of this work are presented in section VI.

II. SYSTEM OVERVIEW, DATASET ACQUISITION AND
PREPROCESSING OF THE INFORMATION

In audio processing, a Digital Signal Processor is usually
used to carry out large audio processing tasks, due to the
computational capabilities of these devices. The neuromorphic
approach uses bio-inspired devices that mimic the behavior
of biological senses, reproducing with greater fidelity the
individual steps by which the ear and the auditory cortex
interact to process aural information.

In recent years, several researchers have developed theo-
retical cochlea models, using either analog or digital circuits
to implement their models. As a result, many neuromorphic
hardware platforms have appeared and are being used in
research projects. There exist several models of analog [24]
[25] [26] and digital cochleae [27] [28] [29] [30].

In this work we use a Neuromorphic Auditory Sensor
[23] (NAS), which is a digital cochlea implementation. It
is a FPGA-based sensor, in which all processing modules
are spike-based. As it is implemented on a reconfigurable
platform, this sensor’s configuration parameters are flexible
and can be adapted to any application.

This kind of sensors mimic how the biological cochlea
processes audio signals. The cochlea is able to decompose
the input audio signal into different frequency bands (also
called channels). This decomposition is carried out by a series
of cascade-connected stages that subtract the information
from consecutive spike-based low-pass filters’ output spikes in
order to reject out-of-band frequencies, obtaining a response
equivalent to that of a bandpass filter [23]. The entire NAS
architecture is shown in Fig. 1. A flow of spikes coded as
AER (Address-Event Representation) [31] events is obtained
in the output, which can be either sent to the SpiNNaker board
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Fig. 2: Picture (top) and block diagram (bottom) of the
hardware setup for the dataset generation.

through the AER-SpiNNaker interface module [32] or to the
computer using a USBAERmini2 board [33].

A 32-channel mono-aural NAS was used in this work,
employing this neuromorphic approach in a speech recognition
task where spoken commands corresponding to the words
”left” and ”right” are classified. The Speech Command dataset,
which consists of 65000 one-second long utterances of 30
short words, was used in this work. This data was collected
by Google and released under a Creative Commons BY 4.0
license. Only the ”left” and ”right” voice commands of the
dataset (a total of 4720 audio files from thousands of different
speakers) were used in this work, since one of the final goals
of the COFNET project is to drive a robot by using only these
two voice commands.

Each of the audio samples were sent to the audio input
of an AER-Node platform [34], which consists of a Spartan-6
FPGA in which a 32-channel mono-aural NAS is programmed.
With this sensor the audio signal is decomposed into frequency
bands and then packetized using the Address-Event Represen-
tation protocol (AER). An USBAERmini2 board receives this
information and sends it to the computer through the USB
port. A MATLAB script is used to collect the AER packets
that are received through the serial port and to store them into

AEDAT1 files (one file is generated per audio sample), which
is a common format used for storing this kind of information.
The hardware setup used for generating the dataset is shown
in Fig. 2.

These AEDAT files were then converted to sonogram
images using NAVIS’s algorithms [35] in order to train a
CNN. To do this, a bin width of 20 ms was selected in order
to calculate the firing rate for each of the NAS’ channels in
every bin. This was done by counting the number of spikes
fired in that portion of time and dividing that value by 20 ms
(see Algorithm 1), which is the length that was selected for
this work. Fig. 3 shows images from both the ”left” and the
”right” classes after this process was carried out. In order to
make the training of the network more robust to a real scenario,
in which the core information of the audio could be presented
not only in the center of the image but in any position of it,
an overlapping shifting window was used, generating several
images for each audio sample with the information centered
in different timestamps.

Algorithm 1 Sonogram calculation
1: bin width = 20 ms
2: sonogram = zeros(max(in addr), max(in timeStamp)/bin width)
3: for i=1:max(in addr) do
4: sonogram(in addr(i), in tStamp(i)/bin width)++
5: end for
6: sonogram = sonogram/bin width

A total of 141726 images were generated in this process,
121565 of which were used to train the network and the
remaining 20161 images to test it and obtain the accuracy
ratio of the system.

III. OFF-LINE SNN TRAINING AND SNN CONSTRUCTION

The general off-line SNN training method proposed by Liu
et. al. [36] is based on two novel activation functions. One
is Noisy Softplus (NSP) [20], which closely mimics the LIF
firing activity driven by current influx with different noise
levels. The other, Parametric Activation Function (PAF), maps
abstract numerical numbers of activation functions to specific
physical units of a spiking neuron. Thus, the combination
provides an equivalent representation of a spiking LIF neuron
with abstract activation functions of ANNs. PAF allows using
more generalized activation functions (e.g., ReLU instead of
NSP) to model a LIF neuron once its parameters are fitted by
NSP. Therefore, the weights of a SNN can be trained off-line
on an equivalent ANN exactly the same way as conventional
ANNs (e.g., using Backpropagation and Stochastic Gradient
Descent), but using PAFs. The simple steps can be described as
follows: firstly, estimate the parameter of PAFs; then, train an
equivalent ANN using the PAF version of the activation func-
tions (e.g., PAF-ReLU); finally, transfer the trained weights
back to the SNN without further transformation.

The off-line SNN training tool is published in Github2. It
is comprised of two main parts: the Matlab code for ANN

1https://inilabs.com/support/software/fileformat
2https://github.com/qian-liu/off line SNN
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Fig. 3: Sonogram images corresponding to one ”Left” (top)
and one ”Right” (bottom) audio samples from the Speech
Command dataset after obtaining their spiking information
from the NAS.

training and the Python code for reading trained weights and
translating into PyNN language. The Matlab code is based
on an ANN training tool called DeepLearnToolbox3, and we
implemented the two activation functions described above. It is
worth noting that the NSP and its derivative takes two variables
as inputs: the mean of the noisy current x and its variance σ.
Therefore, the computation of both the forward and backward
paths are doubled and the state to be stored is also doubled
in size. The PAF is easily implemented by multiplying the
parameter p of the original activation function: p× f(x).

The Python code reads the network architecture of an ANN
layer-by-layer, and constructs equivalent populations of LIF
neurons accordingly. It then takes the layer-wise weights of
the ANN and translates them to the connection list between
populations of LIF neurons. After the building-up phase,
the testing code (which is simulated in NEST) generates
Poisson Spike trains based on parameter configurations and

3https://github.com/rasmusbergpalm/DeepLearnToolbox

the intensity of pixels of an input image; then, it feeds the
network with the spike trains and records the output spike
trains on the classification layer; finally, it analyses the results
where the highest firing rates determine the class to which
an image is assigned. The overall performance on the whole
testing dataset is then compared with the ANN testing result.

IV. RESULTS

A 5C-3P-3C-2P Spiking Convolutional Neural Network
(5x5 kernel-size convolutional layer followed by a 2x2 pool-
ing layer, another 3x3 convolutional layer followed by a
2x2 pooling layer, and then a fully connected layer) was
trained in Matlab with rate-based sonograms (See Fig. 3) that
contained the firing rate information obtained from a NAS
using ”left” and ”right” speech commands from a well-known
open database that was presented in section II. The CNN
architecture is shown in Fig. 4.

An accuracy result of 92.21% was achieved when training
the CNN in Matlab for 30 epochs, at a learning rate value
of 0.1 and a synaptic time constant of 0.005 ms, using the
ReLU activation function on the fully connected layer. After
this, the network was fine-tuned for one more epoch with
the Noisy Softplus activation function that was described in
section III, starting off with the weights of the connections
that were obtained from the previous step (using ReLU as the
activation function).

After the fine-tuning process, the performance of the
network was almost the same, obtaining 90.80% accuracy. As
was explained in previous sections, the trained weights were
tweaked (fine-tuned) in this process, resulting on a slightly
lower accuracy value in this case (less than 2% decrease), but
improving the performance when translating from the ANN in
Matlab to a SNN in pyNN (NEST).

The weights obtained from the ANN training and fine-
tuning in Matlab were then saved and used to test a SNN.
The SNN was built in pyNN for the NEST simulator based
on the architecture of the ANN that was trained in the previous
step. The network was tested using 20161 samples, achieving
89.90% accuracy (the confusion matrix is shown in Fig. 5).
As can be observed, the result obtained in the ”left”/”right”
classification in the SNN simulation that was run on NEST is
almost the same as the one that was obtained when training the
ANN in Matlab, meaning that, with this process, the authors
have found a proper way to train audio signals (or time series)
without compromising the accuracy of the network.

Tests were carried out using the NEST simulator and also
deploying the whole SNN model in a 48-chip SpiNNaker
hardware platform. In future works, the authors would be fo-
cusing on making use of the NAS-SpiNNaker live connection
[37] to test the speech commands recognition using a real-
time input from a microphone connected to the NAS. The
next section will describe the SNN architecture for testing this
approach in real-time.
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V. SNN ARCHITECTURE FOR AUDIO SAMPLES
CLASSIFICATION IN REAL TIME

The accuracy result of the system achieved when using the
method described in section III proves that this mechanism
could be used to classify audio samples like the ones used in
this work or even more complex ones as long as they can be
converted into images.

This is a completely offline approach, which means that
audio samples are not being inputted in real time. These
samples have to be already recorded and converted into spikes
in order to classify them. The point on using the NAS is that,
besides of processing the sound information in a bio-inspired
way, it is able to provide a real time output with the audio
signal decomposed into frequency bands (32 bands or cochlea
channels in this case) and already converted into spikes, as the
biological cochlea would do.

Even when not making use of the real-time capabilities of
this neuromorphic sensor, using it could be useful for tasks
in which the classification does not need to be done in a
short period of time. In [38], Dominguez-Morales et al. use a

NAS to process heart sounds recordings and classify whether
it is a healthy person or a pathological patient in order to
help cardiologists in the auscultation process. Applications like
this do not require an immediate output from the classifier,
meaning that the sound could be recorded and analyzed later.

However, in tasks like robot navigation with speech com-
mands, recognizing the command and acting on the motors of
the robot are actions that need to be done as soon as possible.
Otherwise, the navigation would not feel fluid and natural. One
of the main goals of the COFNET project (TEC2016-77785-P)
is to drive a 4-wheel SUMMIT XL robot from Robotnik using
the fusion of the neuromorphic information coming from a
neuromorphic retina (Dynamic Vision Sensor) and from a NAS
(using speech commands). To accomplish this while using the
same training approach considered in this work, the authors
propose the SNN architecture shown in Fig. 6.

This architecture takes into account that the input data
has been trained using a deep Spiking Convolutional Neural
Network (SCNN) as it was a static input (image). That is, the
image is converted from a matrix (two-dimensional array) to a
single dimension array by flattening the matrix (e.g. a 28x28
MNIST image is converted to an array of 768 elements). The
whole trained SCNN is presented in the figure in a cloud
shape. To adapt the trained model in order to use real-time
input from the NAS, a new layer of spiking populations has
to be added.

These populations act as a layer between the NAS and the
trained SCNN and its goal is to adapt the spiking information
that comes out of the NAS in real time in order to serve as
input to the network. This is done by having 64 populations
(due to the fact that the network is trained with 64 20 ms-bins
images) of 64 neurons each (two neurons per NAS channel)
that are connected like a daisy chain, with delayed one-to-
one connections between every two. The delay that is set for
these connections is 20 ms, because of the bin width used.
NAS’s output is connected to the first of these populations,
propagating the same spiking information to the next one
after 20 ms. Then, each of the 64 populations of this layer
is connected to the previously trained SCNN with no delay.
This way, as soon as the speech command is sent to the NAS,
the populations between the NAS and the SCNN will start to
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propagate the information. This ”time-buffered” architecture
allows to run real-time experiments for speech recognition and
audio samples classification with a previous step of training
the network with static audio images, which is a novelty in
the neuromorphic engineering field. Having several images
for the same speech command with the information shifted
and centered in a different bin allows not only the training
to be more robust but also the real-time test to take less time
to start providing the correct result. That is, spikes from the
NAS do not need to propagate through many populations to be
classified correctly since the network was trained to recognize
that the important information of the speech command could
also appear in the first bins (which correspond to the first
populations) instead of just in the middle section of the
sonogram.

VI. CONCLUSIONS

In this work, the authors have presented a novel mechanism
for training time series offline and testing them later in real
time in a Spiking Convolutional Neural Network with the
information obtained from the live output of a Neuromorphic
Auditory Sensor.

The results obtained in this work prove that almost the
same accuracy results ( 1% less in this case) can be achieved
when testing a deep Spiking Neural Network using the weights

obtained from a previously trained Convolutional Neural
Network with spike-rate based images, which is a novelty for
time-dependent signals like audio signals.

A database with 4720 ”left” and ”right” speech commands
from the Speech Commands Dataset was used to generate
141726 sonogram images with the spiking information ob-
tained from a neuromorphic cochlea (NAS). These images
were later used for training and testing the system, achieving
an accuracy result of 89.90% when simulating and deploying
the network in the SpiNNaker hardware platform.

The authors have also presented a novel SNN architecture
for audio samples classification in real time using the output
from a neuromorphic sensor as input to the network and
a buffering layer with delayed populations that adapts the
information from a real-time domain to a static domain, in
which the SNN is trained for. This approach could also be
used for processing time series or time-dependent signals with
SNNs in real time.
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