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Abstract— To enable a dense integration of model synapses in 

a spiking neural networks hardware, various nano-scale devices 

are being considered. Such devices, besides exhibiting spike-time 

dependent plasticity (STDP), need to be highly scalable, have a 

large endurance and require low energy for transitioning 

between states. In this work, we first introduce and empirically 

determine two new specifications for a synapse in SNNs: number 

of conductance levels per synapse and maximum learning-rate. 

To the best of our knowledge, there are no RRAMs that meet the 

latter specification. As a solution, we propose the use of multiple 

RRAMs in parallel within a synapse. While synaptic reading, all 

PCMO-RRAMs are simultaneously read and for each synaptic 

conductance-change event, the mechanism for conductance 

STDP is initiated on only one RRAM, randomly picked from the 

set. Second, to validate our solution, we experimentally 

demonstrate STDP of conductance of a PCMO-RRAM and then 

show that due to a large learning-rate, a single PCMO-RRAM 

fails to model a synapse in the training of an SNN. As anticipated, 

network training improved as more PCMO-RRAMs are added to 

the synapse. Fourth, we discuss the circuit-requirements for 

implementing such a scheme, to conclude that the requirements 

are within bounds. Thus, our work presents specifications for 

synaptic devices in trainable SNNs, indicates the shortcomings of 

state-of-art synaptic contenders, and provides a solution to 

extrinsically meet the specifications and discusses the peripheral 

circuitry that implements the solution. 

Keywords—Fisher’s Iris dataset, memristor, PrCaMnO 

(PCMO), resistive random-access memory (RRAM), spike-time 

dependent plasticity, spiking neural network, synapse 

I. INTRODUCTION 

While decoding a brain‟s functioning, mimicking biology 
using models of brain has been a significant approach taken by 
neuro-scientific community. Also, to perform cognitive 
computing tasks while maintaining energy efficiency of a 
human brain has been the grand challenge in the post-scaling 
and data-driven era. Executing these tasks using spiking (or, 
third generation) neural networks in a bio-inspired hardware 
that is functionally and structurally similar to a brain will 
greatly help in achieving these goals. Such bio-mimicry has led 
to adoption of a bottom-up approach that distributes and 

integrates the processing and memory – electronic neurons as 
computing units and electronic synapses as memory units 
connected as required in network. Though various VLSI-
amenable circuits have been proposed that can mimic a 
synapse [1], [2], to integrate as any many as 10

14
 synapses 

within a volume of a human brain requires the model synapse 
to have dimensions in the order of the thickness of a synaptic 
cleft (~10nm) [3]–[5]. This has led to an appreciable research 
and development of plethora of novel nano-scaled devices that 
can faithfully mimic a synapse [4], [6]–[17]. Of all the novel 
material based nano-scaled devices for modeling synapses in 
hardware, memristors/RRAMs (Resistive Random-Access-
Memory) have gained remarkable research interest. These are 
non-volatile resistive memory-elements whose state/resistance 
can altered by applying sufficiently strong voltage-pulses and 
are strong candidates as weights in electronic in-situ trainable 
neural networks.  

Spike-time dependent plasticity (STDP) rule, a type of 
Hebbian „local‟ learning-rule, is considered to be the essential 
property of any SNN based synapse that their models must 
exhibit. By changing the strength of voltage-pulses being 
applied as a function of time-since-last-spike, STDP rule has 
been demonstrated on various RRAMs [4], [10]–[17]. But, for 
an extensive and large-scale utilization of these devices in 
cross-bars as a synaptic array, it needs to (1) be highly scalable, 
(2) have excellent endurance, (3) have low-energy switch-
ability and (4) be compatible with CMOS [4], [18], [19]. 
However, other important but relatively unexplored requisites 
from the synaptic RRAM that are discussed in this work 
include: (1) analog range of conductance or ample number of 
memory states/bits and (2) a low value of maximum STDP 
based weight-change (mathematically, low       |      | 
  ) at each weight-change event, or  learning-rate. Requisite 
(1) is based on the fact that in nature, most STDP rules 
observed in biology are analog [20], [21] and so are the data-
sets (e.g. data-sets of images in color/grey-scale, Fisher‟s Iris, 
Wisconsin‟s breast-cancer, chemical assays like wine [22]–
[24].) With only additional costs can either be synthetically 
transformed into the binary domain, thus often necessitating 
analog or multi-level synapse. Requisite (2) comes from the 



fact that all STDP learning-rules have a point of maximum 
weight-change (at point(s) of highest/least time or rate-
correlation; [20], [21]), and this value should be kept small for 
a stable weight-evolution in a network while training. 

In this paper, we first empirically show that for software-
equivalent training, (1) the learning-rate (maximum      at 
each weight-change event) must be less than 2% and (2) a 
resolution of at least 256 levels (8 bits) per synapse are needed. 
Second, we show that STDP demonstrations on RRAMs up to-
date depict a learning-rate of 20%-400%, thus, these devices do 
not meet our specifications. To tackle this problem we propose 
the use of multiple ( ) and parallel RRAMs in a synapse. 
Within such a synapse, reading requires all RRAMs but the 
conductance-change, as dictated by the STDP rule, is brought 
about in only one randomly picked RRAM from the set of   
RRAMs of the synapse. This way, the learning-rate is lowered 
from      to      , enabling a software-equivalent 
learning. Second, we validate our proposal using an 
interpolation-model of STDP measurements of a standalone 
PrCaMnO-RRAM (accompanying all non-idealities) for 
training an SNN with multiple and parallel RRAMs in all its 
synapse. Next, the learning performance with   is evaluated to 
show that     produces excellent peak learning performance 
but with significant fluctuations from epoch to epoch, while 
     is necessary for software-equivalent learning. In 
comparison, 256 binary synapses are needed for equivalent 
programming (4x improvement). Fourth, architectural 
consideration of circuit implementation is then discussed and a 
simple circuit to implement the random programming scheme 
is presented.  Thus, our work presents the specification for 
synaptic devices for analog datasets, demonstrates that 
challenge for synaptic candidates in literature, and presents an 
architectural solution to enable learning and provides a circuit 
implementation. 

This work is organized as follows: in section 2, we an 
overview of the STDP rule, followed by the basis for our claim 
of 2% learning-rate as a necessary condition for acceptable 
SNN training performance. In section 3 we report the 
procedure for STDP demonstration of the PCMO-RRAM and 
the results. In continuation, using the STDP-data we show that 
the this device fails as synapse. In section 4, we validate our 
proposal of using multiple and parallel RRAMs in a synapse. 
Lastly, in section 5, we discuss the hardware requirements and 
other consideration for adopting the proposed approach. 

II. IDEAL LEARNING-RATE FOR SNNS 

A. STDP-Overview 

Spike-time dependent plasticity (STDP) is the most 
common learning-rule used in Spiking Neural Networks 
(SNNs). It gives a relation between    (the time gap between 
the pre-synaptic and the post-synaptic spikes) and    , the 
weight change of the synapses, as illustrated in Figure 1. 

For its illustration, we use an exponential weight-update 
rule comprising of exponential-   dependence term, saturation 

factor       and scaling factors (  ), as given in Eq. 2.  
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Several other time-dependences of weight-change are 
possible [21].       model the biological saturation-effects 

[20] and ensures that  doesn‟t increase/decrease indefinitely. 
In Eq. 1,    is positive while    is negative (to strengthen 
causality and weaken anti-causality between spikes). As an 
example, we have plotted in Figure 2: (1)    a function of    
for various    (or  ) and (2)    as a function of    (or  ) for 

various    with      50ms,       ,        and      
and: 

                                                                     

B. Ideal learning-rate for training 

Since    in Eq. 1 (or any STDP equation for that matter) 

set the maximum conductance-change, they determine any 
network‟s learning-rate.  While training an artificial neural 
network, the learning-rate needs to be carefully chosen [25].  
Since no work exists that studies learning-rate for spiking 
neural networks trained using STDP, we empirically determine 
the learning-rate using the SNN given in [26]. This single 
layered feed-forward SNN can be trained via an exponential 
STDP rule to classify data-points of Fisher‟s Iris, Wisconsin‟s 
breast-cancer and wine data-sets. For training, following STDP 
rule has been used: 
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Figure 1: Biological STDP rule (after [20]) 

 

Figure 2: STDP rule of Eq. 1 with      in Eq. 3 

  



Where,   represents parameters for conductance 
potentiation,   represents parameters for conductance 
depression,    set the maximum conductance change,    set 

the STDP time-constant,      is the maximum conductance 
(with 0 as minimum) and   is conductance‟s saturation-factor. 

To quantitatively study the effect of    on training, we 
simulate the training of the network to classify Iris dataset with 
various values of the pair {  ,  } and observe the evolution 
of classification accuracy as training proceeds.  

From Figure 4, which plots the mean-accuracy for last five 
epochs of training, it is observed that 

1. Lower the learning-rates, better the training in terms of 
both maximum accuracy and stability 

2. Low synaptic weight‟s depression-rate (~2%) is a 
necessary condition for  high (more than ~90%) post-
training accuracy 

3. Synaptic potentiation rate affects the training 
performance, but to a lower extent than depression rate 

Figure 4 shows four classification accuracy (CA) plots for 
all possible pairs of            , where the percentages 
represent fraction of the maximum weight of the synapse, 
    . Following observations can be made:  

1. For large    (~35%), the training never gets 
completed and the classification accuracy doesn‟t 
settle 

2. For large    but small   (~2%), the classification 
accuracy settles, but is not the maximum, which 
means training is partial 

3. For large    but small   , the network is unable to 
learn 

4. For small   , the learning is the best and the 
classification accuracy settles 

Further, several SNNs trained using STDP in literature rely 
on learning-rates less than 1% [27]–[31]. Though no work 
focuses on how learning-rate affects the overall training, it is 
very likely that the performances may suffer from similar 
degradation as learning-rates are increased.  

C. Number of bits per digital synapses 

To empirically determine the number of bits needed in a 
digital synapse for software-equivalent training, we simulated 
the training of the network used above to classify Fisher‟s iris 
and Wisconsin‟s breast-cancer datasets. The total conductance 
range was divided uniformly into   levels. During a 
conductance-update event, the originally continuous change in 
conductance is discretized to the nearest conductance level. 
Figure 3 plots the mean post-training per-cent classification 
error (CE) for 10 training experiments over 10 training-epochs. 
It is observed that at least 8 bits/256 discrete levels are needed 
to ensure lowest CE. 

III. PCMO-RRAM AS SYNAPSE IN SNNS 

A. STDP of RRAMs using neural write-pulses 

RRAM can be approximately modeled as resistor whose 
resistance can be changed with voltage-pulses, if the pulse-
strength exceeds writing threshold (Figure 6a) [32], [33]. This 
change increases, as strength above its threshold is increased. 
Given this approximation, to realize STDP on an RRAM, 
carefully shaped write-pulses are applied at the two ends of the 
synaptic RRAM by the two spiking neurons in context (Figure 
6b) [19], [34]. These pulses are so shaped that when two such 
pulses, corresponding to each of the neurons attached to a 
synapse, relatively displaced in time, are subtracted, 

1. There exists a portion in the net that always just 
reaches (or, goes above) the RRAM‟s threshold 

2. the height of the net above the RRAM‟s threshold 
(or compactly, the overdrive) is a function of the 
relative displacement  

Each time a neuron spikes, such pulses are applied 
immediately in response at the terminal of the synaptic RRAM. 
This way, the RRAM sees a net-voltage equal to the 

 

Figure 4: Classification accuracy (CA, %) versus learning-rate parameters 
   and    per cent of      

 

Figure 5: Classification accuracies (CA) for four values of   . 

  

Figure 3: Distribution of classification errors (CE) versus number of 
conductance levels per synapse for (a) Iris dataset (b) Wisconsin‟s breast-
cancer dataset, both trained with 4 linear sensors at input 

 



subtraction of the displaced pulses applied by the pre- and the 
post-synaptic neurons (Figure 6d). For implementing an 
exponential STDP rule, the write-pulse may be given the 
following shape: 

 

       

{
 
 

 
     

(                    )

(          )
          

    

(                      )

(              )
           

     

Here,  

1.    and   are the positive and negative 

amplitudes.    and    are set such that they are 

less than     and    , respectively 

2.    and     are the decay constants.     sets the 

write-time of the pulse and    sets the exponential 
STDP time-constant 

3.    and    define the spike lengths in the time axis 

B. Demonstration of exponential  STDP of PCMO 

PCMO-RRAMs have been experimentally demonstrated as 
endurable, fast and highly scalable non-volatile analog 
memristive contender for synaptic applications [8], [35]–[37]. 
PCMO-RRAM with cross-section shown in Figure 7 and an 
area of         , originally reported in reported in [37] 
was used for the demonstrating STDP. The device was 
initialized to its low-resistance state by applying a long-lasting 
and constant negative voltage-pulse of –2.5 V and compliance 
set to 10 mA. For writing, pulses in Eq. 2 were used and the 
values for  ‟s,  ‟s and A‟s are given in Table 1. The procedure 
followed to demonstrate the STDP of the device is: 

1) the conductance was read using a small 
rectangular voltage pulse (0.5V), yielding the 
initial conductance value    

2) a    was randomly chosen from [-100ms, 100ms] 
and the subtraction of relatively displaced write-
pulses corresponding to    was directly applied to 
terminal 1 and with terminal 2 grounded 

3) the final conductance value       was recorded by 

using a 0.5 V voltage pulse 

These three steps were repeated 1000 times for the new 
state    that served as    for the new iteration. Of the pulses 
applied, the ones leading to increase in conductance have been 
plotted in green/Δ in Figure 8and those leading to decrease, in 
blue/∇. The conductance values have been normalized by 
dividing each value with the maximum conductance observed. 
For a better visual, uniformly spaced iso-initial-conductance 
(iso-  ) points have been plotted in Figure 9 and iso-time-

 

Figure 6: (a) RRAM conductance-change (ΔG) modeled as a function of 
rectangular pulse of height VW, (b) Pre-synaptic and post-synaptic neuron 
connected through a synapse. Right after each of their spiking instants, 
each produce and apply a fresh write-pulse at  the RRAM‟s terminal (c) A 
possible synaptic write-pulse for exponential STDP, (d) Subtraction of 
two relatively displace (    ) write-pulses or voltage across RRAM. 
The circled portion of the subtraction, crossing the threshold, changes the 
conductance of the RRAM 

 
Figure 7: Measured PrCaMnO-RRAM‟s structure 

 

TABLE I 

WRITE-PULSE PARAMETERS USED FOR STDP 

Write-
pulse 

Parameter Value Parameter Value 

   

     1V      -1V 

     1 s      100ms 

     0.5 s      50ms 

   

     1V      -1V 

     1 s      100ms 

     0.5 s      50ms 
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Figure 8: LTP (green/Δ) and LTD (blue/∇  sc tt r  lots 



difference (iso-   ) in Figure 10. To use this data for 
simulations, we used its interpolation model. Iso-   and iso-   
STDP curves obtained using such a model are plotted in Figure 
9b and Figure 10b. Though the STDP demonstrated 
experimentally has a time-constant of 50ms, it can be altered 
by scaling the time-keeping portion of the write-pulses.  

C. Training with Single PCMO-RRAM as a synapse 

We replaced the mathematical synaptic model in the 
network mentioned in Sec. II with the interpolation model of 
PCMO-RRAM. To do so, we modified the: 

1. Read equation: Each read-instance of    , the 

mathematical conductance, was replaced with      
  

 

the RRAM‟s conductance. Since the latter was 
normalized, an additional factor of     was added, 
leading to the following replacement: 

                                   
  

                                 

2. STDP rule equation: The STDP rule specified in Eq. 3 
was replaced with following equation: 

               
  

      
  

   (          
  

)             

Where,              
  

  is determined from the 

interpolation model mentioned above. 

Next, the network‟s training was simulated. Figure 10 plots 
the evolution of classification accuracy as training proceeds. 
Clearly, the performance is worse in comparison to that 
obtained with a mathematical synaptic model.  

Our hypothesis, based on observation made from Figure 4 
and Figure 11, is that such marked reduction in performance is 
observed because of large percentage change in conductance of 
PCMO-RRAM. This is equivalent to having large learning-
rates in a mathematical model.  

STDP has been demonstrated on several analog RRAMs 
[4], [10]–[17]. As observed above, it is necessary for the 
maximum conductance change to be less than 2% of the 
synaptic conductance-range to get software-equivalent 
evolution of conductance. However, all analog conductance‟s 
plasticity demonstrations up until now have a maximum 
conductance change (      |  |    ) of more than 20% and 
can go up to 400% in some devices (Figure 12). Thus, all 
currently existing analog RRAMs will fail to produce software-
equivalent post-training classification accuracy for our 
network.  

Our second hypothesis, based on observation made from 
Figure 6 and 7, is that training performance can improved 
without changing the network, by reducing the maximum 
change in conductance change (i.e., lower |           | or 
|           | in Eq. 3). The validity of this hypothesis can 
be tested by using an STDP-data like we used for an RRAM 
with a lower maximum conductance. Since in our knowledge, 
all RRAMs in the literature do not meet this constraint, this is 
not possible for us at the moment. To test our hypothesis and as 
a step towards better memristor based synaptic models, we 
propose using a set of n PCMO-RRAMs in parallel in a way 
that  

1. they function aggregately as synapse 
2. the conductance-change pulses are applied to only one 

of n-RRAMs 
Next, we validate our proposal. 

 

Figure 11: Training behaviour with single RRAM based synapse. (a) 
Regardless of the initial condition post-training classification accuracies 
(CA) settle to low values right after first training iteration (epoch); (b) 
Conductance‟s evolution with initial condition (IC)-1; (c) Conductance‟s 
evolution with IC-2. 

 

Figure 12: Learning-rate (   or   ) offered by various analog RRAMs in 
literature. None of them meet our specifications 

 

 

Figure 9: (a) Observed STDP ( G) of the PCMO-RRAM‟s conductance 
with various iso-initial-conductance (  ) in distinct colors. (b) Interpolation 
model of measurements.    in the legend represents the initial conductance 

 

Figure 10: (a) Observed STDP ( G) of the PCMO-RRAM‟s conductance 
with various iso-spike-time-difference (iso-Δt) in distinct colors. (b) 
Interpolation model of measurements in (a) 



IV. PARALLEL  AND MULTIPLE PCMOS AS SYNAPSE 

To test the ability of multiple (n) PCMO-RRAMs to 
collectively act as a synapse, we continued with same network 
and trained it to classify Iris data-set. The mapping from a 
mathematical synapse to an n-RRAM based synapse is similar 
to the one described in Sec. 3C, with a slight difference, 
described as follows: 

1. Each read-instance of    , the mathematical weight, was 

replaced with: 

                     
    

 
∑      

    

 

   

                          

2. STDP rule equation: For every spiking instant, STDP-
rule based weight-update is replaced with the following 
two equations: 

                      

             
    

      
    

   (          
    

)             

Note that RRAM‟s conductance increase corresponds to 
increase in the conductance of the synapse of which it‟s a part. 
We let   take all values from the set {2, 4, 16, 36, 64, 100}. 
Figure 13 plots the CA, as training proceeds for n=2, 16 and 
100. It is observed that learning is more stable for synapses 
with more RRAMs. Figure 13 plots the CA‟s quantiles for all 
n‟s, as the training progresses with number of training-epochs 
in Figure 14. The number of training-epochs was determined 
empirically. For n=100, approximately 50 epochs were needed 
to stabilize learning. Since learning-rate is roughly inversely 
proportional to the number of RRAM, the number of training 
iterations needed is proportionally increased/decreased. For 
very large learning-rates (n=2, 4 and 16), a lower limit of 20 
was set. The evolution conductance of each synapse for various 
 ‟s has been plotted in Figure 15. It is observed that: 

1. starting from n=4, the network‟s CA reaches software-
maximum of 97.3% at least once, while training (Figure 
13) 

2. despite being trained for more than adequate epochs, 
network with synapses having very low number of 
RRAMs are unable learn stably (Figure 13 and Figure 
14a) 

3. as n is increased, the CA distribution in Figure 14a 
follows a trend similar to the one exhibited by Figure 5 
showing the increase in CA as LTP and LTD rates are 
decreased simultaneously – higher mean and lower 
variation  

4. conductance evolve more smoothly as   increases  

V. DISCUSSION 

The scheme discussed does not escalate the circuit 
requirements. During reading, all RRAMs in a synapse need to 
be simultaneously read from. This is done by applying same 
reading pulse-voltage to all row-bars of the synapse. The 
current from each of the branch associated to a synapse is then 
summed up, to get a current proportional to the synaptic 
weight.  

 For performing the writing operation, one RRAM is 
randomly chosen from   RRAMs within a synapse, with a 
uniform probability for each. This is done by applying the pre-
synaptic write-pulse to a random row among    row-bars and 
the post-synaptic write-pulse to a random column among    
column-bars (for a synapse with   RRAM rows and    
RRAM columns). This way, the RRAM selection is uniformly 
random among all   RRAMs. Though there can be other 
schemes for uniformly selecting RRAMs, this in our opinion, 
shouldn‟t require complicated and/or large area peripheral 
circuits. 

The reading and writing phases may be multiplexed in time 
using a global control signal    (reading indicated by 
     and writing by     ). During the writing phase, to 
allow random selection of a row/column, a set of global one-
hot selection-lines is laid out along the periphery of the array. 
The active line in this set is changed, periodically. Whenever a 
neuron (  ) spikes (assumed to be random in time), the content 
of the selection line set is copied onto the RRAM selection 

register with output vector   ̅  (Figure 17). This way, the same 
row/column of the synapse remains selected until the next 
spike, as the active line of the synapse‟s selection- register 

 

Figure 13: Classification accuracies for 2, 16 and 100 PCMO-RRAMs in 
the synapse, with same initial conductance configuration 

 

Figure 14: (a) Classification-accuracy (CA) quantiles as the number of 
PCMO-RRAMs in the synapse is varied. (b) Number of epochs for training 

 

Figure 15: Synaptic weight evolution smoothens as more PCMO-RRAMs 
are added within the synapse 

~~



remains same. During the reading phase, the selection register 

is over-written using the pre-set control input so that   ̅  
       . 

Write-pulses may be applied to a single row (column) out 
of M1 (M2) via MOSFET based switches as shown in Figure 
18. Each of the MOSFETs‟ gate is connected to the one-hot 
selection vector   . Thus, only one MOSFET out of M1 (M2) 
is conducting and will allow write-pulses to be applied to the 
corresponding row (column). However, during the reading 
phase (     ), all MOSFETs are turned on by setting 

  ̅         . Thus, for all RRAMs within a synapse, same 

reading pulse is applied on pre-synaptic terminals and post-
synaptic terminals grounded. 

Use of multiple RRAMs within a synapse clearly requires a 
bigger cross-bar array. However, a larger cross-bar implies a 
larger attenuation in the voltage applied across RRAMs at 
cross-points far away from the either input and output sides of 
the array. Thus, for a constant wire-resistance, the cross-bar 
array size, or more fundamentally, the number of RRAMs in 
the synapses cannot be made arbitrarily large. Not only their 
number, but also their arrangement needs to be carefully 
designed to maintain a certain minimum level of read-write 
fidelity. For simplicity, consider an SNN with just one n-
RRAM synapse and all RRAMs within it in same conductance 
state. If the potential-drop due to wire-resistance is assumed to 
be a linear function of cross-point index within a synapse, then 
the read current-error of a cross-point       within the array 
can be expressed as: 

                                                                                             

For a synapse with     RRAMs, the maximum error in 
current will be for the cross-point at the corner furthest from 
the inputs and outputs, i.e., the one with indices      . For 
fixed number of RRAMs in a synapse, say   , the maximum 
error in read current will be 

                                              
    

                                    

This happens when the synapse has an arrangement of    
cross-points in configuration closest to that of a square. Thus, 
within a synapse, the RRAMs should be arranged in a square-
like configuration. 

VI. CONCLUSION 

In this work, we introduce and empirically determine two 
new specifications for an SNN based synapse: number of 
conductance levels per synapse and maximum learning-rate. 
To the best of our knowledge, there are no RRAMs that meet 
the latter specification. As a solution, we proposed the use of 
multiple RRAMs in parallel within a synapse. While synaptic 
reading, all RRAMs are simultaneously read and for each 
synaptic conductance-change event, the writing pulses for 
STDP are applied on only one RRAM, randomly picked from 
the set. To validate our solution, we experimentally 
demonstrated STDP of conductance of a PCMO-RRAM and 
showed that due to large learning-rate, a single device fails to 
model a synapse in the training of an SNN. As anticipated, 
network training improved as more RRAMs are added to the 
synapse. Lastly, we discuss the circuit-requirements for 
implementing such a scheme, to conclude that the requirements 
are within bounds. 
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