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Abstract

Semantic features are common radiological traits used to characterize a lesion by a trained 

radiologist. These features have been recently formulated, quantified on a point scale in the 

context of lung nodules by our group. Certain radiological semantic traits have been shown to 

extremely predictive of malignancy [26]. Semantic traits observed by a radiologist at examination 

describe the nodules and the morphology of the lung nodule shape, size, border, attachment to 

vessel or pleural wall, location and texture etc. Deep features are numeric descriptors often 

obtained from a convolutional neural network (CNN) which are widely used for classification and 

recognition. Deep features may contain information about texture and shape, primarily. Lately, 

with the advancement of deep learning, convolutional neural networks (CNN) are also being used 

to analyze lung nodules. In this study, we relate deep features to semantic features by looking for 

similarity in ability to classify. Deep features were obtained using a transfer learning approach 

from both an ImageNet pre-trained CNN and our trained CNN architecture. We found that some of 

the semantic features can be represented by one or more deep features. In this process, we can 

infer that some deep feature(s) have similar discriminatory ability as semantic features.
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I. Introduction

Lung cancer is the leading cause of cancer related deaths globally [1]. For early detection 

and diagnosis of lung cancers, Low Dose Computed Tomography (LDCT) is the most 

extensively used imaging approach. Using LDCT scans, a radiologist can provide important 
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individual information about one’s lung tumor or nodule, which can provide useful guidance 

for prognosis and diagnosis. These unique characteristics are termed ‘Semantic features’ 

which can help to predict prognosis in lung tumors. Semantic features can be subdivided 

into various categories: location, size, shape, margin, attenuation etc. The existence of 

cavitation (cavity within the nodule), a semantic feature we used, corresponds to a worse 

prognosis for lung cancers [2]. Nodule Emphysema, another semantic feature we checked, 

will increase the lung cancer risk for a lung nodule for a patient with emphysema [3]. 

Depending on a nodule being solid or non-solid the cancer treatment varies. According to 

Fleischner criteria [4] solid nodules of size >8mm, require follow up scans every 3 months, 

and if the solid nodule size is between 6 to 8 mm, a follow up scan at 6-12 months is 

required followed by another scan at 18-24 months when no change occurred in the earlier 

one. For non-solid nodules if the nodule size is >6 mm, a follow up scan at 6-12 months is 

recommended and then every 2 years until 5 years.

Deep learning, is an emerging technique widely used for classification, segmentation and 

recognition tasks. Deep learning algorithms enable classification of complex data via 

multiple hidden layers in a neural network. In recent years, for image data, the data are 

typically first processed through convolution layers and then via multiple hidden layers. This 

type of neural network is called a convolutional neural network (CNN). Convolutional 

neural networks gained popularity though LeCun’s LeNet [5]. A breakthrough for CNNs in 

the classification task came during the 2012 ILSVRC challenge, when Krizhevsky [6] 

proposed ‘ALEXNET’. Since then CNNs have been used extensively in computer vision, 

medical image analysis etc. In the medical field, due to the availability of less data, pre-

trained CNNs can be used effectively [7] with a transfer learning approach [8]. Deep 

features contain various low level image feature information such as textures, shape etc. 

There is no specific naming approach for deep featurs other than representing them using the 

extracted feature column number (position in a hidden layer treated as a row vector).

For extracting deep features, we used two pre-trained CNNs: a Vgg-s [9] architecture, which 

was trained on the ImageNet dataset and our designed CNN [7] which was trained on lung 

nodule images. We also obtained 20 semantic features from the radiologists of the H. Lee 

Moffitt Cancer Center. This study is focused on showing the similarity of deep feature(s) 

with a semantic feature. We showed that by replacing one or more deep feature columns by a 

semantic feature, equivalent classification performance can be achieved. That means, those 

replaced deep features provided the same information as the semantic features and we can 

equate those deep feature columns with the name of the corresponding semantic feature.

We found that location based semantic features are hard to interpret and replace, but size, 

shape, and texture based semantic features can be interpreted with respect to deep feature 

column(s). We successfully interpreted or explained 9 out of 20 semantic features in our 

study.

II. DATASET

The NLST study was conducted for three years: a baseline scan (T0) in the first year, 

followed by two subsequent scans (T1 and T2) in the following two years with a gap of one 
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year [10]. In this study, from the baseline scans (T0) we chose a subset of participants of 

control positive (sizable nodule that does not become cancer) and screen detected lung 

cancer (SDLC) from the CT arm of the NLST study. The subset was divided into Cohort 1 

and Cohort 2. In Cohort 1, there was a baseline scan (T0) followed by another scan after 1 

year (T1) and some of the positive screened nodules become cancerous. In Cohort 2, some 

of the positive screened nodule become cancerous after two years (T2 scan) of baseline scan 

(T0). There were no statistically significant differences between the SDLC and control 

positive cases for age, sex, race, ethnicity, and smoking [11]. For our study, we used only 

Cohort 2 (85 SDLC and 176 control positive cases) which had available semantic features. 

The Definiens software suite [12] was used for nodule segmentation. From our initial cases, 

76 cases were excluded due to one or more of the following reasons: multiple malignant 

nodules, not identifying the nodule, or unknown location of the tumor. For this study, we 

finally used 185 cases (58 SDLC and 127 control positive cases).

Semantic features [13] from Cohort 2 were created by radiologists (Y.L.) from H. Lee 

Moffitt Cancer Center. For deep feature extraction, we chose a CT slice for every case which 

had the largest nodule area, and extracted only the nodule region via a rectangular patch 

which incorporated the whole nodule. In Fig. 1 we show an extracted nodule along with the 

slice from the CT scan. Using bi-cubic interpolation, the extracted nodule region was resized 

as required for input to the pre-trained CNNs. The CT nodule images were grayscale (no 

color component and we changed the voxel intensities of the CT images to 0-255), but the 

Vgg-s network was trained on RGB images (24-bit natural camera images). So, we used the 

same grayscale image three times to simulate an image with three color channels and did 

normalization using the appropriate color channel image.

III. Semantic features

A radiologist can provide important individual information about one’s lung tumor, which 

can provide useful guidance for prognosis and diagnosis. These unique characteristics are 

termed ‘Semantic features’. Twenty semantic features [14,15] were described by an 

experienced radiologist with 7 years of experience (Y.L). These features have been recently 

formulated, quantified on a point scale in the context of lung nodules by our group [25]. 

These features can be subdivided into the following categories: location, size, shape, margin, 

attenuation, external and associated findings. In Table 1 feature description details are given.

IV. Deep features

Convolutional Neural Networks (CNN) [16] have recently been used widely in image 

classification and object recognition tasks. They are often called deep CNNs because of the 

number of layers (depth) of the designed architecture and features extracted from these 

architectures are called deep features. A CNN can be created using a few convolution layers, 

often followed by a max pooling layer and then fully connected layers and activation layers. 

Due to the lack of training images, transfer learning has been explored. Transfer learning [8] 

is an approach, where previously learned knowledge can be applied to another task and task 

domains can be the same or different. The transfer learning approach was used in our study 

to extract deep features from a pre-existing CNN when presented with nodule images. Vgg-
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s, a CNN pre-trained on natural camera images obtained from the ImageNet dataset, and our 

designed CNN architecture trained using lung nodule images had deep features extracted 

from them. These two models were architecturally different, as well as created using 

different training images. Our designed CNN was trained on augmented lung nodule images 

from Cohort 1. Image augmentation was done by rotating each image 15 degrees and then 

applying horizontal and vertical flipping. Our architecture was inspired by a cascaded CNN 

architecture in [21], where the input image was fed through convolution and pooling layers 

for the primary branch and a re-sized input image was added to the primary branch in the 

fully connected layer. We trained our CNN in Keras [17] with a Tensorflow [18] backend. 

The largest Cohort 1 cancer cases and control cases were 104×104 pixels, and 82×68 pixels 

respectively. So, we chose 100×100 as the input image size for the designed CNN. One 

hundred epochs were used to train the CNN. A constant learning rate of 0.0001 was used 

with RMSprop [22] as the gradient descent optimization algorithm. A batch size of 16 was 

used for both training and validation. Binary crossentropy was used as the loss function.

Since our designed CNN was shallow and small, we used L2 regularization [23] along with 

dropout [24] to reduce overfitting. Our designed CNN is described in more detail in [7] and 

summarized in Table 2 and Fig. 2. In convolutional layers 1 and 2, leaky ReLU with an 

alpha value 0.01 was applied. Because of this, some negative values will propagate through 

the convolution layer and provide non-linearity on the convolution layer output. Our CNN 

has a cascaded architecture where images are fed to both the “left” branch of the network, 

followed by a max pooling layer and more complex “right” branch. The right branch 

consisted of convolution and max pool layers. The cascading happened after getting the 

same size output (10×10 vector) from both the left and right branches. Features in the 

convolution layer are more generic (e.g. blobs, textures, edges etc.). So, adding image 

information directly will create more specific information for each case. After merging, 

another convolution and max pooling layer before the final classification layer maintains the 

generic information about the image and can provide more features about the image 

enabling a better classification result.

Using these two models, we extracted deep features from the last layer before the 

classification layer after applying the ReLU activation function. In Table 3, 64×11×11 means 

64 convolutions of window size 11×11 and st= stride, LRN is local response normalization 

and x3 pool means 3×3 max pooling. The deep features from the Vgg-s architecture were 

the output of the last fully connected layer (the Full 2 layer as shown in Table 3). In our 

designed CNN architecture, we obtained deep features after applying max-pooling (Max 

Pool 3 layer as shown in Table 2).

Utilizing the Vgg-s pre-trained CNN and our designed CNN architecture we obtained 4096 

and 1024 features respectively. After applying the ReLU function, some feature columns 

turned to all zeros, because, the ReLU function will convert negative feature values to zero. 

So, for our experiments, we removed those all zero columns from both the pre-trained CNN 

feature vectors and our trained CNN feature vectors. After removing those columns, the final 

feature vector size of the Vgg-s pre-trained CNN and our trained CNN became 3844 and 

560 respectively. The architectures and parameters for the pre-trained CNNs used are shown 

in Tables 2 and 3. These deep features don’t have any specific naming approach other than 
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identifying them using the extracted feature column number (position in a hidden layer 

treated as a row vector).

V. Experiments and results

In this section, we analyze the approach taken to represent one semantic feature using one or 

several deep feature columns.

Wrapper feature selection [19] was applied to the semantic features of Cohort 2 using the 

best first strategy to choose the subset of features which generated the best accuracy 

possible. Backward selection with a random forests classifier [20] with 200 trees was done. 

A 10-fold cross validation was used to choose the best subset from the training data. A 

subset of 13 features were chosen using the wrapper approach resulting in an accuracy of 

83.78% (AUC 0.837). This is, of course, an optimistic accuracy given the features were 

chosen on training data. However, our purpose is to use good semantic features to explain 

deep features.

The chosen features (13) were: Location, Long axis diameter, Short axis diameter, 

Lobulation, Concavity, Border definition, Spiculation, Texture, Cavitation, Vascular 

convergence, Attachment to vessel, Peri-nodule fibrosis, Nodules in primary tumor lobe.

After choosing the semantic features, the correlations (Pearson correlation coefficient) of 

each semantic feature with deep features were calculated and we chose the 5 most correlated 

deep features. We substituted the correlated deep features in place of the semantic feature to 

see if it was possible to obtain the same classification result obtained using all 13 features 

(83.7838%).

Our objective was to substitute each semantic feature by one or more deep features and 

achieve the same classification result. For each semantic feature, we removed one feature 

from the chosen semantic feature subset (13 features) and substituted that semantic feature 

by the most correlated deep feature column and, then substituted by the two most correlated 

deep features and similarly continued substituting until the five most correlated deep 

features were included and computed the accuracy using a random forests classifier with 

each feature set using 10-fold cross-validation.

We analyzed deep features from the Vgg-s pre-trained CNN and our designed CNN 

architecture separately.

By substituting deep features obtained from the Vgg-s pretrained CNN for the following 

semantic features; long axis diameter, lobulation, concavity, spiculation, texture, cavitation, 

vascular convergence, peripheral fibrosis; we obtained the same original classification 

performance (83.7838%). By replacing our trained CNN features for the following semantic 

features; long axis diameter, concavity, cavitation, nodules in primary tumor lobe; we got 

back the same original classification performance. Three semantic features (long axis 

diameter, concavity and cavitation) were explained by both Vgg-s CNN and our designed 

CNN. One semantic feature (Nodules in primary lobe) was explained only by our designed 

CNN. That makes sense as Vgg-s would not have any of real lung data where lobes could be 
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discerned. Vgg-s, which trained on much more data, was better at explaining texture, 

spiculation, lobulation, vascular convergence and peripheral fibrosis. The first 3 and last one 

seem likely to be a result of lots of data. In total, nine semantic features were represented 

with their corresponding deep feature columns.

That means, those semantic features could be represented by one or more deep feature 

columns and the same classification performance could be achieved by replacing them with 

deep feature(s). In Table 4 we show classification performance after removing each semantic 

feature one at a time from our chosen subset of 13 features. There is always at least a slight 

reduction in accuracy. In Table 4 we only show some features out of the 13 chosen features 

that can be replaced by deep feature columns.

In Table 5 we show the analysis of the semantic features and their corresponding deep 

features. By using deep feature columns in place of their corresponding semantic feature, we 

obtained similar performance. For example, long axis diameter, could be represented by 

feature column numbers 3353 and 2135 using features from the Vgg-s network to get the 

same classification performance of 83.78%. The correlation value of feature column 3353 

and 2135 with long axis diameter was 0.4334 and 0.42 respectively. Long axis diameter 

could be replaced by feature column 230 by using our designed CNN to obtain similar 

performance of 83.78%. Correlation of long axis diameter with feature column 230 was 

0.3035. In the same way, Concavity can be represented by five deep features columns 

(column 3534, 2975, 1372, 2111 and 3246) from the Vgg-s network. Concavity was also 

represented by two deep feature columns (column 547 and 440) from our designed CNN. In 

most cases, only 1 or 2 features were needed to explain a semantic feature. Fig. 3 

demonstrates the approach taken for this analysis.

VI. Discussions and conclusions

In this work, we showed that one or more deep feature column(s) could explain a semantic 

feature. Semantic features are created by radiologists and represent different nodule 

characteristics such as, size (long axis diameter, short axis diameter), nodules wall or edge 

specification (spiculation, border definition), shape (contour, lobulation, concavity) etc. 

semantic features give valuable information about the nodule which can be used effectively 

for cancer prognosis and diagnosis. That deep features can replace them also indicates the 

semantic features cover or explain the related deep features.

Deep features were extracted from a convolutional neural network. In this study, using 

transfer learning, we analyzed deep features from two different pre-trained CNNs: Vgg-s 

CNN which was trained on ImageNet and our designed small CNN architecture which was 

trained on lung nodule images. The Vgg-s architecture was a deeper architecture with 5 

convolutions and 3 fully connected layers, but trained on ImageNet (color camera images of 

objects in scenes). Its features matched several low-level semantic features (texture/size/

shape) which could be used effectively for lung nodule classification [9]. on the other hand, 

our designed CNN [7] was a smaller architecture trained on lung nodule images, which also 

gave us effective classification performance.
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Deep features are denoted by their column number in a row vector representing the hidden 

layer from which they were extracted. In this study, we tried to represent one or more deep 

feature column(s) by association with semantic features. There were 20 semantic features 

defined by radiologists. Backward wrapper based feature selection was performed on the 

semantic features to generate a subset of features which gave the maximum accuracy. A 

subset of 13 features with an accuracy of 83.78% was selected. A correlation coefficient was 

calculated between each of the selected semantic features and deep feature vectors. For each 

semantic feature, the top five most correlated deep features were selected. From the chosen 

subset of features, we removed one semantic feature and substituted it by the most correlated 

deep feature and, calculated the classification performance. If we obtained the same 

classification performance then stop, otherwise substitute it by the two most correlated deep 

features and continue substituting until the five most correlated deep features have been 

used.

Our objective was to substitute each semantic feature by one more deep features and achieve 

the same classification result using the chosen subset. Nine semantic features can be 

represented by deep feature(s) using the proposed approach. From this, we can say that those 

deep feature sets behave same as their corresponding semantic feature. Hence, we argue that 

they have identifiable semantic meaning.

We extracted only the nodule region from the CT slice for this experiment. So, the 

information about attachment of the nodule to a vessel or fissure or pleural wall or the lobe 

location is not available, and we couldn’t represent those features using deep features. We 

performed data augmentation by rotation and flipping to train our CNN, and it helped in 

obtaining comparable accuracy to using semantic features and provided features to explain 

one location based feature (nodules in primary tumor lobe). We also noticed that, due to the 

extraction of the nodule region only, the features that are related to the margin, size, 

attenuation and shape can be represented by deep feature(s).

In our future work, we will work on representing semantic features using radiomics features 

(i.e. traditional features).
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Fig. 1. 
(a) lung image with nodule inside outlined by red (nodule pixel size= 0.74 mm) (b) extracted 

nodule
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Fig. 2. 
Overview of CNN architecture
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Fig. 3. 
Overview of the approach taken in this study
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TABLE 4

Classification performance after removing each of these features one at a time from our chosen subset of 13 

features

Semantic Features Accuracy (AUC)

Long axis Diameter 82.7027 (0.82)

Lobulation 82.7027 (0.83)

Concavity 83.2432 (0.83)

Spiculation 83.2432 (0.83)

Texture 82.7027 (0.834)

Cavitation 82.7027 (0.828)

Vascular Convergence 83.2432 (0.84)

Peripheral fibrosis 82.7027 (0.83)

Nodules in primary lobe 81.6216 (0.83)
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TABLE 5

Semantic features and corresponding deep feature(s)

Semantic
features

Deep feature(s) from Vggs which explain
semantic feature, with correlation value

Deep feature(s)
from our
designed CNN,
which explain
semantic
feature with
correlation
value

Long axis
Diameter

3353
0.4334

2135
0.42

230
0.3035

Lobulation 3534
0.5742

1372
0.5614

2975
0.5611

2111
0.5520

NA

Concavity 3534
0.5

2975
0.4839

1372
0.4837

2111
0.475

3246
0.4612

547
0.1776

440
0.1514

Spiculation 2811
0.411

NA

Texture 1201
−0.3119

3350
0.2936

NA

Cavitation 3353
0.388

526
0.3551

395
0.2748

Vascular
Convergence

1464
0.7052

2115
0.701

NA

Peripheral
fibrosis

3305
0.2076

3064
0.2043

NA

Nodules in
primary lobe

NA 425
0.1871

57
0.1836

Proc Int Jt Conf Neural Netw. Author manuscript; available in PMC 2018 November 13.


	Abstract
	Introduction
	DATASET
	Semantic features
	Deep features
	Experiments and results
	Discussions and conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4
	TABLE 5

