
AUGMENTED SPACE LINEAR MODEL

Zhengda Qin1, Badong Chen1, Nanning Zheng1 and Jose C. Principe1,2

1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, 710049, China.
2 Computational NeuroEngineering Laboratory, University of Florida, Gainesville, FL 32611, USA.

ABSTRACT

The linear model uses the space defined by the input to project
the target or desired signal and find the optimal set of model
parameters. When the problem is nonlinear, the adaption re-
quires nonlinear models for good performance, but it becomes
slower and more cumbersome. In this paper, we propose a lin-
ear model called Augmented Space Linear Model (ASLM),
which uses the full joint space of input and desired signal as
the projection space and approaches the performance of non-
linear models. This new algorithm takes advantage of the lin-
ear solution, and corrects the estimate for the current testing
phase input with the error assigned to the input space neigh-
borhood in the training phase. This algorithm can solve the
nonlinear problem with the computational efficiency of lin-
ear methods, which can be regarded as a trade off between
accuracy and computational complexity. Making full use of
the training data, the proposed augmented space model may
provide a new way to improve many modeling tasks.

Index Terms— Augmented space linear model, Nonlin-
ear modeling, Prediction

1. INTRODUCTION

Since the early work of Legendre and Gauss in the late XVIII
century, linear or nonlinear regression has employed the space
defined by the input data to project the target or desired re-
sponse and find, in a training set, the optimal set of model
parameters through mean square error minimization. This ap-
proach has been totally embraced by the adaptive signal pro-
cessing [1], control theory, pattern recognition and machine
learning communities [2], and has become the de facto stan-
dard to perform function approximation.

The pursuit of this alternative is based on theoretic rea-
sons, i.e. to expand the horizon of function approximation
theory, but its impact on current machine learning applica-
tions is perhaps even higher. In the conventional modeling
approach, when the system that created the input-desired data
pairs is nonlinear, the linear model must be substituted by
a nonlinear model (e.g. artificial neural networks), which
means that optimization becomes nonlinear in the parameters.

Thanks to XYZ agency for funding.

This implies that local minima exist in the performance sur-
face, and gradient search techniques become slow, cumber-
some and there is no guarantee of finding the optimal solution.
This is one of the current bottlenecks of nonlinear modeling
and machine learning. All these methods, meanwhile, ignore
the error after training the parameter, but the available error
information can be better utilized to provide a novel approach
to function approximation, as we will demonstrate here.

Our vision is to create universal learning systems that are
easy to train and guarantee to converge to the optimum, which
we called convex universal learning machines (CULMs) [3].
CULMs are universal mappers with architectures that either
do not have a hidden layer or do not need to train the hidden
layer weights. One distinctive class of CULMs are Kernel
Adaptive Filters (KAFs) which project the input data into a
Reproducing Kernel Hilbert Space (RKHS) by using a strictly
positive definite kernel function and use linear methods to
train parameters [4]. The difficulty is that when employing the
representer theorem in RKHS, the filter output is computed
from all past data, so the filter computation grows linearly or
super-linearly with respect to the sample number n, which is
unrealistic for real word applications without sparseness pro-
cedures [5]. The other class, including reservoir computing,
uses stochastic approaches based on random hidden param-
eters exemplified by the Extreme Learning Machine (ELM),
and it suffers from incomplete theoretic understanding and re-
quires many tricks to achieve useful and reproducible results
[6]. In spite of these shortcomings, ELMs are surprisingly
very popular, which means that the need to achieve fast uni-
versal processing with generalization capacity in function ap-
proximation is still unmet.

Here we propose a new solution to design CULMs based
on the conventional Finite Impulse Response (FIR) linear
model extended with a table lookup. Instead of using the
input to span the projection space, we use the full joint space
as the projection space, hence this approach is named Aug-
mented Space Linear Model (ASLM). Augmented with the
desired signal, the framework of ASLM expends the data
input space, assumed of dimension L, to L + 1 dimensional
space. Then the L+ 1 independent bases can span any L+ 1
space, which means the training set error can be as small as
the adaptation method can achieve using a linear approach.

There are two difficulties that need to be addressed in

ar
X

iv
:1

80
2.

00
17

4v
2

 [
cs

.L
G

]
 2

 F
eb

 2
01

8

Input Space

Augmented Space

Train Test

e*x

Fig. 1. The application and the geometric structure of ASLM

the ASLM. The first is that all the weights go to zero af-
ter training except the one that is connected to the desired,
which approaches one. This means we need regularization
during the adaptation process. The second difficulty is we
don’t have the desired signal in the test phase! To address
these issues here, we use the difference between the outputs
in the input space and the desired in the joint space during
the training phase (the training error) to augment the input
space instead of expanding the input by the desired. Then,
we store all the training errors in a table indexed by the input
data. Our novel solution takes advantage of the extra infor-
mation contained in training errors, which are wasted in con-
ventional least squares, to approach nonlinear relationships
with a linear model and a table. Since ASLM is an adaptive
linear architecture with convex optimization, and the train-
ing error is orthogonal to the bases, the adaptation process
no longer needs to be regularized. Meanwhile, the computa-
tional complexity of training and testing is much lower than
nonlinear methods, which is well suited for online learning
algorithms. As a matter of fact, ASLM is an intermediate so-
lution in the complexity-accuracy design space between the
linear model (easy but not very accurate) and fully nonlin-
ear models (complex but can be much more accurate). Dif-
ferent from the traditional linear and nonlinear models, the
augmented space model framework makes full use of training
errors, which may improve others models (linear and nonlin-
ear) as well.

2. AUGMENTED SPACE LINEAR MODEL

The simplest implementation of the ASLM is presented be-
low. The left part of Fig.1 shows the conceptual least square
solution of finding the best approximation (y) of the desired
response (d) by projecting d in the space spanned by the mul-
tidimensional input x. The minimum error is achieved when
y is the orthogonal projection of d in the input subspace. It is
sufficient to add the error e to the output y to obtain exactly
the desired response d in the training set, because it is by def-
inition perpendicular to the input space. When computing the
output of the ASLM, obviously, we are using the joint space

to evaluate the desired.
Consider a set of N pairs of training input vectors with

desired output {xi, di}Ni=1, where i denotes discrete time in-
stant. We first compute the weights of the linear model in the
input space with all the training data, which can be evaluated
by the Least Squares (LS) solution in (1)

w =
(
δI+XTX

)−1
XTd (1)

where X = [x1, · · · , xN]T , d = [d1, · · · , dN] and δ is a small
value to prevent rank deficiency. Then we create a table ad-
dressed by the input which relates the input with the training
error, and store this table. The size of this table will be the
training set size if no quantization is introduced. In the test
phase, we use the current input to find the closest entry in the
table, and then read back the corresponding training set error
to approximate the desired response, i.e. equation (2)

ŷi = yi + e∗ = wT xi + e∗ (2)

where yi is the current output of LS solution, and e∗ is the er-
ror obtained from the training set, which is corresponding to
the closest xi in index as we show in right part of Fig.1. The
l2 norm is used to measure the distance of transformed sam-
ples produced by Hadamard product w◦x. Considering the
inputs of the whole training set, this Hadamard metric can get
more reasonable results when finding the closest sample. The
error e∗ in equation (2) will be a good approximation for the
desired under two conditions: (1): e∗ is a good approximation
for the current test sample xi from the training error; (2): the
error in the test set for a given input remains stationary from
training and testing. The second assumption also must be im-
posed in conventional functional approximation, although in
ASLM, the requirement applies to instantaneous errors which
is more demanding in practical noisy conditions. In realistic
application cases, we can use a quantization approach to cut
the noise in the training data while also decreasing the table
size.

ASLM is the simplest model in the augmented space,
actually, we can also use it to augment the KAF nonlinear
model. Although KAFs are universal nonlinear models, it is

difficult to achieve a good approximation to the desired by
linear combination of Gaussian kernel, because of the rattling
and insufficient training data. In order to compute the training
error in the augmented space, we first train a nonlinear model
as usual, fixed the weights, and compute the training errors
all at once. Then we create a table addressed by the input and
store this table as mentioned before. In the test phase, we use
the current input to find the closest entry in the table, and then
read back the corresponding training error to approximate the
desired response, i.e. equation (2). Since we don’t have w in
the nonlinear models, we measure the distance between input
samples by l2 norm directly.

In order to improve the efficiency of finding the nearest
neighbor, we use a kd tree to store the data in the table with
searching complexity of O(log(N)) [7]. Hence, the testing
computational complexity in the augmented space model con-
sists of 2 parts. One is the complexity of the algorithm (lin-
ear or nonlinear) to compute the system output, and the other
is the complexity of searching for the best error of the aug-
mented space model. The testing computational complexity
of ASLM, for example, isO(L+log(N)). As for the training,
ASLM is very fast, since it only needs to create the table after
the least squares algorithm, which is much faster than train-
ing a nonlinear model. We will compare the performance and
computational complexity of the proposed ASLM with sev-
eral linear or nonlinear models in the next section.

3. SIMULATION RESULTS

3.1. Prediction Without Noise

In order to evaluate the role of ASLM within the current
methodologies for function approximation and system identi-
fication, we select three competing models: the Least Squares
(LS) as an example of the optimal linear projection, the Near-
est Neighbor (KNN) algorithm [8] as a memory based ap-
proach and the Kernel Least Mean Square (KLMS), using
a Gaussian kernel, as a CULM that rivals in performance
with the best nonlinear networks for prediction. We also
include KLMS with Augmented space model (KLMS-AM),
as an extra comparison, to show the general capabilities of
the Augmented space model. All the hyper parameters were
validated to get the best possible results including the kernel
size σ, the step size η and the regularization factor δ. For
simplicity, we choose K = 1 for the KNN algorithm and all
the parameters are showed in the last column of table 1. The
inclusion of the memory based method is judged important
because ASLM also uses a table lookup that is similar in spirit
to the memory based approaches for modeling. The problem
we selected is the prediction of the of the x component of the
Lorenz system [4], which has been well studied in the liter-
ature (order L=7 according to Takens embedding theorem)
[9]. The Lorenz data set is generated from the differential
equation with the parameters β = 8/3, δ = 1, ρ = 28. A
first order approximation is used with a step size parameter

0.01. Segments of 2000 samples are used as the train set and
the following 400 samples are the testing set. We normalize
the time series to zero-mean with unit variance. Performance
is measured as the power of the error. Results are averaged
over 50 independent training-test runs obtained by sliding the
window over the generated data by 50 samples each time.

Table 1. The performance comparison of linear and nonlinear
algorithm

Algorithm Testing MSE Training
MSE

Parameter

KLSM-AM 5.71×10−4 ± 2.83×10−4 0 K = 1
KLMS 2.74×10−3 ± 8.43×10−4 2.22×10−3 σ=1, η=0.7
ASLM 3.13×10−3 ± 6.97×10−4 0 K = 1
KNN 1.02×10−2 ± 2.79×10−3 0 K = 1
LS 2.64×10−1 ± 1.20×10−2 2.65×10−1 δ = 0.1

We also show the testing MSE and training MSE in ta-
ble 1. Since KLMS is an online algorithm while the other
algorithms are batch based, the testing MSE of KLMS is cal-
culated from the last 100 points of the converged learning
curve. In terms of performance, we see that the LS is the
worst performer. Even KNN is better, but we notice that
ASLM always improves KNN performance for the same stor-
age. KLMS is a little better than ASLM, which can be further
improved by the augmented space model as well. However,
when we take into consideration accuracy and computation
time, ASLM appears as a very good compromise between the
performance of the nonlinear and the linear model. Fig. 2

100

102

104

S
to

ra
ge

10-6 10-4 10-2 100

Computation time

LS
KNN
ASLM
KLMS
KLMS-AM

Fig. 2. The computation time and storage comparison of lin-
ear and nonlinear algorithm

shows the computation time and storage in the test phase of
the compared algorithms. In terms of simplicity of resources,
the LS solution is unbeatable both in terms of storage and
computation time. Compared with KLMS and KLMS-AM,
ASLM is much faster with comparable performance, which
is much better than the performance of LS algorithm. The
bottleneck of ASLM is the search for the best candidate in
the table look up, which is very similar to KNN. The general
locations of linear and nonlinear model with respect to stor-
age and computational time in this simulation are plotted as

an ellipsoid cloud around points. It is obvious that ASLM is a
linear model with nonlinear regression capacity, and its loca-
tion in the Fig. 2 deviates from the diagonal linking the two
linear and nonlinear models, which shows its efficiency. In
this simulation, the augmented space model also shows sur-
prising potential to improve different models, which can make
full use of the training error or desired in the augmented space
to increase the performance. Meanwhile, the computational
complexity of searching in the table is much smaller than that
of KLMS, so the performance improvement won’t bring a big
computational burden and explains Fig. 2.

3.2. Prediction With Noise

In this section, the data are the same as the last experiment
and the desired signal of training data are corrupted by 20 dB
zero mean Gaussian noise. Performance is measured again
as the power of the error. Results are averaged over 50 in-
dependent training-test runs obtained by sliding the window
over the generated data by 50 samples each time. The pur-
pose of the experiment is to compare the performance when
the training set is not clean. It is obvious that the performance
of ASLM will suffer when the noise is added in the table.
Therefore, we use a simple (sequential) Vector Quantization
(VQ) method to cut the noise, which can build a small size
codebook with a small threshold ε instead of the original in-
put values in the table. Depending on the Euclidean distance,
VQ is computationally simple (linear complexity in terms of
the codebook size) [10, 5]. The error of one center in the
codebook is computed by averaging the training errors whose
indexes are quantized into the same center. This method is
first used in KLMS to constrain the network size. In ASLM,
VQ not only decreases the table size and computational com-
plexity, but also improves the performance by averaging the
local training errors. Three extra comparisons are added to
show the improvements of algorithms brought by VQ, which
is QKLMS, KLMS-QAM and QASLM. To be fair, the final
size of codebooks are set to 500, and all the hyper parame-
ters are validated to get the best possible results (kernel size
σ, step size η, quantization radium ε and regularization factor
δ).

Table 2. The performance comparison of linear and nonlinear
algorithm

Algorithm Testing MSE
Training

MSE Parameter

KLMS 8.24×10−3 ± 1.66×10−2 1.65×10−3 σ=1, η=0.7

QKLMS 8.28×10−3 ± 1.26×10−3 1.70×10−2 σ=1, η=0.7
ε = 0.085

KLSM-AM 1.04×10−2 ± 7.27×10−4 0
σ=1, η=0.7
K = 1

KLSM-QAM 4.42×10−3 ± 6.48×10−4 8.42×10−3 σ=1, η=0.7
K=1,ε=0.085

ASLM 1.32×10−2 ± 1.25×10−3 0 K = 1
QASLM 1.03×10−2 ± 1.20×10−3 1.10×10−2 K=1,ε=0.032

KNN 2.02×10−2 ± 8.85×10−4 0 K = 1
LS 2.64×10−1 ± 1.52×10−2 2.74×10−1 δ = 0.1

We show the testing MSE, training MSE and the corre-
sponding parameters in the table 2. It is easy to notice that the
linear model shows powerful robustness in this comparison,
since the performance of all the algorithms except LS are
affected compared with the last result. ASLM can beat KNN
and both algorithms get better results than LS algorithm.
Without the quantization method, KLMS is the best predictor
in this experiment, which is more robust than KLMS-AM
and ASLM, because the sum of weighted Gaussian kernel
can remove the noise to some extent. VQ reduces the storage
for KLMS, KLMS-AM and ASLM algorithms, while it im-
proves the performance of KLMS-AM and ASLM by cutting
the noise in the table. However, noise removal by of VQ
is not obvious for KLMS algorithm. Hence, KLMS-QAM
shows the best performance with the help of VQ. QKLMS
shows similar result with KLMS, which is still better than
QASLM.

4. CONCLUSION AND DISCUSSION

We presented a new solution to the functional approximation
problem, by taking advantage of the linear solution, and cor-
recting this estimate with the training error from the input
sample that is in the neighborhood of the current test phase
input. In essence, we combine the computational efficiency of
the linear solution with a memory block encoding the training
errors originating from the nonlinearity of the data generation
process, which produce a nonlinear response. In conventional
nonlinear function approximation, one needs to find appro-
priate parameters of nonlinear mappers, which is full of dif-
ficulties and also computationally expensive. This is the rea-
son ASLM displays an interesting compromise in the space
of accuracy and computation complexity between the con-
ventional linear and nonlinear solutions. However, noticing
that the ASLM only models the linear error in this case, we
have also shown that the same approach can improve upon the
modeling of the nonlinear error with the KLMS-AM.

ASLM is a member of the CULM family that has not been
investigated in the past. Conceptually, we are proposing to
augment the input projection space with the desired response,
so this opens the door to study many different implementa-
tions of the simple ASLM discussed in this paper. The thrust
of research should focus on ways to improve the table look up
performance which is very rudimentary. In noisy situations,
we can think of PCA to obtain a better definition of the input
space, and filter the training error by local modeling. In fact,
It is very interesting to interpret the training errors as a sensi-
tivity to the unknown desired response that can be exploited
for Bayesian modeling. Since we have an implicit model of
the input, we can also speed up the search to find the closest
neighbor of the current input. These simple modifications will
improve ASLM performance and lead to new applications be-
yond functional approximation. We therefore believe that this
will be a vibrant line of research for years to come.

5. REFERENCES

[1] Simon S Haykin, Adaptive filter theory, Pearson Edu-
cation India, 2008.

[2] Richard O Duda, Peter E Hart, and David G Stork, Pat-
tern classification, John Wiley & Sons, 2012.

[3] Jose C Principe and Badong Chen, “Universal approx-
imation with convex optimization: Gimmick or real-
ity?[discussion forum],” IEEE Computational Intelli-
gence Magazine, vol. 10, no. 2, pp. 68–77, 2015.

[4] Weifeng Liu, Jose C Principe, and Simon Haykin, Ker-
nel adaptive filtering: a comprehensive introduction,
vol. 57, John Wiley & Sons, 2011.

[5] Weifeng Liu, Puskal P Pokharel, and Jose C Principe,
“The kernel least-mean-square algorithm,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 2, pp. 543–
554, 2008.

[6] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong
Siew, “Extreme learning machine: theory and appli-
cations,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[7] Hanan Samet, The design and analysis of spatial data
structures, vol. 199, Addison-Wesley Reading, MA,
1990.

[8] T. Cover and P. Hart, “Nearest neighbor pattern classifi-
cation,” IEEE Transactions on Information Theory, vol.
13, no. 1, pp. 21–27, 1967.

[9] Edward N Lorenz, “Deterministic nonperiodic flow,”
Journal of the atmospheric sciences, vol. 20, no. 2, pp.
130–141, 1963.

[10] Badong Chen, Songlin Zhao, Pingping Zhu, and José C
Prı́ncipe, “Quantized kernel least mean square algo-
rithm,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 23, no. 1, pp. 22–32, 2012.

	1 Introduction
	2 Augmented Space Linear Model
	3 Simulation Results
	3.1 Prediction Without Noise
	3.2 Prediction With Noise

	4 Conclusion And Discussion
	5 References

