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Abstract—The paper introduces concentric Echo State Net-
work, an approach to design reservoir topologies that tries to
bridge the gap between deterministically constructed simple cy-
cle models and deep reservoir computing approaches. We show
how to modularize the reservoir into simple unidirectional and
concentric cycles with pairwise bidirectional jump connections
between adjacent loops. We provide a preliminary experimental
assessment showing how concentric reservoirs yield to superior
predictive accuracy and memory capacity with respect to single
cycle reservoirs and deep reservoir models.

I. INTRODUCTION

Reservoir Computing (RC) [1] is a paradigm for recurrent
neural network design that, in the latter years, has found wide
application thanks to its (relative) simplicity and effective-
ness in dealing with sequential data processing tasks, such
as with sensor network data [2], [3],mobile robot navigational
data [4], [5], telephone load forecasting [6], ambient assisted
living [7], [8], biomedical data[9], [10], etc. RC is based
on a conceptual separation between the recurrent part of
the network, i.e. the reservoir, and the feedforward part,
including the input and the output layers. The reservoir layer
acts as a dynamic memory of the history of the input signals.
The activations of its neurons are then read and combined by
the output layer, which is known also as readout, to compute
the network prediction.

Echo State Networks (ESNs) [11] are by far the most
popular RC model and are characterized by the fact that
the readout layer is, typically, the only trained part of the
network. The input and reservoir connections, instead, are
randomly initialized, under conditions ensuring contractivity
[12], and then left untrained. This ESN feature, on the one
hand, enables efficient training as the readout neurons are
typically linear units whose weights can be determined by
batch least square minimization. On the other hand, it poses
much attention on how the input and reservoir weights are
initialized, as this induces a strong architectural bias that is
not compensated by training.

The latter aspect has generated a large body of works
studying various architectural and topological features and
the respective capacities in terms of memory size, speed of
forgetting and ability to model short and long term dependen-
cies in the input signal [13]. Initially, much of the attention

focused on randomly generated reservoirs characterized by
sparse connectivity, where the degree of sparsity, the size
of the reservoir, as well as the spectral properties of the
reservoir weight matrix are model hyperparameters. As such,
much of the computational cost of obtaining a ”good” ESN
predictor shifted from the actual training of the readout,
to the potentially combinatorial cost of the model selection
procedure, although some works [14] have provided practical
hints to restrict the choice of the hyperparameters’ intervals.

A different approach to control model selection cost has
been put forward by [15] which proposes to limit the effect
of randomization in the ESN construction by using simple
deterministically built reservoirs, with strongly tied weights
both for the input and the reservoir connections. Among the
different reservoir topologies explored in [15], the simple
cycle reservoir, i.e. where neurons are organized into an
unidirectional loop where all connections have the same
weight, has proved the best tradeoff between simplicity and
memory capacity. This simple cycle reservoir has been later
extended with shortcut connections which basically allow to
shorten the path between two neurons in the loop by means of
bidirectional cross-loop connections [16]. This latter model
has shown to be competitive with respect to standard ESNs
with randomly and sparsely connected reservoirs. With re-
spect to such constrained deterministic architectures, the
Deep ESN model proposed in [17] positions on the opposite
side of the spectra in terms of architectural complexity. There
it is shown how certain modularization and layering strategies
typical of deep learning can be effectively applied to reservoir
design, yielding to excellent results in terms of predictive and
memory capacity.

In this paper, we put forward a novel reservoir design that
tries to borrow the best of the two worlds, i.e. the deter-
ministic cycle reservoir and the deep-style modularization.
We introduce the idea of a concentric reservoirs, where the
neurons are organized into a number of simple unidirec-
tional cycles of various length, represented concentrically for
graphical clarity. Each of such cycle might be characterized
by a different connection weight and it has full connectivity
from the input units and towards the readout neurons. In
addition, we will consider the effect of having bidirectional
jump connections between the loops.
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Fig. 1. Architecture of a standard ESN comprising an input layer, a
sparsely connected recurrent reservoir layer and the readout layer with full
connectivity from the reservoir.

The rationale for the concentric ESN model is to enhance
the reservoir dynamic memory with the ability to explicitly
encode paths of different length, temporal information at
different timescales and with different fading memories of
the past inputs, by acting on the loop lengths and on weight
initialization. Jump connections, in this sense, are expected
to provide the ability to switch between different memory
regimes represented by the different loops. The aim of this
paper is that of providing a preliminary characterization
of effectiveness of the concentric architecture, studying the
effect of various topological factors (such as jumps and
cycles size) in terms of predictive accuracy as well as of
empirical memory capacity [13].

The remainder of the paper is organized as follows:
Section II summarizes the ESN model and the baseline
deterministic single cycle reservoir approaches. Section III
introduces the concentric ESN model, while Section IV pro-
vides a comparative experimental analysis of its performance
with respect to single cycle models and the deepESN [17].
Finally, Section V concludes the paper.

II. BACKGROUND

In this section, we provide a brief overview of the Echo
State Network model, in Section II-A, and we discuss in Sec-
tion II-B two of its variants that introduce deterministically
initialized reservoir topologies.

A. Echo State Networks

Echo State Networks (ESNs) [11] are the most popular
model in the reservoir computing paradigm, due to their
conceptual and implementation simplicity, coupled with ef-
fectiveness on many sequential data processing tasks and
thanks to the efficiency in training. An ESN, such as the
one illustrated in Figure 1, comprises an input layer with
NU units, a reservoir layer with NR units and a readout
with NY units.

The reservoir is a large, sparsely-connected layer of re-
current non-linear units (typically tanh) which is used to
perform a contractive encoding [12] of the history of driving
input signals into a state space. The readout comprises
feedforward linear neurons computing ESN predictions as
a weighted linear combination of the reservoir activations.
A variant of the standard ESN that is very popular is the
leaky integrator ESN (LI-ESN) which applies an exponential

moving average to the reservoir state space values. This
allows a better handling of input sequences that change
slowly with respect to sampling frequency [1] and it has
been shown to work best, in practice, when dealing with
sensor data streams [18]. At each time step t, the reservoir
activation of a LI-ESN is computed by

x(t) = (1−α)x(t− 1)+αf(Winu(t)+Whx(t− 1)) (1)

where u(t) is the vector of NU inputs at time t, Win is
the NR × NU input-to-reservoir weight matrix, Wh is the
NR × NR recurrent reservoir weight matrix and f is the
component-wise reservoir activation function. The term α ∈
[0, 1] is a leaking rate which controls the speed of LI-ESN
state dynamics, with larger values denoting faster dynamics.

Reservoir parameters are left untrained after a random
initialization subject to the constraints given by the so called
Echo State Property (ESP) [12], requiring that network state
asymptotically depends on the driving input signal and any
dependency on initial conditions is progressively lost. In [12],
it is provided a necessary and a sufficient condition for the
ESP. The sufficient condition states that the largest singular
value of the reservoir weight matrix (or its leaky integrated
variant in LI-ESN) must be less than 1. The necessary
condition [12], on the other hand, says that if the spectral
radius ρ(W̃), i.e. the largest absolute eigenvalue of the
matrix W̃, is larger than 1, the network as an asymptotically
unstable null states and hence lacks the ESP. The sufficient
condition is considered by to be too restrictive [12] for
practical purposes, whereas the reservoir matrix is often
initialized to satisfy the necessary condition, i.e.

ρ(WR) < 1, (2)

with values of the spectral radius that are, typically, close to
the stability threshold 1. Input weights are randomly chosen
from a uniform distribution over [−sin, sin] (where sin is
an input scaling parameter), while Wh is typically from a
uniform distribution in [−1, 1] and then scaled so that Eq. 2
holds.

The ESN output is computed by the readout through the
linear combination

y(t) = Woutx(t) (3)

where Wout is the NY ×NR reservoir-to-readout weight
matrix. Training of an ESN model amounts to learning the
values of the Wout matrix which implies the solution of
a linear least squares minimization problem. The approach
typically used to solve this problem employs ridge regression
[1], where the output weight matrix is obtained as

Wout = YtrueX
T
(
XXT + λI

)−1
(4)

where Ytrue is the NY ×T matrix of true outputs for the T
samples, X is the NR × T matrix of readout states and I is
the identity matrix. The term λ is the (model-selected) ridge
regression parameter controlling the amount of regularization
applied.



(a) SCR

(b) CRJ

Fig. 2. Example of an (a) SCR with NR = 10 reservoir neurons and (b)
the corresponding CRJ with jump step τj = 2.

B. Cycle Reservoir Architectures

The ESNs are fairly efficient when it comes to training,
given the relative simplicity of solving the linear least squares
minimization problem required to find the readout weights.
On the other hand, they require a lengthy and careful model
selection process, as the identification of the most suited
reservoir configuration (connectivity and weights) for a given
task typically requires to explore several randomly chosen
configurations.

In an attempt to control the effect of randomization in
the construction of the reservoir, a number of papers have
proposed deterministic approaches to construct the ESN
reservoir. These are based on a simplification of the reservoir
topology to a single loop structure which has been first
introduced in [15] under the name of Simple Cycle Reservoir
(SCR). Figure 2(a) shows an exemplar SCR network: like
a standard ESN it includes an input layer with untrained
weights and a readout with adaptive weights, both fully
connected to the reservoir neurons. The reservoir is arranged
in a uni-directional loop where each neuron receives exactly
one input from its predecessor in the cycle and all reservoir
connections have the same weight wc. Similarly, all input
weights have the same absolute value v with the sign being
generated deterministically from a single aperiodic sequence,
e.g. using a decimal expansion of the π irrational number (see
[15] for details).

The SCR model has been introduced mainly to study

theoretical properties of simple and deterministically con-
structed reservoirs. In this sense, its predictive performance
does not match that of a standard randomly constructed
ESN [15]. In [16], it has been proposed a generalization
of the SCR capable of reducing the performance gap with
respect to standard ESN, eventually surpassing it on several
timeseries prediction benchmarks. This model, referred to
as Cycle Reservoir with Regular Jumps (CRJ), introduces
bi-directional shortcut connections (jumps) in the structure
of a uni-directed SCR loop as depicted in Figure 3. The
rationale for the introduction of jump connectivity is that of
reducing the clustering degree and the average path length
of the reservoir, in accordance with the foundational ideas of
reservoir computing [16].

The shortcut connections have all the same weight wj

which is chosen independently from the main cycle weight
wc: the remainder of the reservoir weights are clearly set
to zero. The introduction of shortcut connection brings in
an additional hyperparameter τj that defines the length of
the jump, whose interpretation can be clearly understood in
Figure 3. In practice, the jump step parameter determines
that there exist a shortcut connection between two reservoir
neurons every τj positions in the reservoir cycle, while
the remainder of the neurons have only unidirectional loop
connections.

In this paper, we put forward the idea that the simple
cycle reservoirs can be further extended to accommodate for
multiple cycles in a modular organization of the reservoir
that allows capturing a larger variety of dynamical time
scales, while maintaining advantages in terms of controlling
randomization effects in reservoir initialization.

III. CONCENTRIC ECHO STATE NETWORKS

We propose Concentric Echo State Networks as a natural
generalization of the deterministic reservoir models discussed
in Section II-B. The concentric ESN has a modular reservoir
architecture comprising a number of uni-directional cycle
reservoirs, each fully connected both to the input and the
output neurons. Following the SCR-CRJ distinction, we con-
sider two broad classes of concentric architectures: the first
is characterized by independent reservoir cycles which are
disconnected one-another and that is referred to as concentric
ESN (cESN). The second architecture allows the presence
of bi-directional jump connections between loops and, in the
following, it is referred to as cESN with jumps (cjESN).
Figure 3 provides a graphical illustration of the proposed
cjESN model, with an exemplar reservoir comprising 3
modules/cycles of 10 reservoir each. Jump connections are
highlighted in different color (red): the corresponding cESN
architecture can straightforwardly be obtained from Figure 3
by removing the jump connections. As in the deterministic
architectures connections in a loop i share the same weight
wci, while jump connections have weight wj (which can in
principle vary between couples of connected loops). As in
CRJ we define a jump size topological parameter τj which
controls how often we place the jump connections between



Fig. 3. Architecture of a concentric network including jumps (cjESN), with
3 reservoir modules, a total of NR = 30 reservoir nodes, and jump size
τj = 2. Note that this network has, formally, a single reservoir of 3 circular
modules connected by the bi-directional jump links (in red in the image).
Each node in the reservoir is thus connected to the readout and receives
input from the input neurons. A cESN has the same architecture without
the jump connections.

loops (again, also this parameter can be made dependent on
the couple of connected cycles).

The reservoir of the cjESN is organized into concentric
loops for graphical clarity, but the general model does not
imply a specific ordering between the modules induced
by cycle length. Nevertheless, as the experimental analysis
will show, we expect that the presence of such an ordered
organization of the cycles would lead to better efficacy of
the model. The intuition underlying the cjESN architecture is
that of introducing the possibility of capturing a large variety
of dynamical time scales by having cycle paths of different
length, i.e. different number of neurons. In practice, by hav-
ing cycles of different length we are doing explicitly what the
CRJ model is doing by means of the jump connections, which
allow to shorten the unique long cycle of the CRJ reservoir
by taking shortcuts. On the other hand, the cjESN allows to
explicitly include paths of different lengths as different cycles
of the reservoir. Jump connections, in such a scenario, allow
to move between different timescales, even between the same
timeseries, by jumping on the next/previous level cycles.
Even richer dynamics can be envisaged, such as having
bottleneck cycles as intermediate modules of the reservoir,
creating points of strong degree of local clustering, which
can be a desired behaviour in certain tasks.

The use of a modular architecture has an additional
advantage, which comes at the cost of a little increase in
the complexity of the model selection procedure. It allows
to have loops with different cycle weights wci, as depicted
in Figure 3. As highlighted in [16], a cycle reservoir is
characterized by the spectral property of having the eigen-
values of the reservoir matrix organized into a cycle of
radius wc, i.e. the value of the cycle weight. This property
extends to the concentric model where, as highlighted in
Figure 4, the eigenvalues of the reservoir matrix organize
in concentric cycles of radius wci, where the subscript i
denotes the i-th cycle. Such a property is quite desirable
for reservoir design as, taken together with cycle length,
it allows to gauge both the memory path length, through

Fig. 4. A graphical comparison of concentric reservoirs (left) and the
eigenvalues of the corresponding reservoir matrices (right). Note that, to
simplify plots, the concentric cycles on the left display only one tenth of
the actual neurons used to plot the eigenvalues on the right.

the number of neurons in a cycle, as well as memory
speed, in terms of how fast the memory of an input fades
in the cycle which is influenced by the spectral radius of
the module. Figure 4 shows a paradoxical configuration
where the largest reservoir module (the most external one,
in red in figure) is the one with the smallest spectral radius
(e.g. modeling transition between sever short-term subtasks),
while the smallest innermost cycle (in black) has the largest
spectral radius (modeling longer term dependencies over
relatively short paths). Jump connections, in this sense, allow
to switch between this different dynamical memories of
different capacity and speed. They perturb the circle-like
spectral organization of the reservoir by adding points within
the unitary sphere but outside of the circles perimeter.

Training of a concentric ESN can be performed as with the
standard ESN in Section II-A. The concentric configuration
of the reservoir has only effect on the structure of the
reservoir weight matrix. For clarity, we can assume reservoir
nodes to be indexed following the ordering in the unidirec-
tional cycle they belong to; cycles, instead, are ordered from
the outermost to the innermost in the concentric structure. In
this case, a cESN reservoir weight matrix has only zeros on
the main diagonal while it is organized in blocks of lower
diagonal stripes, corresponding to cycle loops, plus some off
diagonal elements for closing the unidirectional cycles. The
lower diagonal of the reservoir weight matrix has only zeros
in those positions where one cycle ends and the next cycle
begins. A cjESN has the same structure plus off-diagonal
elements for the jump weights (on both upper and lower
triangular, since jumps are bi-directional). For instance, if
we consider a cjESN with two cycles of 4 and 6 neurons,
respectively, and a jump size of τj = 3, the reservoir weight



matrix would look like the following one:

0 0 0 wc1 wj 0 0 0 0 0
wc1 0 0 0 0 0 0 0 0 0
0 wc1 0 0 0 0 0 0 0 0
0 0 wc1 0 0 0 0 wj 0 0
wj 0 0 0 0 0 0 0 0 wc2

0 0 0 0 wc2 0 0 0 0 0
0 0 0 0 0 wc2 0 0 0 0
0 0 0 wj 0 0 wc2 0 0 0
0 0 0 0 0 0 0 wc2 0 0
0 0 0 0 0 0 0 0 wc2 0


.

In the remainder of this paper, we will consider concentric
ESN models with the same jump size and jump weight
for all the concentric cycles. For the sake of simplicity of
the model selection phase, in this preliminary assessment
of the concentric ESN architecture we consider all reservoir
cycles to have the same weight wc. Training of the model is
performed using ridge regression as in Eq. (4).

IV. EXPERIMENTAL RESULTS

We provide an experimental assessment of the effect of
the concentric reservoir topology with and without jumps,
comparing its performance with that of the two reference
cycle reservoir networks in literature, i.e. SCR [15] and CRJ
[16]. To this end we consider two timeseries prediction tasks
from the original SCR and CRJ papers, whose results are
discussed in Section IV-A. These papers also report per-
formance of a standard ESN, for comparison. This analysis
is complemented, in Section IV-B, with an empirical study
of the memory capacity of the newly introduced concentric
reservoirs.

A. Timeseries Prediction Tasks

The first task is a standard system identification problem,
referred to as NARMA, consisting in the identification of the
10-th order nonlinear autoregressive moving average model
[19] given by

y(t+1) = 0.3y(t)+0.05y(t)

9∑
i=0

y(t−i)+1.5s(t−9)s(t)+0.1

where y(t) is system output at time t and s(t) is the corre-
sponding state generated uniformly in [0, 0.5]. The predictive
task requires to estimate y(t) using as input the current state
s(t). The dataset consists of a NARMA sequence, normalized
in [0, 1] with a length of 10000 samples, such that the first
2000 items have been used as training set, the following 5000
as validation set and the remainign 3000 as test set.

The second task is based on the Santa Fe Laser dataset
[20], referred to as LASER in the following. It requires
predicting the next value of a chaotic timeseries generated by
the intensity pulsations of a real laser. The dataset consists
of a sequence of 10092 elements, normalized in [−1, 1],
where the first 2000 samples form the training sequence,
the following 5000 form the validation sequence and the
remaining 3092 are the test sequence. In both NARMA and

TABLE I
NETWORK HYPERPARAMETERS CONSIDERED IN MODEL SELECTION,

INCLUDING WEIGHTS FOR THE RESERVOIR CYCLES wc AND JUMPS wj

(ONLY FOR CRJ AND CJESN), THE RIGDE REGRESSION PARAMETER λ,
THE LEAKING RATE α AND THE JUMP SIZE τj .

Parameter Values

Input Weights {.1, .2, .3, .4, .5}
Cycle Weights wc {.4, .5, .6, .7, .8, .9, 1}
Jump Weights wj {.1, .2, .3, .4, .5, .6, .7, .8, .9, 1}
NR {100, 150, 200, 300, 350, 600}
λ {10k|k ∈ [−15, 0]}
α {.1, .2, .5, .6, .7, .8, .9, 1}
Jump Size τj {5, 10, 15, 20, 30, 45}

LASER datasets, the first 200 samples of training, validation
and test subsequences were used as initial washout period.

The experimental analysis focuses on assessing the effect
of two topological features of the concentric ESN:

1) the modular reservoir organization introduced by hav-
ing multiple simple cycle groups of reservoir neurons;

2) the effect of introducing jump connections between the
simple cycle groups.

To this end, we confront the empirical performance of the
concentric ESN with jumps (cjESN) and without jumps
(cESN), also with respect to their flat counterparts in lit-
erature, that are the SCR [15] and the CRJ [16]. In order
to better understand the impact of the modular organization,
we confront the performance of the different models for the
same number of total reservoir neurons NR and using the
same hyperparameter values in the model selection proce-
dure. Table I provides a summary of the hyperparameters
considered in model selection.

In the modular cESN and cjESN models, one can have
different reservoir organizations for the same total number
of reservoir neurons, depending on the number of simple
cycles as well as on their length. Table II summarizes the
different reservoir topologies considered in this analysis:
note that the reservoir topology is itself an hyperparameter,
hence we have chosen this on the validation performance
as any other hyperparameter. The choice of the possible
reservoir configurations has been limited to a maximum
of 3 concentric reservoirs as well as to a fixed number
of stencil configuration to avoid a combinatorial explosion
in the configurations under test. Nevertheless, we believe
the chosen topologies to be good representatives of the
reservoir configurations, allowing to test: (i) simple cycles
with equal size; (ii) simple cycles with increasing size from
the outermost to the inner most; (iii) simple cycles with
decreasing size from the outermost to the inner most; (iv)
simple cycles with a bottleneck (i.e. less number of neurons)
in the intermediate circle.

The performance results of the models under test is show
in Table III for the NARMA dataset and in Table IV for
the LASER task. The first thing to note is that the jump
connections have a positive effect on the modular architec-



TABLE II
RESERVOIR TOPOLOGIES CONSIDERED IN MODEL SELECTION FOR THE CESN AND CJESN NETWORKS. NOTATION n1-n2-n3 DENOTES A RESERVOIR

WITH A TOTAL OF NR = n1 + n2 + n3 NEURONS, ORGANIZED IN 3 SIMPLE CYCLES WHERE THE OUTERMOST HAS n1 NEURONS, THE INTERMEDIATE
COMPRISES n2 NEURONS AND THE INNERMOST HAS LENGTH n3 . RESERVOIR ARE CONSTRUCTED DETERMINISTICALLY: HENCE, NO MULTIPLE

INITIALIZATION IS REQUIRED TO ACCOUNT FOR RANDOMIZATION.

NR Topologies

100 50-50, 60-40, 40-60
150 50-50-50, 75-75, 90-60
200 100-50-50, 50-100-50, 50-50-100, 100-100
300 100-100-100, 150-100-50, 150-50-100, 50-150-100, 50-100-150, 100-50-150, 100-150-50
350 100-200-50, 100-50-200, 50-100-200, 50-200-100, 200-100-50, 200-50-100
600 200-200-200, 300-300, 400-200, 200-400, 150-150-150-150

TABLE III
VALIDATION AND TEST ERRORS ON NARMA, FOR VARYING RESERVOIR
SIZES NR , FOR THE BEST CONFIGURATION OF HYPERPARAMETERS AND

TOPOLOGY SELECTED IN VALIDATION (LOWEST TEST ERRORS ARE
HIGHLIGHTED IN BOLD).

NR SCR cESN CRJ cjESN

100
Valid 0.0007 0.0928 0.0119 0.1104
Test 0.1137 0.1089 0.1086 0.0797

150
Valid 0.0997 0.1056 0.0722 0.0661
Test 0.0967 0.0775 0.0437 0.0649

200
Valid 0.0794 0.0742 0.0610 0.0449
Test 0.0544 0.0481 0.0356 0.0334

300
Valid 0.0597 0.0589 0.0284 0.0261
Test 0.0313 0.0306 0.0303 0.0188

350
Valid 0.0553 0.0560 0.0350 0.0289
Test 0.0257 0.0287 0.0175 0.0164

600
Valid 0.0418 0.04168 0.01943 0.019
Test 0.0173 0.0174 0.0143 0.0137

tures, confirming what has already been shown in [16] for the
flat models. The cjESN model achieves test errors that are
always smaller than those achieved by the equivalent cESN
architecture. In the LASER task, in particular, the errors of
the cjESN are constantly halved with respect to those by
cESN.

When confronting the performances between the modular
architectures and the flat ones, one can note that the cjESN
is almost always the best performing model (except for a
single configuration in the NARMA task). By taking a closer
look at the performances of cjESN and CRJ, it is clear how
the modular topology of cjESN is particularly effective for
smaller reservoirs (roughly up to 200-300 neurons) where
the performance differences between the two are particu-
larly wide. With larger reservoirs (i.e. 600 neurons) such
difference tends to fade, although still achieves the lowest
errors. On the other hand, when comparing the two jump-
less architectures, i.e. SCR and cESN, there seems to be a
less clear distinction between the performance of the two
models. For some configurations the modular architecture
slightly prevails, while in others the SCR model has better
performances, hence suggesting that the concentric topology
needs jump connections in order to fully exploit its potential.

TABLE IV
VALIDATION AND TEST ERRORS ON LASER, FOR VARYING RESERVOIR

SIZES NR , FOR THE BEST CONFIGURATION OF HYPERPARAMETERS AND
TOPOLOGY SELECTED IN VALIDATION (LOWEST TEST ERRORS ARE

HIGHLIGHTED IN BOLD).

NR SCR cESN CRJ cjESN

100
Valid 0.0115 0.0122 0.0079 0.0117
Test 0.0227 0.0215 0.0108 0.0100

150
Valid 0.0105 0.0089 0.0058 0.0058
Test 0.0160 0.0228 0.009 0.0068

200
Valid 0.0101 0.0096 0.0054 0.0057
Test 0.0119 0.0105 0.0103 0.0060

300
Valid 0.0084 0.0194 0.0048 0.0037
Test 0.0119 0.0105 0.0060 0.0047

350
Valid 0.0087 0.0084 0.0048 0.0045
Test 0.0106 0.01 0.0077 0.0049

600
Valid 0.0092 0.0087 0.0034 0.0049
Test 0.0107 0.0108 0.0061 0.0052

In order to better understand the effect of the topology,
we report in Table V and VI the reservoir configurations and
the jump sizes selected for each reservoir size by the model
selection process. First, one can note how the cjESN tends to
select pyramidal reservoirs (i.e. with decreasing cycle size)
when the total number of neurons is smaller. Whereas, when
the reservoir sizes increases, the preferred topologies tend to
include either bottleneck architectures or fewer cycles with
equal length. Since the configurations on which cjESN shows
a clearer performance increase with respect to CRJ are those
for smaller reservoir sizes, one might argue that topologies
with decreasing number of neurons (as we move from outer-
most to inner-most cycles) are better performing that other
architectural types. In terms of jump size, the results in
both tables show how cjESN tends to select more densely
interconnected concentric cycles, while CRJ prefers sparser
jumps within its single cycle reservoir.

B. Memory Capacity

Memory Capacity (MC) has been introduced to character-
ize the (short term) memorization capabilities of a reservoir
by measuring the ability of a network in encoding past
events in their state space so that past values of an i.i.d.



TABLE V
TOPOLOGICAL FACTORS FOR ARCHITECTURES SELECTED IN NARMA

VALIDATION

CRJ cESN cjESN
NR τj Topology Topology τj

100 5 40-60 60-40 5
150 15 50-50-50 90-60 5
200 15 100-50-50 100-50-50 5
300 30 150-100-50 150-50-100 15
350 15 100-200-50 100-200-50 5
600 30 200-400 300-300 15

TABLE VI
TOPOLOGICAL FACTORS FOR ARCHITECTURES SELECTED IN LASER

VALIDATION

CRJ cESN cjESN
NR τj Topology Topology τj

100 30 40-60 60-40 5
150 15 90-60 90-60 5
200 15 100-50-50 100-50-50 5
300 5 150-50-100 150-50-100 5
350 5 200-50-100 100-50-200 5
600 30 200-400 300-300 15

input sequence can be recalled [13]. Estimation of MC
is based on taking a univariate input sequence u(t) as
input to the network and, for a given delay k, train the
network to output u(t−k) after having seen the input stream
u(t − k) . . . u(t − 1)u(t) up to time t. Memory capacity at
delay k is computed as the squared correlation coefficient
between the desired output u(t−k) and the observed network
output y(t), i.e.

MCk =
Cov2 (u(t− k), y(t))
V ar(u(t))V ar(y(t))

(5)

where Cov and V ar are the covariance and variance opera-
tors, respectively. The short term MC is then obtained as

MC =

∞∑
k=1

MCk. (6)

The MC of an ESN is typically estimated empirically by
generating a sufficiently long stream of i.i.d data, training a
readout with a neuron for each different delay k, up to a finite
maximum delay K. In this paper, we use the same setting
and the same data1 used by the authors of [17], so to be able
to have a direct means of confrontation with a standard ESN
as well as with more complex layered reservoirs such as in
the Deep ESN model [17].

The input stream contains 6000 observations, such that
the first 5000 samples have been used for training and the
remaining 1000 for test. We have considered delays up to
K = 200 and a total number of reservoir neurons NR = 100,
which is also theoretical bound on the MC [13]. Following
[17], the input scaling has been fixed to 0.1, the leaky

1Available here: https://sites.google.com/site/cgallicch/resources

TABLE VII
MEMORY CAPACITY OF THE CESN AND CJESN FOR DIFFERENT

TOPOLOGIES OF THE CONCENTRIC RESERVOIR (JUMP STEP FOR CJESN
IS BETWEEN BRACKETS).

Topology cESN cjESN

75-25 (5) 39.73 41.54
25-75 (5) 39.93 43.28
40-60 (25) 39.98 42.68
20-80 (5) 40.43 43.75
15-85 (5) 41.01 43.55
80-20 (5) 41.04 43.62
95-5 (25) 41.31 41.52
90-10 (5) 41.43 42.61
85-15 (5) 41.80 42.82

parameter is chosen in α ∈ {0, 0.55, 1} and both the reservoir
cycle weight and jump connection weight are taken from
{0.1, 0.5, 0.9}. For the cjESN, we have considered jump
steps τ ∈ {5, 25, 50} to test both very sparse and more dense
cycle jumps.

We have tested both cESN and cjESN with two concentric
cycles under different topologies to assess the effect on MC.
Table VII summarizes the MC analysis for both architectures.
The jump-less cESN model seem more effective when the
concentric reservoirs are organized into a pyramidal shape,
i.e. where the number of neurons decreases when going from
the outermost to the innermost cycle. The cjESN has again
the best performance also in terms of memory capacity, but a
pyramidal organization of the reservoir does not seem to be
a key feature ensuring top-performances. Rather, the density
of the jumps seems to be more critical, with the majority
of the best performing models being characterized by more
frequent jumps between cycles.

Table VIII reports the MC of standard ESNs and of dif-
ferent deep ESN architectures on the same task, as described
in [17]. One can note how two-cycles concentric networks
yield considerably higher MC than the standard ESN and
of the majority of deep architectures. In particular, only the
deepESN model [17], with 10 layers of 10 neurons and fixed
α and spectral radius among layers, has levels of MC that
are comparable to those of the concentric ESN. In particular,
the best performing cjESN configuration shows an higher
memory capacity than deepESN. One interesting aspect to
note is the fact that concentric networks have a notably higher
memory capacity that the grouped ESN and deepESN-IA
model. The former is, in fact, very akin to a cESN, with its
independent groups of reservoir neurons [17]. The latter, in-
stead, is quite similar to a cjESN, with its stacked reservoirs,
each receiving input from the previous reservoir layer plus
data from the input neurons. The apparent simplicity of the
concentric cycles allows to efficiently memorize information
at different timescales using the dynamic memory of loops
of different length, yielding to excellent results in terms of
memory capacity.

https://sites.google.com/site/cgallicch/resources


TABLE VIII
MEMORY CAPACITY OF A STANDARD ESN AND OF DIFFERENT DEEP

ESN ARCHITECTURES AS DESCRIBED IN [17]. DEEPESN IS
CHARACTERIZED BY A RESERVOIR ORGANIZED INTO SUCCESSIVE

LAYERS, EACH RECEIVING INPUT ONLY FROM THE PREVIOUS
RESERVOIR IN THE STACK. THE VARIANT MARKED AS + VAR α AND ρ

ALLOW THE LEAKING PARAMETER AND SPECTRAL RADIUS TO VARY IN
THE DIFFERENT RESERVOIR LAYERS. THE DEEPESN-IA ADDS THE

CONTRIBUTION OF THE INPUT NEURONS TO EACH RESERVOIR LAYER,
WHILE A GROUPED ESN IS A STANDARD ESN WITH THE RESERVOIR

PARTITIONED INTO INDEPENDENT GROUPS OF NEURONS, EACH
CONNECTED TO THE INPUT NEURONS (BUT TO THE OTHER RESERVOIR

MODULES).

Model MC

standard ESN 27.50
deepESN 42.45
deepESN + var α 37.15
deepESN + var ρ 30.79
deepESN-IA 28.05
grouped ESN 28.02

V. CONCLUSIONS

We have proposed a novel modular architecture for ESN
reservoirs that is based on a concentric organization of
the reservoir neurons in unidirectional cycles linked by
jump connections between the loops. The proposed approach
relaxes the constrained SCR and CRJ architectures by in-
troducing the possibility of explicitly modeling dynamic
memory paths of different length as unidirectional cycles
comprising a different number of units. The bidirectional
jump connections, in this context, allow switching from one
memory regime to the other by moving up and down in the
concentric reservoir.

The experimental analysis has highlighted how the con-
centric architecture leads to increased predictive accuracy
with respect to an equivalent reservoir organized following
the SCR and CRJ layout. In particular, the results suggest
that the concentric organization is effective even for smaller
sizes of the reservoir, especially if jump connections are
included. The proposed approach has also been confronted
with standard ESNs and with state of the art deepESN [17]
in terms of empirical memory capacity, showing a significant
advantage of the concentric reservoirs even when compared
with the more articulated deepESN architectures.

The analysis performed in this paper is only preliminary
and there are several directions for future works. In our sim-
plified setting we have considered only concentric reservoirs
having the same weight on each cycle. Allowing a selection
of different weights for each cycle will permit to control the
tradeoff between dynamic memory length (regulated by the
number of units) and the speed of forgetting of recent history
(regulated by the spectral properties of the cycle). This aspect
would, in principle, allow to naturally process timeseries with
diverse timescales within the same sequence, permitting a
full exploitation of the jump connectivity between cycles.
Another very interesting direction of future research concerns
the introduction of a certain extent of adaptivity in the
reservoir weights. In particular, it would be interesting to

learn the values of the jump weights along the lines of what
it has been done in [21] for the CRJ architecture. Another
option to explore would be that of applying intrinsic plasticity
mechanisms to the different reservoir cycles, as done in the
deepESN model with excellent results in terms of memory
capacity enhancement [17].
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