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Abstract—Uses of underwater videos to assess diversity and
abundance of fish are being rapidly adopted by marine biologists.
Manual processing of videos for quantification by human analysts
is time and labour intensive. Automatic processing of videos can
be employed to achieve the objectives in a cost and time-efficient
way. The aim is to build an accurate and reliable fish detection
and recognition system, which is important for an autonomous
robotic platform. However, there are many challenges involved in
this task (e.g. complex background, deformation, low resolution
and light propagation). Recent advancement in the deep neural
network has led to the development of object detection and
recognition in real time scenarios. An end-to-end deep learning-
based architecture is introduced which outperformed the state of
the art methods and first of its kind on fish assessment task. A
Region Proposal Network (RPN) introduced by an object detector
termed as Faster R-CNN was combined with three classification
networks for detection and recognition of fish species obtained
from Remote Underwater Video Stations (RUVS). An accuracy
of 82.4% (mAP) obtained from the experiments are much higher
than previously proposed methods.

Index Terms—Deep Learning, CNN, Underwater Video, Object
Detection, Classification, Marine Ecosystem Analysis

I. INTRODUCTION

It is now common for marine scientists to assess fish

abundance using multiple underwater video cameras [1]. This

innovative method of assessing fish populations is a viable

alternative because it is inexpensive and non-lethal compared

to traditional methods (i.e. uses of seine nets, fyke nets,

gill nets, electrofishing, rotenone, and trawls) [2]. A Remote

Underwater Video Stations (RUVS)-based approach can also

work in complex habitats such as reefs or dense aquatic

vegetation where traditional approaches are ineffective. Videos

generated from RUVS are now mostly analyzed manually by

fish taxonomy experts. These experts estimate fish abundance

in different habitats to determine spatial patterns in fish

abundance and species composition for a variety of research

objectives. Information such as types of species and frequency

of occurrence of a particular species are most important in this

type of analysis.

However, manual analysis of large amounts of video pro-

duced by clusters of RUVS is a tedious process and as it

needs experts with specialized domain knowledge [3], the

process becomes expensive. Automatic processing of captured

underwater visual data from RUVS would be an ideal solution

in such circumstances. Automatic detection of fish and other

marine species is an essential step in order to distinguish the

fish from the background (e.g. ocean floor, plants, rocks).

This detection task is made more complex by the high levels

of occlusion (due to schooling by fish), color and texture

of fishes. Fig.1 shows some sample frames obtained from

different marine sites across southeast Queensland, Australia.

Existing works in the literature are mostly semi-automatic

[2], [4] and assumed a constrained environment. An uncon-

strained video stream involves more complex environments

and challenges like illumination, water turbidity, complex

background, a variable number of species, changes in orienta-

tion and scale due to freely moving fishes. These factors pose

a real challenge in recognition of species in an unconstrained

environment. In this work, we looked to fully automate the

process to obtain all the required information needed for an

assessment from a captured underwater video. Two main com-

ponents involved in this automation are (a) automatic detection

of species bounding boxes in the frame and (b) classification

of all the detected bounding boxes (Region of Interest) into

predefined classes (i.e. species names). The proposed work

addresses both challenges in a single pipeline using a deep

learning-based end-to-end architecture called ‘Faster R-CNN’.

The objective is to identify all the species present in an

underwater video in a real-time scenario. The proposed archi-

tecture for fish assessment has many advantages apart from

its fully automated properties. The system can successfully

detect and recognise multi-oriented and multi-scale samples of

species available in the dataset obtained from an unconstrained

environment. A wide range of experiments was conducted

using three different deep learning models and a dataset was

developed with a significant number of surf species.

II. RELATED WORKS

Despite significant literature for automatic object detection

and recognition using deep learning, limited attention has been

given to recognition of species from the underwater video

for assessing fish abundance. We provide a brief review of

the relevant research and state-of-the-art approaches on fish

identification from underwater video footages. The limitations

of the approaches in the literature are investigated to identify
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Fig. 1. Sample frames extracted from underwater videos obtained from different beaches across southeast Queensland, Australia. (a,b) Coolum Beach and
(c,d) Currimundi Beach

the gap and scope of works. Existing methods can be cate-

gorised into two classes: handcrafted feature-based [5], [6],

[4] and machine learning-based [1] approaches. A deformable

Template Matching-based feature extraction technique was

proposed by Rova et al. [5] for classification of fish. Support

Vector Machines (SVMs) with linear and polynomial kernel

were used to classify fishes in their work. Gundam et al. [6]

proposed a fish classification technique which could be used

as a partial automation of underwater video processing. A

Kalman filter-based technique was used. However, a constant

velocity model was assumed which is not very compatible

with the unpredictability of fish movements (velocity and

directions). The shape-based feature (Fourier) extraction tech-

nique was employed which might not perform well when the

number of classes increases and with fishes of identical shape.

Only three fish species were considered in the experiments

whereas many more fish classes can be presents in undersea

environments.

Spampinato et al. [4] proposed two different methods for

fish detection in underwater images and videos contain ten

different classes of fish. Three different approaches were pro-

posed for image-based fish species recognition based on spool-

ing and sparse coding-based features. A two-step approach was

adopted for fish detection and classification in videos. A back-

ground subtraction-based approach was used to detect fishes

whereas SIFT-descriptors and SVM-based classifier were used

for recognition. However, limitations of shape context-based

features and template matching techniques assume a constraint

environment which is not applicable to real-time unconstrained

underwater environment. Recently, the latest generation of

Convolutional Neural Networks (CNNs) outperformed the

approaches based on handcrafted approaches in computer

vision research [7]. The problem of fish classification was

addressed by Salman et al. [1] using a CNN-based feature

and SVM-based classifier. The LifeCLEF fish dataset used in

this experiment mainly contains fish templates.

Accurate object detection and classification still remain a

challenging problem in the field of computer vision despite

a significant progress being made using deep convolutional

neural networks on image classification and detection [8].

Recent advancement of deep ConvNets [9] has significantly

improved the object detection and classification task. The

object detection is a more challenging job, compared to

image classification, as it requires more advanced and complex

methods [10], [9] to obtain accuracy. However, convolutional

neural networks (CNNs) have now been successfully employed

recently [11], [12]. The selective search [11] method merges

superpixels based on low-level features and EdgeBoxes [12]

uses edge information to generate region proposals, and these

are now widely used. Shortcomings of proposed methods are

that they need as much running time as the detection network

to hypothesize object locations.

Here, the recent state-of-the-art methods towards object

detection [10], [13], [14] has been discussed. The Region-

based Convolution Network Network (R-CNN) [10] performs

excellent object detection by using a deep ConvNet and clas-

sify the object proposals. R-CNN uses Selective Search (SS)

technique to compute multi-scale object proposal to achieve

the scale-invariance capability. However, R-CNN is computa-

tionally expensive due to the processing of high numbers of

object proposal and provides only rough localization which

compromises speed and accuracy.



Fast R-CNN [13] is an improved version of R-CNN with

a much faster training and testing process and it achieves

more accuracy compare to R-CNN. R-CNN does not share

computation and performs CovNet forward pass for each

object proposal. Spatial pyramid pooling nets [15] proposed

a sharing computation technique which speeds up R-CNN

but fine-tuning algorithm proposed in SPPnets [15] cannot

update the layers precede the Spatial pyramid pooling. In

addition, as it deals with a variable window size of pooling,

one stage (end to end) training was difficult. Fast-R-CNN fixes

the drawbacks of R-CNN and SPPnet, whiling improving their

speed and accuracy. The single-stage training process in Fast

R-CNN can update all network layer using a multi-task loss

and does not need disk storage for feature caching. In all of

the above approaches, the power of CNN has been used only

for regression and classification. The concept of Fast R-CNN

was extended further in Faster R-CNN [14] by introducing a

Region Proposal Network (RPN). The Faster R-CNN merges

the RPN and Fast R-CNN into a single network by sharing

their convolutional features using a popular terminology of

neural networks with ‘attention’ mechanisms, the RPN guides

the network for object regions. RPN consists of several addi-

tional convolutional layers, build on top of the convolutional

feature map. Although the accuracy of R-CNN and Fast R-

CNN were satisfactory, they were computationally expensive

which make them unsuitable for real-time applications, unlike

Faster R-CNN. We, therefore, selected the Faster R-CNN [14]

as our approach in this investigation.

III. METHODOLOGY

The object detector called Faster R-CNN [14] is a partic-

ularly successful method for general object detection. It is a

single integrated network which consists of two modules: (a)

region proposal, and (b) region classifier. Fig. 2 shows a Faster

R-CNN architecture which is a single, unified network for

object detection. A deep fully convolutional network proposes

a set of regions and then the regions are used by the Faster

R-CNN [13] detector. The Region Proposal Networks (RPNs)

are designed to predict region proposals with a wide range of

scales and aspect ratios. Sharing of convolution at test time

with the very efficient object detection network [13] signifi-

cantly reduces the marginal cost of proposals computation.

The proposed RPN model [14] can be combined with a

classification model to achieve the detection and classification

in an end to end framework. Different CNN-based classifica-

tion models with different sizes (small, medium and large)

were combined with the RPN network in our experiments

to obtain Faster R-CNN models of three different sizes (i.e.

the number of layers). The RPN consists of a few additional

convolutional layers that simultaneously regress region bounds

and objectness scores at each location on a regular grid. In

faster R-CNN, RPN was constructed (see Fig. 2) on top of

the convolutional feature map which was trained end-to-end

to generate high-quality region proposals. The following three

classification models (ZF, CNN-M, and VGG-16) were used

in our experiments to combine with RPN and compare the

performances.

ZF Net [16]: Architecture of this network model is similar

to AlexNet with minor modifications. The filter size was

reduced to 7× 7 compared to 11× 11 in AlexNet in the first

convolutional layer of ZF net which helps to retain a significant

pixel information in the input data. ZF net used ReLUs as

activation functions, for error function cross-entropy loss and

the network trained as batch stochastic gradient descent.

CNN-M [7]: Architecture of this model is similar to the ZF

model with some modifications. A smaller receptive field of

the first convolutional layer and a decreased stride was shown

to be beneficial. However, convolutional layer 2 uses a larger

stride (2 instead of 1) to keep the computation time reasonable.

The main difference between this model and ZF is that CNN-

M uses fewer filters in the layer 4 (512 instead of 1024).

VGG-16 Net [17]: This CNN model consists of 19 layers

that only used 3 × 3 filters with a stride and pad of 1, max-

pooling with 2 × 2 and stride 2. The filter size of 3 × 3 is a

contrast to ZF Nets 7 × 7 filter. An effective receptive field

of 7× 7 was achieved using 3 back to back conv layers. The

model has used scale jittering as data augmentation during

training and ReLU layers are used after each convolutional

layer. The batch gradient descent was used during training.

The Caffe deep learning library [18] was used for all the

experiments presented here. In our experiments, publicly avail-

able pertained Caffe models for object detectors were used

for initial weights and to enable transfer learning technique.

Hence, to take advantage of all network architectures used in

our experiments, transfer learning technique from ImageNet

[8] was used during fine-tuning of our models. A better

performance and a faster convergence can be achieved using

the transfer learning technique.

Implementation details: All experiments have been con-

ducted on an Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz

Linux cluster node with a GeForce GTX 1080 GPU installed.

The python interface code was used to conduct all the exper-

iments. The models are trained with a learning rate of 0.001

and batch size of 128. The RPN batch size was set to 256

for region-based proposal networks (RPN). Regions proposal

networks were trained end-to-end using back-propagation and

stochastic gradient descent (SGD). Non-maximum suppression

(NMS) was employed to the proposals based on the class

scores to reduce redundancies arising from RPN proposals.

Performance of each network architecture at different itera-

tions was also analyzed. In the training phase, the snapshot

of trained models was saved at an interval of 10k iterations.

Detections with overlap greater than the 50% Intersection over

Union (IoU) threshold with the corresponding ground-truth

bounding box are considered as true positive and all other

detections as false positive and IoU calculated as:

IoU(BBpred, BBgt) =
area(BBpred ∩BBgt)

area(BBpred ∪BBgt)
(1)

where BBpred and BBgt denotes predicted bounding box and

ground truth bounding box respectively. The Average Precision
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Fig. 2. An architecture of Faster R-CNN. Here, the feature map is generated by 5 layers convolution which is shared by the RPN network and the region
classifier.

(AP) is computed for each class, while mean Average Preci-

sion (mAP) denotes the mean over all the computed APs.

IV. RESULTS AND DISCUSSIONS

Dataset: Details about the fish datasets used for the ex-

periments are described here. Underwater videos used in our

experiments were provided by the authors as part of a collabo-

rative research program based at University of Sunshine Coast

[19], [20]. The videos contain fish communities in marine

waters of beaches and estuaries across southeast Queensland,

obtained using baited and unbaited GoPro cameras. 4909

images containing 12365 annotated samples of 50 species

of fish and crustaceans were used in our experiments. The

Vatic interactive video annotation tool [21] was employed to

annotate the data and was standardized in PASCAL VOC [22]

format. The dataset was divided into training, validation, and

test sets using a random sampling technique. The training,

validation and test set comprises of 70%, 10%, and 20% data

respectively.

Detection results: The detection results of several fish

species from two sets of experiments are detailed in Table

I and Table II with the mean Average Precision (mAP)

results. Table I shows the results obtained from three different

experiments using three network architectures considered in

our experiments. The best result obtained among all iterations

are presented here and the VGG-16 network outperformed.

Mean AP of 0.72 and 0.71 and 0.71 were obtained after 70k

iterations for VGG-16, CNN-M, and ZF respectively when

the whole dataset was considered. However, accuracy was

improved in experiment II when species only have adequate

training samples are considered. Table II shows that maximum

mAP of 82.4% was achieved on the VGG16 network. An

average time taken for processing an image for detection

during testing process was 0.2 seconds (i.e. 5 fps) for VGG-

16 and 0.1 seconds (i.e. 10 fps) for ZF and CNN-M network

models which imply that the system is capable of processing

video in real-time. Fig. 3 shows how the mAP improves over

iterations (x-axis represents iterations in thousands) during the

testing process on three different network architectures and

the highest mAP of 0.72 was obtained for VGG-16 at 70k

iterations. The class-wise AP analysis has also presented for

some sample species in Fig. 4. Fig. 5 shows how the accuracies

were improved over iterations in experiment II. An mAP of

82.4% was achieved on the test dataset after 90K iterations.

The qualitative detection results of several sample frames are

shown in Fig. 6. The detected region along with the species

TABLE I
RESULTS OBTAINED FROM THE EXPERIMENT I ON FISH TEST DATASET. AP

REPRESENTS AVERAGE PRECISION

Species
AP on

VGG-16

AP on

CNN-M

AP on

ZF

Mackerel tuna 1.00 1.00 0.55

Reticulated surf crab 1.00 1.00 1.00

School mackerel 1.00 1.00 0.55

Blueswimmer crab 0.91 0.90 0.91

Smooth flutemouth 0.91 0.81 0.91

Starry pufferfish 0.91 0.91 0.91

Sand crab 0.90 0.81 0.81

Spotted wobbegong 0.82 0.90 0.88

White spotted eagle ray 0.82 0.64 1.00

White spotted guitarfish 0.82 0.86 0.89

mAP 0.72 0.71 0.71

TABLE II
RESULTS OBTAINED FROM THE EXPERIMENT II ON FISH TEST DATASET.

AP REPRESENTS AVERAGE PRECISION

Species
AP on

VGG-16

AP on

CNN-M

AP on

ZF

Bluespotted flathead 1.000 0.818 0.831

Sand whiting 1.000 0.945 0.909

Smooth golden toadfish 1.000 1.000 1.000

Southern herring 1.000 0.947 0.867

Smoothnose wedgefish 0.996 0.989 0.892

Painted grinner 0.986 0.951 0.972

Reticulate whipray 0.909 0.909 0.909

Starry pufferfish 0.909 0.899 0.807

Swallowtail dart 0.909 0.838 0.994

Common stingaree 0.906 0.995 0.97

mAP 0.824 0.769 0.750

Fig. 3. Mean average precision on test data using 3 different models from
experiment set I. X-axis represents iteration in thousands.

name is shown in all the detected frames. Some previous

works on fish identification in the literature are significant

as a fish classifier. However, our proposed system is more

advanced as it detects the region of interest and classifies all

the species in a single pipeline. As the existing works on fish



Fig. 4. Avg. precision analysis at different iterations on multiple fish and
crustacean species in the dataset. X-axis represents iteration in thousands.

Fig. 5. Mean average precision on test data using 3 different models from
experiment set II. X-axis represents iteration in thousands.

identification were not conducted on any standard dataset and

there is no public dataset available, a proper comparative study

cannot be performed. However, Spampinato et al. [4] reported

an accuracy of 54% on a dataset having only 10 species.

An error analysis was performed on frames with incorrect

detections. It was found that high levels of occlusion among a

school of fishes was the main cause of the error. Fig 7 shows

some sample frames with incorrect detection. Two frames with

ground-truthing and the same frames after detection are given

side by side to aid understanding. Fig. 7(b) shows one false

negative case as the ground truth sample is occluded. Fig.

7(d) shows two false positive cases as the pattern of ground

truth fish data is identical with some background surf in this

particular case.

V. CONCLUSION

Automatic assessment of fish/species abundance using re-

mote underwater video stream has tremendous potential over

traditional approaches in terms of time and cost-effectiveness.

The objective of the work was to develop a system for au-

tomatic detection and recognition of species from underwater

videos. The significance of such a system has been studied and

an appropriate work towards automation was not found in the

literature on the assessment of fish abundance. An end to end

deep learning approach was adapted to process a video stream

and extract all the information required for the assessment.

A range of experiments was conducted using different deep

learning models and a comprehensive analysis of performance

is presented. An mAP of 82.4% was achieved across a very

wide variety of marine species. The main contributions of our

work are, therefore:

• Proposed a high-performance fish identification system

by fine-tuning the ‘Faster R-CNN’ which has been

adapted to our problem

• Presentation of a wide range of experiments for un-

derwater fish detection and identification using three

different (small, medium and large sizes) state-of-the-art

classification network models

• Introduction of a newly developed fish abundance dataset

which contains 50 different species from multiple beaches

and estuarine sites across southeast Queensland, Aus-

tralia. The number of species considered in these exper-

iments is significantly higher than previously proposed

approaches. The dataset is annotated and standardised

in PASCAL VOC [22] format using the Vatic video

annotation tool [21].

In future, we aim to further improve the performance by

enhancing the CNN architecture and training the system with

more samples in the training dataset.
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