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Abstract—Implantable, closed-loop devices for automated early
detection and stimulation of epileptic seizures are promising
treatment options for patients with severe epilepsy that cannot
be treated with traditional means. Most approaches for early
seizure detection in the literature are, however, not optimized for
implementation on ultra-low power microcontrollers required for
long-term implantation. In this paper we present a convolutional
neural network for the early detection of seizures from in-
tracranial EEG signals, designed specifically for this purpose. In
addition, we investigate approximations to comply with hardware
limits while preserving accuracy. We compare our approach to
three previously proposed convolutional neural networks and a
feature-based SVM classifier with respect to detection accuracy,
latency and computational needs. Evaluation is based on a
comprehensive database with long-term EEG recordings. The
proposed method outperforms the other detectors with a median
sensitivity of 0.96, false detection rate of 10.1 per hour and
median detection delay of 3.7 seconds, while being the only
approach suited to be realized on a low power microcontroller
due to its parsimonious use of computational and memory
resources.

Index Terms—Electroencephalography, Epilepsy, Seizure De-
tection, Responsive Neurostimulation, Convolutional Neural Net-
work, Low Power Microcontroller

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases
[1] and a high percentage of patients with epilepsies are
refractory to pharmaceutical therapy [2]. A new treatment
option for patients with intractable epilepsy is closed-loop
brain stimulation [3]], with an additional advantage of only
short intermittent interventions compared to traditional con-
tinuous pharmaceutical therapy. In order to interrupt seizures,
a seizure detection algorithm can be used to trigger the
intervention using intracranial Electroencephalography (EEG)
data. Research on automatic seizure detection started with the
objective of reducing workload for the review of long-term
recordings in epilepsy monitoring units and moved together
with the development of seizure prediction algorithms [4]]
towards the application in implantable devices [5], [6]]. Most of

the approaches are based on handcrafted feature selection [7],
[8]] or rules designed by experts [9]. Driven by the success of
deep learning, more recent approaches use deep convolutional
networks or recurrent networks [10]—[12]]. However, most of
these architectures are too demanding for the implementation
on an implantable hardware platform. There are some ap-
proaches which are using small convolutional neural networks
with only few layers and a small number of weights. The
EEGNet of Lawhern et al. [[13] is in principle transferable to an
implantable hardware. However, the hardware implementation
itself was not addressed in their work. Kiral-Kornek et al.
[14] proposed two architectures for seizure prediction. One
convolutional neural network, which was evaluated on a com-
prehensive data set and another, which can be implemented
on a TrueNorth neuromorphic chip from IBM.

In this paper, we propose SeizureNet, which uses effi-
cient layer combinations and has state-of-the-art detection
performance. SeizureNet bridges the gap to an implant for
seizure detection based on deep learning. To the best of our
knowledge, we have designed the first convolutional neural
network for seizure detection specifically for an implantable
ultra-low power microcontroller. The proposed architecture
exhibits low runtime and memory usage, but maintains high
sensitivity in combination with a low false positive rate and
a short detection delay for a successful stimulation in a later
closed-loop application.

After describing the hardware and the dataset in the two
following sections, we define the seizure detection problem
and explain our detection pipeline, including preprocessing,
model architecture, training and performance evaluation in
section [[V] We then show results in section [V] for the actual
seizure detection performance, as well as a comparison of
hardware properties such as runtime, memory, and energy
consumption of our model and four other baselines. We also
discuss limitations of the seizure detection device, before
concluding in section
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II. HARDWARE

For the hardware implementation of the network, a low
power microcontroller MSP430FR5994 from Texas Instru-
ments is used. Due to its power consumption of 118 uA/MHz
in active mode and 0.5 A in standby mode, it is suitable for
the application in an implantable device where a heating of the
surrounding tissue must be avoided. A further great advantage
of the MSP430FR series is its ferromagnetic nonvolatile mem-
ory (FRAM). With a low-power consumption and fast write
speed, a swift storage of hidden layer activations of a neural
network can be implemented. However, the FRAM also limits
the maximum clock speed of the controller as its reading speed
is limited to 8 MHz. It is possible to run the controller with
higher clock speeds but only with additional wait states for
the CPU leading to a lower power efficiency. Another useful
feature for the implementation of convolution layers is the
32-bit hardware multiplier of the controller, enabling power
efficient multiply and accumulate (MAC) operations without
CPU intervention.

III. DATASET

The dataset used is the Epilepsiae database [15]], containing
long-term continuous intracranial EEG data. We evaluate our
approach on 24 patients. Each recording has a duration be-
tween five and eleven days and contains the measurement of
approximately 100 intracranial and scalp electrodes originally
sampled with or resampled to f; = 256 Hz. During the two
weeks, the evaluated patients had between 6 — 92 seizures. To
limit the amount of data for our experiments, we consider 100
minutes segments of the recordings around the seizures.

For every patient, we consider a subset of E = 4 electrodes,
which are selected a priori by expert epileptologists to cover
the seizure onset zone(s). In case that less than four electrodes
display the initial ictal EEG pattern, neighboring channels are
included for seizure detection. The total number of electrodes
is limited due to hardware limitations.

IV. METHODS

A. Seizure Detection Problem

Seizure detection can be modeled as time-series classifica-
tion, where we classify ictal phases (seizures) and interictal
phases (non-seizures). To create the inputs for the convolu-
tional network, we process sliding windows over the EEG data
D € RTE where T is the recording duration and E is the
number of electrodes. 1 second samples are created as input
features ; € R! with input dimensionality I = |T/S]-E- fs
at time point ¢, where f5 is the sampling frequency and S the
stride. The corresponding labels are y € {0,1}7/5] where
y; = 1 indicates a seizure at the end of sample ¢ and y; = 0
an interictal sample. The window lengths are chosen to keep
the runtime of a forward pass low. To train our models, an
overlap of 50% is used, which equals a stride of S = 0.5
seconds. Due to the hardware runtime limitations, we evaluate
our models with a stride of 1s.

B. Preprocessing

Compared to the conventional scalp EEG, intracranial EEG
is less prone to artifacts like the pick-up of the electrocar-
diogram or electromyogram. However, a careful removal of
noise and drifts in the data can facilitate the subsequent pattern
classification task. Multiple preprocessing steps are performed
to remove signal components which are not carrying relevant
information and to adapt the signal statistics to intra-individual
fluctuations. The power line noise at 50Hz is removed by
applying a notch-filter on the raw EEG data to exclude this
frequency. Subsequently, a highpass filter (> 0.1 Hz) removes
slow drifts. The data is then rescaled by dividing through
the rolling 10 minutes standard deviation to account for non-
stationarity in the source. Preliminary experiments showed
this setting to perform well. The rolling mean and standard
deviation can be computed for a time point ¢ and window size
N as:
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The input data is then normalized as follows:

# = tanh (0.2 : N””)

op (Te-N,,:t)
where N,, = 153600, which equals 10 minutes of data. We
normalize the scaled and standardized data via the hyperbolic
tangent to reduce the influence of outliers and artifacts while
maintaining a quasi-linear relation for most of the input
distribution.

C. Model Architecture

In order to find a good model architecture, we evaluated the
runtime and memory requirements for various layer types like
convolutions, dense layers, pooling layers and activations. The
architecture of SeizureNet is shown in Table [} The proposed
network is a deep convolutional network with alternating
convolutional and pooling layers.

Lawhern et al. [13] proposed convolutions over electrodes
in the first layer. They used kernels of size (F, 1), which is
similar to approaches such as common spatial patterns [[16].
We extend this by convolving over the electrodes and time, so
that we can learn spatio-temporal patterns efficiently in one
layer. In the last layer, we use 1 x 1 convolutions instead of
a fully-connected layer. This was introduced in [[17] and is a
parameter-efficient way to reduce dimensions [[18]]. Rectified
Linear Units (ReLu) are used in all hidden layers. Further,
batch normalization is used after the convolutions. During
training, dropout regularization is applied to reduce overfitting.

D. Training

To deal with the high imbalance of ictal and interictal
samples, we use an oversampling technique. Mini-batches are
created by randomly picking ictal samples with probability p,



and interictal samples otherwise. In order to learn to detect
seizures as early as possible, we weight the ictal samples in
the loss function according to their distances to the seizure
onset. The weights decrease linearly from 1.0 for the onset to
0.0 for the seizure offset.

In all experiments, the patient-specific models are trained.
For evaluation, we use 3-fold cross validation. Each model is
trained with a batch size of 256 for 1.5-10° steps (batches of
samples), with a sampling probability p = 0.1 for the number
of seizures in each batch. For optimization, we use Adam [|19]]
with a learning rate of 10~3 and the binary cross-entropy loss.

E. Detection Performance Evaluation

It is non-trivial to evaluate a seizure detection system.
Mainly, three objectives should be optimized:

o The sensitivity is defined as the ratio of actually detected
seizures to the total number of seizures.

o The detection delay is calculated as the mean delay over
all detected seizures. For each detected seizure, the delay
is defined as the expired time between the electrographic
seizure onset identified through visual inspection by a
domain expert, and the first algorithm-based detection of
the seizure.

o The false positive rate is the number of false detections
per hour (fp/h).

F. Approximations

For our hardware implementation, we have to approximate
the rolling 10 minutes standard deviation due to memory
limitations. We first approximate the rolling 10 minutes mean
uiv “ by computing a grand mean ﬂiv v over 1-second means
g. Doing so, only K = 600 means have to be stored for
the targeted duration, while introducing a negligible error by
ignoring the most recent samples until they form a new 1

TABLE I
ARCHITECTURE OF SEIZURENET FOR E INPUT ELECTRODES.

Layer Operation Output
Input (E X 256) E x 256 x 1
1 20 x Conv2D (E x 17) 1 x 240 x 20
2 MaxPool2D (1 x 4) 1 x 60 x 20
Dropout (0.2) 1 x 60 x 20
3 10 x Conv2D (1 X 5) 1 x 56 x 10
4 MaxPool2D (1 x 4) 1x14x 10
Dropout (0.2) 1x14x10
5 10 x Conv2D (1 X 5) 1 x 10 x 10
6 MaxPool2D (1 x 2) 1x5x10
Dropout (0.2) 1 x5x10
7 10 x Conv2D (1 x 5) 1x1x10
Dropout (0.2) 1x1x10
8 1 x Conv2D (1 x 1) 1x1x1
9 Sigmoid 1

Total Number of Parameters: 3,621

second mean fi;. The approximated mean can then be used to
compute the 10 minutes standard deviation &fv w:

[ = :u’tfik.fs (Tt—fot—(k—1)1.)
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with k€ {1,..., K}.

Further, we use a linear approximation of the hyperbolic
tangent in the preprocessing to avoid the need for a lookup-
table:

/12 —12<z<1.2
lintanh(x) := ¢ 1 x>12
-1 T < —1.2

G. Comparison to other Approaches

For seizure detection, it is hard to compare approaches
without evaluating on the same framework, due to factors
like different evaluation methods, different datasets, omit-
ted patients and patient-specific or across-patients training.
Hence, we reimplemented all our baselines. We compare the
performance of our architecture to three other convolutional
neural networks, which we find most similar to our approach.
In order to evaluate fairly, we use the same preprocessing
and the sampling method for all convolutional networks. The
architectures of the network baselines are shown in Table
Further, we compare to the performance of a support
vector machine approach from the literature using handcrafted
features [8]].

1) EEGNet: The first baseline is EEGNet, a small con-
volutional network by Lawhern et al. [13]. The EEGNet
shows robust performance across four different brain-computer
interface classification tasks. It consists of three convolutional
layers and two max pooling layers, where the first convolution

TABLE I
ARCHITECTURE OF THE BASELINE NETWORKS.

EEGNet | Kiral-Kornek et al. | Acharya et al.

Input (E X 256)
16 x Conv2D (E x 1)
Transpose
Dropout (0.25)

4 x Conv2D (2 x 32)
MaxPool2D (2 x 4)
Dropout (0.25)

4 x Conv2D (8 x 4)
MaxPool2D (2 x 4)
Dropout (0.25)

1 x Conv2D (1 x 1)

Input (32 x 32 X E)

16 x Conv2D (3 x 3)

MaxPool2D (2 x 2)
Dropout (0.7)

32 x Conv2D (3 x 3)
MaxPool2D (2 x 2)
Dropout (0.7)

32 x Conv2D (3 x 3)
MaxPool2D (2 x 2)
Dropout (0.7)
Dense (32)

Input (E x 4097)
4 x Conv2D (E x 6)
MaxPool2D (1 x 2)
4 x Conv2D (1 x 5)
MaxPool2D (1 x 2)
10 x Conv2D (1 x 4)
MaxPool2D (1 x 2)
10 x Conv2D (1 x 4)
MaxPool2D (1 x 2)
15 x Conv2D (1 x 4)
MaxPool2D (1 x 2)

GlobalMaxPool2D Dropout(0.5) Dense (50)
Dense (20)
Sigmoid Output Layer
Total Number of Parameters:
957 15,665 96,220




estimates a set of spatial filters over the electrodes. To adapt
their approach to our framework, we replace the softmax
regression output layer by a sigmoid activation.

2) Kiral-Kornek et al.: In [14], a convolutional network
is evaluated for patient-specific seizure prediction based on
spectrograms. To compare with their architecture, we use their
approach for seizure detection instead of prediction. They pro-
posed a network consisting of three alternating convolutional
layers and three max-pooling layers using 32 x 32 spectro-
grams as input. As activation function, they use an Exponential
Linear Unit (ELU) [20]. To provide a proof-of-concept that
they can implement their seizure prediction system on a low-
power system, they adapt their network architecture to a 18-
layer binary neural network, consisting only of convolutional
layers and dropout. This architecture can run on the IBM
TrueNorth Neurosynaptic System chip [21]. However, because
their network uses binary weights, they need more layers and
thus more parameters to reach the same precision. In total,
they use over 4.2 million parameters, which would cost more
than 525 kB for binary weights. Because this already exceeds
our memory limit, we only use their small architecture as
a baseline. To adapt this approach to seizure detection, we
use 1 second windows instead of 30 second windows and
Short-Time Fourier Transformation (STFT) to generate the
spectrograms. Further, we focus on the comparison of the
network architectures and thus don’t include time of day as
an input feature to keep the input consistent across methods.

3) Acharya et al.: In [11], a 13-layer convolutional neural
network is trained across patients on one electrode to classify
interictal, ictal, and preictal phases (phases directly before a
seizure). They trained their model on a subset of the Epilepsiae
database, consisting of 5 epileptic patients and additionally
5 healthy subjects. The architecture takes an input window
of length 4097, which equals to 16s for a sampling rate of
256 Hz. As activation function, they use a Leaky ReLu. To
stick to our framework, we adapt their network so that it uses
4 electrodes as input by changing the first convolutional layer
from a 6 x 1 convolution to 6 x 4. Further, we use a sigmoid
output layer. For training, an overlap of 50% is used. As for
the other approaches, the performance is evaluated with a 1
second stride.

4) SVM: Besides deep learning approaches, we compare
our method to the support vector machine (SVM) proposed in
[8]]. For feature extraction, they use the EMD algorithm [22],
which is a signal processing method for nonlinear and non-
stationary time series. The SVM uses the variance of Intrinsic
Mode Functions (IMFs) as input features and a Radial Basis
Function (RBF) as kernel. A post processing step is applied,
which classifies a seizure only if the SVM has classified a
number of consecutive epochs as epileptic activity. In the
original study, eight consecutive epochs were required for
detecting a seizure. Since this would lead to a high detection
delay for online detection steps of one second, we skip this
step. Further, they use only 20 seconds of ictal and 100 seconds
of interictal data for training. In contrast to that, we use all
available seizures of the training set and downsample the

remaining interictal data to the ratio proposed in the original
paper. In our experiments, we use the first three extracted IMFs
as features for the SVM.

V. RESULTS

In order to evaluate our approach, we first compare the
detection performance for all architectures. Further, the ROC
AUC score is computed to show the discriminative properties
of the models. Since the AUC score is independent of the
classifier threshold, it is a suitable additional metric to compare
the different architectures. However, since seizures only have
to be detected once but as fast as possible, the per-sample
sensitivity and thus the AUC score of the classifier is not
as important as the other metrics. After that, we show how
the performance metrics can be influenced by varying the
classification threshold. This offers the possibility of manual
(re-)adjustment of the detection device during a study with real
patients. Then, we investigate the effect of the preprocessing
approximations. Finally, we evaluate all network-based models
regarding their memory and speed for our hardware implemen-
tation. For this purpose, we analyze the requirements for the
preprocessing and the successive layers of the networks.
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Fig. 1. Detection performances over all patients for a classifier threshold of
0.5. Median delay and false positive rate are shown in logarithmic scale.

The detection performance of our model and all baselines
is shown in Fig. [T] for a classifier threshold of 0.5. To show
the overall performance, we calculate the metrics separately
for each patient and summarize the distribution in the figure.
SeizureNet has robust and high sensitivities for all patients.
With a median sensitivity of 0.96, it outperforms all other



architectures except for the network of Kiral-Kornek et al.,
which has a median sensitivity of 0.98. Their network, how-
ever, shows extremely high false positives rates, with outliers
up to 464 false positives per hour. Because of the large window
size of 16's, the lowest median fp/h of 0.04 is achieved by
the network of Acharya et al. However, this window leads to
a high median delay of 24.3 s (unacceptable for early seizure
detection applications) and a low sensitivity of 0.67. The
second best false positive rate is achieved by EEGNet due to
its low sensitivity. The SVM has a good median sensitivity, but
a higher delay and a higher false positive rate than SeizureNet.
With the best median AUC score of 0.89 and a good balance
between false positives and delay, SeizureNet shows the best
and most robust detection performance.

Fig. ] shows the influence of the classifier threshold on
the performance metrics. Higher thresholds correlate with
reduced sensitivity and increased delays, but also prove to
be less prone to false alarms. The highest median sensitivity
of 0.96 is achieved with a classifier threshold 0.5, with a
respective median delay of 3.7s and 10.1 false positives per
hour. A low median fp/h of 0.7 can be achieved with a high
classifier threshold of 0.9. However, this threshold decreases
the sensitivity to 0.75 and increases the median delay to 10.8s.
Of course, the classifier threshold can also be varied for the
other architectures (for the SVM, the proposed postprocessing
step can be used instead). However, as indicated by the high
AUC score, SeizureNet has the best performance independent
of the threshold.
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Fig. 2. Influence of classifier threshold on the detection performance of

SeizureNet. Median delay and false positive rate are shown in logarithmic
scale.
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A. Approximations

Fig. [3| illustrates the performance loss due to preprocessing
for the proposed approximations for 10 patients. We compare
to another approximation, where we replace the rolling mean
with 0. The used highpass filter roughly centers the signal
around the zero line which allows us to dispense with a mean
estimation and the standard deviation can be approximated by

2 1
((rgN w) R N Z 2
i=t— Ny,

In our experiments, using the 10 minutes standard deviation
and the hyperbolic tangent shows the best results. The best
approximation is using the grand mean with a median delay
of 3.4s and a fp/h of 14.1 and an AUC score of 0.94. The
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Fig. 3. Detection performance of the proposed preprocessing and various
approximations evaluated on a subset of 10 patients.

zero mean approximation offers a big advantage in runtime
and memory reduction, however, it increases the median delay
considerably to 6 s.

B. Hardware Requirement Analysis

The theoretical runtime and memory requirements of all
convolutional networks for our hardware implementation are
shown in Fig. 4. Besides SeizureNet, only the network of
Kiral Kornek et al. would actually be implementable on our
microcontroller. However, the preprocessing of this network
is extensive due to the STFT and has a 38% higher runtime.
The high runtimes of EEGNet and Acharya et al. make an
implementation on our realtime detection device impossible.
For EEGNet, this is caused by zero-padded convolutions,
which are not reducing the dimensionality of the input. The
runtime for the network of Acharya et al. is mainly affected
by the large input window.

The required memory of the hardware implementation is
specified by the number of parameters of the networks, a buffer
for the rolling window of the preprocessing, lookup-tables
and two buffers, saving the inputs and outputs of the hidden
layers. The size of the buffers is determined by the layer with
the largest input and output size. Regarding the memory, all
networks besides the network proposed of Acharya et al. are
theoretically implementable on our device. The limiting factor
of this network is the use of fully-connected layers, which
require 74% of the total memory.

Besides SeizureNet, none of the networks were actually im-
plemented on hardware platforms, so we cannot compare hard-
ware efficiency and power consumption. Only Kiral-Kornek et
al. implemented an adapted network on the IBM TrueNorth
chip. This chip has a consumption of 40 — 70mW to power
1 Mio neurons, resulting in a power consumption of 40 — 70
nW per neuron. With 107400 neurons, a power consumption of
4.3—7.5mW can be estimated for the adapted network. For the
preprocessing and forward pass of SeizureNet, we measured a
power consumption of 850 W which is 5 to 8.8 times lower.

The SVM approach was excluded from this comparison as
non-parametric approaches behave differently for each patient.
While test-time predictions scale linearly in time and memory
with the number of support vectors, the required amount grows
rapidly with the number of seizures considered in the training
data. Due to the varying computational demands for each
patient, it is difficult to find a fair setting for a comparison
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against the network approaches that have a constant load
across patients. Additionally, the preprocessing in [8]] would
require simplification to be efficiently implementable and
change the method substantially.

C. Limitations of the Approach

Tuning the networks to early and sensitive detection of
electroencephalographic seizure patterns (Fig. [3) occurs at the
cost of higher false positive rates. Several components can
have contributed to this: a) selection of short EEG segments
of 1s decreases detection delay but increases chances to falsely
classify artefacts as ictal patterns; longer windows of analyses
can ameliorate this (note the low FP rate in using a 16s
window); b) subclinical ictal electroencephalographic patterns
resembling ictal patterns by definition, but not accompanied
by clinical phenomena can be detected which may occur
more frequently than clinically manifest seizures [23]]. These
detections should not be called false detections, and there may
even be reasons to use such detections to trigger interventions
in a closed-loop device setting. Integration of more EEG
channels may allow for an estimation of the probability of
clinical correlates of the ictal event.

Expert review of some missed seizure showed epileptic
auras with unclear electrographic correlates, which allowed
neither clear visual nor algorithmic detection (Fig. [6] bottom).
Additional investigations are needed to identify the patterns
relevant for seizure detection during the evolution of the
electrographic ictal event, which not always coincide with the
seizure onset pattern, but rather with alterations of the ictal
pattern in the course of recruitment and spread (Fig. (6] top
and middle). Remarkably, SeizureNet had also good detection

TBB1
—— predictions
—=— seizures
dll I,

itive' spiking
06:31:45

_%2:30:15 06:30:45 06:31:15 06:32:15 06:32:45 06:33:15 06:33:45

Fig. 5. Early detected seizure with the repetitive spiking onset pattern:
predictions one minute around the seizures and the normalized electrode signal
of one electrode.
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electrode.

latencies for seizures with onset patterns, which are difficult
to detect, for example for amplitude depression [24].

VI. CONCLUSION

We have introduced SeizureNet, a convolutional neural
network for online seizure detection with state-of-the-art per-
formance. Empirical evaluation of our approach demonstrates
its suitability for practical realization on an implantable low-
power microcontroller for clinical applications. The consid-
ered approximations to preprocessing and architecture choices
preserve performance sufficiently while leaving over computa-
tional resources for further improvement. Candidates for future
work in this direction are the distillation of network ensembles
or the improvements in quantized, low-precision neural

networks [26].
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