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Abstract—Detecting fraudsters is a meaningful problem for 
both users and e-commerce platform. Existing graph-based 
approaches mainly adopt shallow models, which cannot capture 
the highly non-linear relationship between vertexes in a bipartite 
graph composed of users and items. To address this issue, in this 
paper we propose a joint deep structure embedding approach 
FraudNE for fraud detection that (a) can preserve the highly 
non-linear structural information of networks, (b) is robust to 
sparse networks, (c) embeds different types of vertexes jointly in 
the same latent space. It is worth mentioning that we can detect 
multiple fraudulent groups without the number of groups as a 
priori. Compared with baselines, our method achieved significant 
accuracy improvement.

Index Terms—Dense Block Detection, Network Embedding, 
Deep Structure Learning

I .  INTRODUCTION

Online user feedback for the target items, such as reviews 
and ratings, usually incurs considerable influence for potential 
buyers. It is on this very basis that the fraudulent behavior 
has become more and more widespread. For example, one- 
third of consumer reviews and rates on the Amazon, and 
more than one-fifth of reviews on Yelp are estimated to be 
fake [1]. Users are easily cheated by these fake feedbacks 
and purchase items with poor quality. The user chum of e- 
coimnerce platfonn is then following. Hence, how to detect 
fraudsters and corresponding target items is a serious problem 
for both users and e-coimnerce platfonn.

Generally speaking, fraudsters always act in lockstep to 
increase total impact of target items. The fraud detection 
problem can therefore be viewed as finding suspicious dense 
blocks in the attributed bipartite graph, where the source 
nodes represent user accounts, the sink nodes are items, and 
the directed edges stand for feedback record. The attributes 
on each edge can be organized as a sensor composed of 
timestamp, rating score, review and so on.

Most attribute-based methods exploited the user ac- 
counts/items/feedbacks related features to address the suspi-
cious dense blocks detection problem [2], [3]. However, these 
attributes-based methods for dense block detection are not 
adversarially robust. The fraudsters can fine-tune their text and 
behavior to make their features unsuspicious. For example, 
fraudsters can manipulate login times, their location, internet 
providers and IPs via large pools. What’s more, some attributes

(a) Bipartite graph (b) Node embedding in (c) Dense blocks

Fig. 1: The rough idea of joint bipartite graph embedding for 
Fraud Detection.

are not readily available or unaffordable to obtain in reality. All 
these make it difficult for these attributes-tensor based methods 
to be widely used. In contrast, the topology infonnation of 
the conesponding bipartite graph is relatively easy to obtain 
and cannot be easily camouflaged. Therefore, the problem we 
focus on is: whether and to what extent we can address the 
fraud detection problem, if only graph topology is available.

Although there have been some dense block detection meth-
ods involving topology infonnation only, such as designing 
kinds of density metrics and maximizing the arithmetic or 
geometric degree [4], [5], these methods mainly adopted 
shallow models and therefore they were particularly sensitive 
to topology structure. Besides, existing methods can not detect 
multiple dense blocks unless the block number is predefined 
[6], [7], while it is usually unrealistic for us to know the 
number of dense blocks beforehand.

To address these issues, in this paper we propose an un-
supervised method named FraudNE to detect abnonnal users 
and items through deep joint network embedding. Network 
embedding aims to learn the node latent representation, which 
encode network structural infonnation in a continuous vec-
tor space and preserve long-range and global structure. The 
proposed FraudNE makes full use of bipartite graph topology 
infonnation and embeds all users and items into the same low 
dimension space simultaneously. FraudNE aims to make the 
representations of the users and items in the same dense block 
as close as possible, while the presentations of the nonnal



users or items distribute uniformly in the latent space. We then 
cluster groups of fraudsters and their corresponding abnormal 
items without the number of dense blocks as a priori. The 
main idea is shown in Fig. 1.

In summary, our contributions are:
• We propose a novel FraudNE model to detect fraudulent 

dense blocks through deep structure learning on the 
attributed bipartite graph.

• FraudNE can automatically recognize the number of 
fraudulent blocks in bipartite graph without the block 
number predefined.

• Experimental results show that FraudNE achieves higher 
accuracy than state-of-the-art methods on several datasets.

The rest of paper is organized as follows. Section II is 
devoted to the formulation of fraud detection. In Section III 
we proposed FraudNE to detect fraud with the help of network 
embedding. We present the experimental results in Section IV. 
In Section V we review the related work. Finally, this paper 
is closed with Section VI.

II. P r o b l e m  De f i n i t i o n  a n d  c h a l l e n g e s

We define the fraud detection problem in bipartite network 
with user proximity, item proximity and local proximity.

Definition 1. (Fraud Detection) Given a bipartite and directed 
graph G = (U ,V ,E ), where U is the set o f source nodes, V  
is the set o f sink nodes, and E  is the set o f directed edges 
from U to V . In graph G, each u G U represents a user, each 
v G V  represents an item, and each ei , j  G E  is associated 
with a weight wi , j  representing the number o f reviews from 
u i to vj . In graph G, we hope to find multiple dense blocks 
for suspicious users and items detection.

Fraudulent groups are assumed to share some common 
characteristics in general [7]. Fraudsters always give as much 
review as possible to the suspicious items, while few normal 
users connect to the suspicious items.

Definition 2. (Joint Network Embedding) Given a bipartite 
network G = (U, V, E ), the problem o f joint network embed
ding is to embed all source nodes in U and all sink nodes 
in V  into a low-dimensional space R d simultaneously, where 
d is a parameter specifying the representation dimensions. 
Generally, d C  m in(\ U |, |V|).

Network embedding aims to map the graph data into a 
low-dimensional latent space. To conduct the embedding ap-
propriate for fraud detection, the network structures should 
be preserved. Then we define three proximities between the 
different types of vertexes.

Definition 3. (User Proximity) The user proximity between a 
pair o f users u i , uj  in a network is the similarity between their 
reviewed objects. We use binary vector si =  (wi,i , . . .  ,w i ,n ) 
to present the sink nodes that source node u i reviews. The user 
proximity between u i and uj  is determined by the similarity 
between s i and Sj . I f  user ui and user uj  have the similar

review behavior, they would have high proximity. I f  two users 
review absolutely different objects, their proximity is zero.

Definition 4. (Item Proximity) For each vi G V, we use binary 
vector m i =  (w1,i , . . .  ,w m,i ) to present the source nodes 
linked with sink node vi. The item proximity between vi and 
vj is determined by the similarity between m i and m j. I f  the 
similar users give similar attention to item vi and v j, they 
should have high item proximity.

Definition 5. (Local Proximity) The local proximity in a 
network is the local pairwise proximity between source node 
u and sink node v. For each pair o f source-sink nodes linked 
by weighted edge, the number o f reviews wu,v indicates the 
local proximity between user u and object v. I f  no edge is 
observed between source-sink nodes (u1 and v6 in Fig. 1), it 
means their local proximity is zero.

Our proposed model aims to embed the fraudulent users 
and items in the same dense block as close as possible, while 
the presentations of the normal users and items distribute 
uniformly in the low-dimensional latent space. Hence, it is 
necessary to preserve the user proximity, item proximity and 
local proximity in the joint network embedding process.

III. THE FraudNE M ODEL

In order to detect fraudulent groups, we first propose a 
deep joint network embedding framework, named FraudNE, 
to embed source nodes u G U and sink nodes v G V  jointly 
in one latent space. And then we make use of a clustering 
algorithm to find a high-density area in the latent space.

Deep neural networks have achieved satisfactory perfor-
mance in homogeneous network embedding. SDNE [8] em-
ploys a semi-supervised deep model to construct the node 
representations. Because of the preservation of highly non-
linear network structure, they achieved better effectiveness in 
some tasks. Our network embedding framework is compose of 
deep autoencoder as well. There are two distinct differences 
between our joint network embedding framework and SDNE.

• SDNE is a network embedding framework only for ho-
mogeneous networks and there is only one autodecoder. 
It means that SDNE is unable to cope with bipartite 
networks. The goal of our framework is embedding 
different types of vertexes jointly in one latent space and 
our framework include two autoencoders which handle 
source nodes and sink nodes in networks, respectively. 
Therefore, our approach can solve the problem of bipar-
tite network representations.

• The opposite of SDNE is a task-independent represen-
tation method, FraudNE is an embedding method for 
fraud detection. Although both of the SDNE as well as 
FraudNE are optimized by exploiting stochastic gradient 
decent, the betch selection of two types of vertexes is 
not completely random due to the low ratio of suspicious 
vertexes. As a result, we firstly choose certain number of 
source vertexes randomly. Then, we weighted randomly 
extract vertexes from V , where the weights are indegrees 
of each sink vertexes from chosen source vertexes.
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Fig. 2: The framework of FraudNE

A. Framework

We proposed a deep model to capture the highly non-linear 
structure information between the vertexes. As shown in Fig. 2, 
the network embedding framework consists of two unsurprised 
components, i.e., source node representation part and sink 
node representation part.

To reconstruct the node representations, we propose a deep 
architecture, which is composed of multiple non-linear func-
tions to map the input into a latent space. Source node repre-
sentation part and sink node representation part are completely 
different. These two parts can have different neural network 
structures, parameters and non-linear activation functions. To 
preserve the structural information between source nodes and 
sink nodes, we add constraints to refine the representations 
in latent space. Meanwhile, the model is robust to sparse 
networks. We detail this model in the following section.

B. Loss Function

We define some notations and terms in Table I. We first 
introduce the input of two autoencoder parts. Given a network 
G = (U,V,E),  we can obtain its source-sink interaction 
matrix S, which contains m  instances s i , .... s,„. For each 
instance in the matrix s, =  Si,j > 0 if and
only if there exists a weighted edge between u, and Vj. 
Therefore, each instance s, describes the reviews from u, to 
all items v G V.  Matrix S  preserves structural information of 
each source vertex in network, and s, is the input vector of 
autoencoder in source node represent part.

At the same time, matrix S  also preserves structural in-
formation of each sink vertex. We can represent ,VT with 
S'T =  { n i j , . . . , m n}. For each instance m v =  { n ii j} f=1. 
n iij  > 0 if and only if there exists links between u, and Vj. 
Therefore, each instance rip, describes the reviewing source
° f v 3-

Both source node representation part and sink node repre-
sentation part are compose of deep autoencoder, an artificial 
neural network used for unsupervised learning composed with 
the purpose of reconstructing its own inputs. It consist with 
two parts, encoder part and decoder part. Both parts have an 
input layer, an output layer and one or more hidden layers 
with non-linear activation function connecting them. Besides,

Sym bol D efinition

m number of source vertexes
n number of sink vertexes

Ku number of layers in user part
Kv number of layers in itwm part

S = ( s i , . . . ,  sm } adjacency matrix for network
-Y =  {xi}™1, . Y = { x i}™1 input and reconstruct data in user part
y  = {yt}?= iW  =  {ÿi}?=1 input and reconstruct data in item part

Z(ku) =  (Z ku-th layer hidden representations in 
user part

=  {h<fc“ )}”=1 fĉ -th layer hidden representatons in 
item part

w iku\ w i ku) ku-th layer weight matrix in user part
fĉ -th layer weight matrix in item part
the ku -th layer biases in user part

KJy , KJV the fctJ-th layer biases in item part
e  = {w, w,  b, 6} the overall parameters

the nodes in output layer are as much as the nodes in input 
layer.

Then in the source node representation part, the encoder 
stage of an autoencoder takes the input s ; g  R n and maps it
to hidden layers. The hidden representations of each layer are
i .

z f ^ a i W ^ S i  +  b W )  

z f u) =  <7( w 2 Cu>zi(ku-1) +

After getting z \K'a\  the decoder stage of the autoencoder maps 
it to the reconstruction s ; of the same shape of s ; . The goal 
of the autoencoder is to minimise reconstruction errors (such 
as squared errors):

m

~  s * 11 i 1 2 )

i= 1
Obviously, in sink node representation part, taking the input 
m j g  R m, the encoder maps it to hidden layers. The hidden 
representations of each layer are:

h $ M  =  < 7 ( W ^ ) h j(k v _ 1 ) +  b . ^ )

And the loss function is shown as follow:
n

A, =  _  m 'i 11 2 14)
i= 1

The reconstruction criterion can preserve the similarity be-
tween samples through capturing the data manifolds smoothly 
[9], though minimizing the reconstruction loss does not be 
manifestly concerned about the similarity. Therefore, the latent 
representations would be similar when the vertexes have 
similar reviewed items or receive reviews from similar users.

However, due to the sparsity of the input vector, the number 
of non-zero elements is much smaller than that of zero ele-
ments. That means the autoencoder will tend to reconstruct the

•we use sigmoid function a( x)  =  as the non-linear function
in every hidden layer in two parts



zero elements rather than non-zero ones, which is incompatible 
with our purpose. To increase the distinction, we give different 
weights to different elements, and redefine Eq. (2) and Eq. (4) 
as follows:

m

Lu — ¿2 l(X  -  X) © D u ||2
i=1

(5)

n

Lv — E ll(Y -  Y)  © D v ||2 (6)
i=1

where © means Hadamard product, D u and D v are weight 
vertors, D u = {dU} =  {d'U j }n=1, if s^- =  0,d'Uj = 1, else 
dUj = f t>  1. D v = {dv} =  {dUj}”=1, if mi,j =  0, dVj = 1, 
else dV j = ft > 1.

We design the third part of framework to preserve the 
local proximity. The proximity can be regarded as the link 
information to restrict the latent representation of a pair of 
source node and sink node. Eq. (7) borrows the idea of 
Laplacian Eigenmaps [10]. A penalty will be introduced when 
similar vertexes are mapped far away from each other in the 
latent space. We incorporate the idea in our deep model to 
resist the two different types of vertexes linked by edge to be 
mapped near in latent space. As a result, the loss function for 
this part is shown as:

L local EE*
i=1 j = 1

r ( K u ) - h (Kv )y2 (7)

To preserve three proximities at the same time, we propose a 
deep model which combines Eq. (5), Eq. (6) and Eq. (7) and 
joint minimizes the following objective function:

L — Lu +  Lv +  a L local +  nLreg (8)

Algorithm 1 Training Algorithm for deep model of FraudNE 
Input: bipartite network G = (U ,V ,E ) with user-item matrix 
S  , the parameters a  and n .
Output: latent representations and updated parameters: 6.

1: Pretrain the model through deep belief network [11] to 
initialize parameters 6.

2: X  =  S , Y  = S T 
3: repeat
4: Based on X , Y  and 6, apply Eq. 1 and Eq. 3 to obtain X , 

Y  and L = L K“, H  = H K .
5: Apply Eq. 8 to compute objective function 
6: Based on Eq. 9, use 3 0 /3 6  to back-propagate through the 

entire network to get updated parameters 6.
7: until converge
8: Obtain the latent representation P .

where dL U/ d w Uk ) rephrased as follows:

dL u _  dL u d X

3wUk) d X  3wUk)

According to Eq. 5, we can compute:

d Lu 
d X

2(X -  X )  © B

(10)

(11)

The calculation of d X /d w Uk ) is accessible. Based on back-
propagation, we can iteratively calculate 3L U/3 \v Uk ), k = 
1 ,. . .  ,K  — 1 and dL.U/ d w Uk ), k = 1 , . . . , K  — 1.

The calculation of the partial derivative of d L l o c a l / d w Uk ) 
is accessible, since the loss function of L local  is:

L local EE s© ||ziKu) -  h jKv>112
=1 j=1

2 tr(P T L P ) (12)

Here, we introduce two hyper-parameters a  and n to balance 
the weights of different parts. Moreover, L reg is an 02-norm 
regularizer to prevent overfitting, which is defined as:

1 Ku
Lreg =  ^ E ^ U ^  III +  W U ^ W l)

2 k=1 
1 Kv

+ ^J2 (W w V k)WF + WwVk)WF)

C. Optimization

Our goal is to minimize L  which is the proposed objective 
function. Besides, the key step is to compute the partial 
derivative of d L / d W ^  and d L /d w U t). Since the training 
principle of two parts in our framework are the same, we take 
source node representation part as example:

dL

dW uk)
dL

dW uk)

dLu

dW uk)
dLu

dW uk)

+ a

+  n

o c local

dW uk)
d Lreg

8W,
(k)

+  n
3LL/Lreg

3W,uk) (9)

where P  = Z  + H 2, and L = D — A, D  e  R(m+n)x(m+n) 
is a diagonal matrix, Di,i = J2j S i,j. Besides, A is adjacency 
matrix. A  e  R (m+n)x(m+n). Therefore, d L local/ dwUk) is 
accessible by using back-propagation. The full algorithm is 
presented in Alg. 1.

D. Clustering

FraudNE can learn the representations of the user and item 
nodes in the same fraud block as close as possible, while the 
presentations of the normal nodes are far away from these 
fraudulent nodes. After obtaining representations, we choose 
DBSCAN, a clustering algorithm, to complete fraud detection. 
We briefly review the fundamental idea of DBSCAN. It is a 
density-based method grouping together points that are closely 
packed together. Besides DBSCAN marks as outliers that lie 
alone in low-density regions. It has a notion of noise and does 
not require one to specify the number of clusters in the data 
in advance.

2we denote network representations Z  =  {zf “ }"=1 as Z ( f © = 
{zf “ }?= 1 , and H  = { h f “ }n=1 as H ( f © =  {hf “ }n=1

2018 International Joint Conference on Neural Networks (IJCNN)



Algorithm 2 clustering fraudulent groups
Input: latent representations of vertexes in networks P  = L +
H , the paramaters e and m inP ts.
Output: fraudulent groups F  including users and items.
1: Find e neighbors of every point, and identify n  core points 

with more than m in P ts  neighbors.
2: Find the connected components of core points on the 

neighbor graph, ignoring all non-core points.
3: Assign each non-core point to a nearby cluster if the cluster 

is an e neighbor, otherwise assign it to noise.
4: Calculate the average degree aver of the whole dataset.
5: While i < n
6: Calculate the average degree averi of every cluster.
7: if averi < aver: cluster i G F .
8: end while
9: Obtain fraudulent groups F .

After obtaining n  clusters, we calculate average degree 
averi  in each cluster and average degree aver in the whole 
dataset. If averi > aver, cluster i is a fraudulent group. The 
full algorithm is presented in Alg. 2.

E. Analysis and Discussion

New Vetexs coming: How to learn representation first for a 
new source node or sink node before clustering the fraudulent 
groups is a practical issue. For a new source vertex u k, if its 
review information is known, we can obtain its vector x  =  
sk , i , . . . ,  sk ,n . Then we feed x  into our model and get the 
representation for u k with the help of trained parameters 6. 
However, if there is no edge from u k  to sink vertexes, the 
proposed method and state-of-the-art methods will fail to learn 
its representation. Our goal is detecting the fraudulent groups 
in the network. Obviously, if the new source vertex is not 
linked to any existing sink nodes, it is impossible to be a 
fraudulent user. Therefore, it does not need to get its latent 
representation.

Complexity: It is obviously that the training complexity of 
framework is O ((m  +  n )d C I), where m  is the number of 
source vertexes and n  is the number of sink vertexes, d is the 
maximum dimension of the hidden layer that might be related 
to the dimension of embedding vectors instead of number of 
vertexes, C  means the average degree of network and is always 
a constant in real-world applications, and I  is the number of 
iterations, independent of m  or n. Therefore, d C I  is be foreign 
to both m  and n . In the nutshell, the training complexity is 
linear to the number of vertexes in the network. And as we 
all know, DBSCAN executes exactly one such query for each 
point, and if an indexing structure is used that executes a 
neighborhood query in O(logn). An overall average runtime 
complexity of O(nlogn) is obtained.

IV. Ex p e r i m e n t s

A. Datasets

Table II details the statistics of three datasets which are pub-
licly available for academic research. We mimic the behaviors

of fraudsters and randomly select a certain number of objects 
as target items in our experiments. Since unpopular items are 
inclined to hire fake reviews, indegree of the object we select is 
less than 50. We can also uniformly select a certain number of 
users from the whole user set as the fraudulent users, since the 
fraudulent accounts may be from the hijacked user accounts. 
To test the ability to detect multiple density blocks, the number 
of fraudulent groups ranges from 1 to 3. Each fraudulent group 
includes 400 fraudsters and 200 target items. Those fraudsters 
as a whole randomly rate each of the target item for 200 times. 
At the same time, we also create some camouflage on other 
products.

TABLE II: Satsitics of the dataset

Data Name #nodes #edges
Zomato 5.3K x 1.0K 36K

MovieLens 6.04K X3.90K 1M
BookCrossing 77.8K X55.6K 434K

B. Baseline Algorithms

We use the following three methods as baselines. The first 
two are dense block detection methods [4], [7]. We select 
a network embedding method [12] as the last comparison 
algorithm, which is aiming to prove the necessity of proposing 
a new embedding method for network fraud detection. For fair 
comparison, only topology information can be used for all the 
methods in our experiments.

• HoloScope3: This is a graph topology-based weighting 
scheme dynamically reweights objects according to be-
liefs about which users are suspicious.

• FRAUDAR4: This is an edge weighting scheme based 
on inverse logarithm of objects’ degrees, which inspired 
by IDF.

• DeepWalk5: This approach adopts random walk and 
skip-gram model to generate learn d-dimensional rep-
resentations. We will use the same clustering algorithm 
after obtaining the vertexes representations.

C. Parameter Settings

TABLE III: Neural Network Structure

Data Name components #nodes in each layer

Zomato
source nodes part 1013-500-100

sink nodes part 5337-600-100

MovieLens
source nodes part 3900-600-100

sink nodes part 6040-700-100

BookCrossing
source nodes part 9225-3500-800-100

sink nodes part 14219-5000-1000-100

The neural network structure in this paper varies with differ-
ent datasets. The structure of autoencoder in two components 
can be completely different as long as the number of nodes

3 https://github.com/shenghua-liu/HoloScope
4 www.andrew.cmu.edu/user/bhooi/camo.zip
5 https://github.com/phanein/deepwalk
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Fig. 3: F1 -measure of fraud detection on Zomato dataset

in the last encoder layer is the same. The dimension of each 
layer is listed in Table III.

The parameter a, n, ft in deep model and the parameter 
e, minPts in clustering algorithm are tuned to be optimal 
for every dataset. Besides, the parameters for baselines are 
tuned to be optimal. For HoloScope, we set base b as 32. For 
DeepWalk, we set window size as 10, walk length as 40, walks 
per vertex as 40.

D. Detecting multiple fraudulent groups

We propose to use F1 -measure in order to give a comparison 
on three datasets with different number of injected blocks. we 
apply Eq. 13 to compute F1 -measure.

„  2 x (precision x recall)
Fi = ----- (P . .  , -------(13)

precision  +  recall

where precision  is the number of correct fraudulent nodes 
divided by the number of all fraudulent nodes returned by 
Alg. 2, and recall is the number of correct fraudulent nodes 
results divided by the number of all fraudulent nodes.

Table IV reports the fraud detection results of the proposed 
method FraudNE and three state-of-the-art methods on three 
datasets. We separately measure the performance on source 
nodes and sink nodes. As we find that, FraudNE achieves 
the best F1 -measure among the competitors in most tasks. In 
particular, FraudNE achieves considerable improvement over 
other methods when the number of blocks is more than one. As 
MovieLens is much denser than other, DeepWalk gets higher 
F1 -measure on this dataset. In contrast, FRAUDAR achieves 
higher F1 -measure on sparse datasets. HoloScope obtains 
excellent performance on detecting one block. However, when 
the number of blocks increases, even with the number of 
blocks as a priori, HoloScope cannot achieve high performance 
on account of detecting most fraudulent nodes as one group. 
Table V quantitatively demonstrate our methods’ ability of 
detecting multiple blocks.

Fig. 3 shows the result of FraudNE, Holoscope and Deep
Walk on Zomato dataset. When the number of fraudulent 
blocks increased, the proposed method can still maintain high 
F1 -measure. Most importantly, FraudNE does not need to

know the number of fraudulent blocks as a priori to achieve 
a better performance while competitors do.

E. Parameter Sensitivity

Our method involves several parameters, we examine how 
different numbers of the embedding dimension and different 
values of hyper-parameter a  affect the performance on Zomato 
dataset with two injected blocks of FraudNE. Fig.4 (a) reports 
the performance of the FraudNE w.r.t. the dimension d. We 
can find that, at the beginning, the performance raises as the 
dimension d increases. However, the performance drops when 
the dimension d becomes too large. The main reason is that 
dimension d is so large that introduced noise would influence 
the performance. The value of a  can balance three proximities. 
Fig.4 (b) shows how the value of a  influences the performance. 
When a = 0.02, we can obtain the best performance.

Fig.4 (c) reports the performance obtained by our method 
with regard to the hyper-parameter of DBSCAN, the minimum 
number of points required to form a dense region e. When the 
hyper-parameter varies within a certain scope, the performance 
will not be influenced significantly, since FraudNE makes a 
large distinction between normal nodes and fraudulent nodes.

V. Re l a t e d  W o r k

Anomaly detection. Since the groundbreaking work of [2], 
opinion spam has been the focus of research for more than 
ten years. Many existing methods aim to detect fraud through 
features. Various features have been proposed to characterize 
the differences between fraudsters and normal users. For 
example, deviation-based features [13], [14] are commonly 
used to capture the differences between the ratings given by 
fraudsters and the remaining users. Besides, review text can 
provide us with rich features, some existing method utilize 
text features such as content similarity, n-gram and the review 
length [15]. However, these approaches are not robust since the 
fraudsters constantly improve the quality of texts in reviews 
even without knowledge of detection system. It is unreliable to 
extract features and detect fraudsters through texts in reviews. 
Though the attributes of users or items can be manipulated by 
fraudsters, the connectivity structure of the bipartite network 
is still reliable and informative.

Graph-based fraud detection methods often detect unex-
pectedly dense regions of the networks. Since spammers 
unavoidably generated edges in networks when they create 
fake reviews, these methods are hard to evade. Most existing 
works study anomaly detection based on the density of blocks 
within adjacency matrices [16], [17] or multi-way tensors [18]. 
[19] builds on singular value decomposition (SVD) and focus 
on detecting attacks missed by spectral techniques. FRAUDAR 
[4] proposed a method to weight edge’s suspiciousness by the 
inverse logarithm of objects’ indegrees to discount popular 
objects. However, these methods adopt shallow models and 
cannot consider long-range, global structural information of 
networks.

Network embedding. As an emerging area from graph 
mining [20]-[22], network embedding aims to map the net-
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TABLE IV: Experimental results on real data with injected labels

Data Name
F1 score of source nodes F1 score of sink nodes

DeepWalk FRAUDAR HoloScope FraudNE DeepWalk FRAUDAR HoloScope FraudNE
Zomato with block #1 0.1596 0.9985 0.9857 0.9975 0.9771 0.9965 0.9985 0.9975
Zomato with block #2 0.1306 - 0.8311 0.9963 0.3875 - 0.8075 0.9975
Zomato with block #3 0.1228 - 0.6634 0.9958 0.2723 - 0.3433 0.9865

Movielens with block #1 0.8555 0.1436 0.9546 0.9840 0.9875 0.1104 0.9625 0.9954
Movielens with block #2 0.8236 - 0.5422 0.9824 0.9817 - 0.50 0.9918
Movielens with block #3 0.8406 - 0.4484 0.9826 0.9889 - 0.3333 0.9958

BookCrossing with block #1 0.2036 0.9957 0.9958 0.9950 0.6703 0.9986 0.9926 0.9858
BookCrossing with block #2 01381 - 0.6789 0.9933 0.1715 - 0.50 0.9667
BookCrossing with block #3 0.1194 - 0.5765 0.9975 0.0620 - 0.2425 0.9343
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#dimension

200 250

(a) #dimension

0.02 0.10 0.20
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Fig. 4: Sensitivity w.r.t. dimension d, the value of a  and e

0 98 0 98

0 96 0 96

0 94 0 94 1-85

0 92 0 92 1.8

TABLE V: Precision, recall and F  score of each block

Data Name blocks precision recall Fi  score

Zomato
fraudulent group 1 0.9983 0.9850 0.9916
fraudulent group 2 0.9932 0.9883 0.9908
fraudulent group 3 0.9973 0.9916 0.9958

MovieLens
fraudulent group 1 0.9957 0.9850 0.9924
fraudulent group 2 0.9986 0.9767 0.9882
fraudulent group 3 0.9976 0.9700 0.9848

BookCrossing
fraudulent group 1 0.9979 0.9350 0.9717
fraudulent group 2 0.9979 0.9350 0.9717
fraudulent group 3 0.9968 0.9567 0.9796

work into low-dimensional representations for a wide range 
of network analysis applications [23]-[28]. Most of them are 
task-independent. Some earlier works like IsoMap [29], Local 
Linear Embedding [30] first constructed the affinity graph and 
then solved the leading eigenvectors as the network represen-
tations. Many methods have been proposed for graph embed-
ding later, including multidimensional scaling [31], stochastic 
neighbor embedding [32] and spectral methods [33]. These 
methods are proposed to compress graph while preserving 
certain properties. More recently, DeepWalk [12] combines 
random walk and skip-gram to learn network representations 
and successfully preserve the structural information but it 
lacks a clear objective function. LINE [34] first learns the 
representations of networks based on preserving the first-
order and second-order proximity. All of these methods are 
shallow models and can not capture the highly non-linear

structure in the bipartite network. [8] proposed a deep network 
embedding method, to preserve highly non-linear structural 
information in network. However, it can only play a big role in 
homogeneous networks. There are also some methods aiming 
to embed heterogeneous network, such as metapath2vec [35] 
and [36]. But both of them can not be directly used to detect 
fraudsters. Besides, few existing methods embed different 
types of vertexes jointly in the same latent space.

Network embedding based anomaly detection. There 
are some previous works utilizing network embedding for 
anomaly detection [37], [38]. [37] proposed a method to 
use the spectral embedding to reveal anomalous community 
structure across multiple sources. [38] adopts a new measure 
to evaluate the level of anomalousness and detects structural 
inconsistencies based on network embedding. Different from 
these works, the proposed method focus on detecting the 
groups of fraudsters and their target objects in bipartite net-
works.

VI. Co n c l u s i o n

In this paper, we present a joint embedding approach to 
detecting fraud groups in bipartite networks. Specifically, we 
design a unsupervised deep model with multiple layers of 
nonlinear function to capture the highly non-linear fraud-
ulent structural information. Learning latent representations 
of vertexes can be robust to sparse networks and easy to 
capture the structure of the behavior graph. Moreover, after 
obtaining latent representations, we utilize one of the most
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popular clustering algorithms to cluster multiple fraudulent 
groups in latent space without the number of groups as a 
priori. Empirically, our extensive experimental results have 
demonstrated the effectiveness of our approach to multiple 
fraud detection compared with state-of-the-art methods. And 
our method achieves high accuracy whether on sparse or dense 
dataset.
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